JPH0798419A - Integrated optical waveguide circuit - Google Patents
Integrated optical waveguide circuitInfo
- Publication number
- JPH0798419A JPH0798419A JP28334893A JP28334893A JPH0798419A JP H0798419 A JPH0798419 A JP H0798419A JP 28334893 A JP28334893 A JP 28334893A JP 28334893 A JP28334893 A JP 28334893A JP H0798419 A JPH0798419 A JP H0798419A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical waveguide
- waveguide
- light
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12014—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12016—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12019—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
- G02B6/12021—Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光通信および光情報処理
用の光部品に用いられる集積光導波回路に関し、さらに
詳しくは、光パワースプリッタとアレイ導波路回折格子
型光波長合分波器とを集積化した集積光導波回路に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated optical waveguide circuit used for optical components for optical communication and optical information processing, and more specifically to an optical power splitter and an arrayed waveguide diffraction grating type optical wavelength multiplexer / demultiplexer. The present invention relates to an integrated optical waveguide circuit in which the above are integrated.
【0002】[0002]
【従来の技術】近年、光通信システムの高度化に対応す
るため、あるいは光通信システムの応用範囲を広げるた
めに様々な光導波回路部品が研究開発されている。特
に、シリコン基板上にガラス導波路を作製して構成され
た平面光波回路(PlanarLightwave C
ircuits)は、その光損失が小さいため実用的な
光部品として注目を集めている。その代表的な回路とし
てアレイ導波路回折格子型光波長合分波器やスラブ導波
路展開部を用いたN×Mスターカプラ型光パワースプリ
ッタなどがある。それぞれ、A.R.Vellekoo
p and M.K.Smit,“Four−Chan
nel Integrated−Optic Wave
length Demultiplexer with
WeakPolarization Depende
nce”,J.Lightwave Technol.
vol.9 pp310−314(1991)、およ
び、C.Dragone et al.“Effici
ent Multichannel Integrat
ed Optics Star Coupleron
Silicon”,IEEE Photonic Te
ch. Lett.vol.1 pp.241−243
(1989)に詳細に開示されている。2. Description of the Related Art In recent years, various optical waveguide circuit components have been researched and developed in order to cope with the sophistication of optical communication systems or to expand the application range of optical communication systems. In particular, a planar lightwave circuit (Planar Lightwave C) constructed by forming a glass waveguide on a silicon substrate.
ircuits) are attracting attention as practical optical components because of their small optical loss. Typical circuits include an arrayed waveguide diffraction grating type optical wavelength multiplexer / demultiplexer and an N × M star coupler type optical power splitter using a slab waveguide expansion unit. A. R. Vellekoo
p and M.P. K. Smit, "Four-Chan"
nel Integrated-Optic Wave
length Demultiplexer with
Weak Polarization Depende
nce ", J. Lightwave Technology.
vol. 9 pp310-314 (1991), and C.I. Dragone et al. "Effici
ent Multichannel Integrat
ed Optics Star Coupler
Silicon ”, IEEE Photonic Te
ch. Lett. vol. 1 pp. 241-243
(1989).
【0003】アレイ導波路回折格子型合分波器の構成を
図15に示す。アレイ導波路回折格子型光波長合分波器
は複数本の入力光導波路301と、その光を複数の導波
路に分岐させるための展開用のスラブ光導波路401、
その後段に配置された長さの異なる複数本のアレイ導波
路302、このアレイ導波路302から放射された光を
互いに干渉させるためのスラブ光導波路402および複
数の出力光導波路308から構成されている。その機能
は、ある任意の光導波路から入力された光をその光の波
長に応じて分波し、各出力光導波路に出力することであ
る。また、入力側と出力側を反対に用いることによって
異なる波長の光を合波することも可能である。このよう
な光波長合分波の機能は、光通信システムの中で波長多
重や光波長を用いたルーティングを行う際に非常に有効
となる。FIG. 15 shows the structure of an arrayed waveguide diffraction grating type multiplexer / demultiplexer. The arrayed-waveguide diffraction grating type optical wavelength multiplexer / demultiplexer has a plurality of input optical waveguides 301 and a slab optical waveguide 401 for expansion for branching the light into a plurality of waveguides.
It is composed of a plurality of arrayed waveguides 302 having different lengths arranged in the subsequent stage, a slab optical waveguide 402 and a plurality of output optical waveguides 308 for making light emitted from the arrayed waveguides 302 interfere with each other. . Its function is to demultiplex light input from a certain optical waveguide according to the wavelength of the light and output it to each output optical waveguide. It is also possible to combine lights of different wavelengths by using the input side and the output side in reverse. Such an optical wavelength multiplexing / demultiplexing function is very effective when performing wavelength multiplexing or routing using optical wavelengths in an optical communication system.
【0004】一方、N×Mスターカプラ型光パワースプ
リッタの構成を図16に示す。N×Mスターカプラ型光
パワースプリッタはN本のどの入力光導波路304から
入射した光に対しても入射された光は、その波長に依存
せずM本の各出力光導波路309に分配される。このた
め多数の光の分波を必要とするシステムにおいて重要と
なる。その構成は、複数本の入力光導波路304とその
チャンネル導波路に閉じ込められていた光を展開するた
めのスラブ光導波路406とその展開された光を受けて
出力するための出力光導波路309とから構成される。On the other hand, FIG. 16 shows the configuration of an N × M star coupler type optical power splitter. In the N × M star coupler type optical power splitter, the incident light with respect to the light incident from any of the N input optical waveguides 304 is distributed to each of the M output optical waveguides 309 without depending on its wavelength. . Therefore, it is important in a system that requires a large number of light demultiplexers. The structure is composed of a plurality of input optical waveguides 304, a slab optical waveguide 406 for expanding the light confined in the channel waveguides, and an output optical waveguide 309 for receiving and outputting the expanded light. Composed.
【0005】以上、要約するとアレイ導波路回折格子は
入力される光の波長に応じて、出力される光導波路が選
択される。一方、スターカプラ型パワースプリッタは光
の波長に依存せずに、各出力光導波路に入力された光を
分配する。In summary, in the arrayed waveguide diffraction grating, the output optical waveguide is selected according to the wavelength of the input light. On the other hand, the star coupler type power splitter distributes the light input to each output optical waveguide without depending on the wavelength of the light.
【0006】[0006]
【発明が解決しようとする課題】前述の通り、入力光の
波長に依存して出力光導波路が選択される波長合分波器
と、入力光の波長に依存せずに全ての出力光導波路に分
配される光パワースプリッタは存在したが、この両者の
機能を合わせ持つ光集積回路は従来知られていなかっ
た。As described above, the wavelength multiplexer / demultiplexer in which the output optical waveguide is selected depending on the wavelength of the input light and all the output optical waveguides independent of the wavelength of the input light are used. There was an optical power splitter for distribution, but an optical integrated circuit having both functions was not known so far.
【0007】そこで、本発明の目的は、2つの機能を合
わせ持つ集積光導波路回路、すなわち、任意の入力ポー
トから入射した光は、波長に依存せずに各出力光導波路
に分配され、別の入力ポートから入射した光は波長に依
存して特定の出力光導波路から出力されるという新たな
機能を合わせ持った集積光導波回路を提供することにあ
る。Therefore, an object of the present invention is to provide an integrated optical waveguide circuit having two functions, that is, light incident from an arbitrary input port is distributed to each output optical waveguide without depending on wavelength, and another An object of the present invention is to provide an integrated optical waveguide circuit having a new function that light incident from an input port is output from a specific output optical waveguide depending on the wavelength.
【0008】[0008]
【課題を解決するための手段】このような目的を達成す
るために、本発明の集積光導波回路の第1の態様は一本
あるいは並列に並べられた複数本の入力光導波路、第1
のスラブ光導波路、並列に並べられた長さの異なる複数
本のアレイ光導波路、第2のスラブ光導波路および並列
に並べられた複数本の出力光導波路を縦列に接続するこ
とによって構成された光波長合分波器と、一本あるいは
並列に並べられた複数本の入力光導波路、スラブ光導波
路および並列に並べられた複数本の出力光導波路を縦列
に接続することによって構成された光パワースプリッタ
とが同一の二次元平面上に形成され、かつ前記光波長合
分波器の前記第1および第2のスラブ光導波路の少なく
とも一方と前記光パワースプリッタの前記スラブ光導波
路とが共有され、かつ前記光波長合分波器の前記入力光
導波路および前記出力光導波路の少なくとも一方と前記
光パワースプリッタの前記出力光導波路とが共有されて
いることを特徴とする集積光導波回路である。In order to achieve such an object, the first aspect of the integrated optical waveguide circuit of the present invention is one or a plurality of input optical waveguides arranged in parallel.
A slab optical waveguide, a plurality of arrayed optical waveguides arranged in parallel with different lengths, a second slab optical waveguide, and a plurality of output optical waveguides arranged in parallel are connected in series. A wavelength multiplexer / demultiplexer and an optical power splitter configured by connecting in series one or a plurality of input optical waveguides arranged in parallel, a slab optical waveguide, and a plurality of output optical waveguides arranged in parallel. Are formed on the same two-dimensional plane, and at least one of the first and second slab optical waveguides of the optical wavelength multiplexer / demultiplexer and the slab optical waveguide of the optical power splitter are shared, and At least one of the input optical waveguide and the output optical waveguide of the optical wavelength multiplexer / demultiplexer and the output optical waveguide of the optical power splitter are shared. That is an integrated optical waveguide circuit.
【0009】本発明の第2の態様は並列に並べられた複
数本の入出力光導波路、スラブ光導波路、並列に並べら
れた長さの異なる複数本のアレイ光導波路および特定の
波長の光を反射するミラーによって構成された光波長合
分波器と、一本あるいは並列に並べられた複数本の入力
光導波路、スラブ光導波路、および並列に並べられた複
数本の出力光導波路を縦列に接続することによって構成
された光パワースプリッタとが同一の二次元平面上に形
成され、かつ前記光波長合分波器の前記アレイ導波路と
前記光パワースプリッタの前記入力光導波路とが共有さ
れ、前記光波長合分波器の前記スラブ光導波路と前記光
パワースプリッタの前記スラブ光導波路とが共有され、
さらに、前記光波長合分波器の前記入出力光導波路と前
記光パワースプリッタの前記出力光導波路とが共有され
ていることを特徴とする集積光導波回路である。According to a second aspect of the present invention, a plurality of input / output optical waveguides arranged in parallel, a slab optical waveguide, a plurality of array optical waveguides arranged in parallel with different lengths, and light of a specific wavelength are provided. Optical wavelength multiplexer / demultiplexer composed of reflecting mirrors, and one or more input optical waveguides arranged in parallel, slab optical waveguides, and multiple output optical waveguides arranged in parallel are connected in cascade. The optical power splitter configured by is formed on the same two-dimensional plane, and the arrayed waveguide of the optical wavelength multiplexer / demultiplexer and the input optical waveguide of the optical power splitter are shared, The slab optical waveguide of the optical wavelength multiplexer / demultiplexer and the slab optical waveguide of the optical power splitter are shared,
Further, the integrated optical waveguide circuit is characterized in that the input / output optical waveguide of the optical wavelength multiplexer / demultiplexer and the output optical waveguide of the optical power splitter are shared.
【0010】[0010]
【作用】アレイ導波路回折格子とスターカプラ型光パワ
ースプリッタとを、互いのスラブ光導波路および入出力
光導波路を共有させて集積化したことによって、従来不
可能であった光波長に依存して出力光導波路が選択され
る波長合分波機能と、光波長に依存せず一定の割合で光
を分配する光パワースプリッタの機能とを同一の光集積
回路で実現することができるようになる。[Operation] By integrating the arrayed waveguide diffraction grating and the star coupler type optical power splitter by sharing the slab optical waveguide and the input / output optical waveguide with each other, it is possible to depend on the optical wavelength which has been impossible in the past. The wavelength multiplexing / demultiplexing function in which the output optical waveguide is selected and the function of the optical power splitter that distributes light at a constant ratio without depending on the optical wavelength can be realized by the same optical integrated circuit.
【0011】[0011]
【実施例】以下、図面を参照しつつ本発明の実施例を詳
細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0012】実施例1 本発明の第1の実施例に係る光波長合分波器および光パ
ワースプリッタの集積光導波回路の平面図を図1に示
す。 Embodiment 1 FIG. 1 shows a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a first embodiment of the present invention.
【0013】図2は図1に示した集積光導波回路のA
A′線における拡大断面図であり、図3は、図1に示し
た集積光導波回路のBB′線における拡大断面図であ
る。FIG. 2 shows the integrated optical waveguide circuit A shown in FIG.
FIG. 3 is an enlarged sectional view taken along line A ′, and FIG. 3 is an enlarged sectional view taken along line BB ′ of the integrated optical waveguide circuit shown in FIG. 1.
【0014】ここで、1は基板、2はクラッド層、3は
入力光導波路のコア部、301はアレイ導波路回折格子
の入力光導波路、302はアレイ導波路回折格子のアレ
イ光導波路で長さの異なる複数本の光導波路が並列に並
べられている。303はアレイ導波路回折格子および光
パワースプリッタの出力光導波路、304は光パワース
プリッタの入力光導波路、401および402はそれぞ
れスラブ光導波路である。Here, 1 is a substrate, 2 is a clad layer, 3 is a core portion of an input optical waveguide, 301 is an input optical waveguide of an arrayed waveguide diffraction grating, and 302 is an arrayed optical waveguide of an arrayed waveguide diffraction grating. A plurality of optical waveguides having different wavelengths are arranged in parallel. Reference numeral 303 is an output waveguide of the arrayed waveguide diffraction grating and the optical power splitter, 304 is an input waveguide of the optical power splitter, and 401 and 402 are slab waveguides, respectively.
【0015】その構成はアレイ導波路回折格子と、その
出力側のスラブ光導波路402および出力光導波路30
3を共有する光パワースプリッタとが集積されたものと
なっている。光パワースプリッタの入力光導波路304
から入射された波長λk の光は各出力光導波路に一定の
割合、もしくは適当なパワー比で分配される。一方、ア
レイ導波路回折格子のアレイ導波路302は各光導波路
の長さが異なるため光の波面が傾き、入力光導波路30
1とは異なる別の出力導波路303に結合する。ここで
波面の傾きは光波長によって変化するために、光波長を
変化させると出力光導波路303のなかで異なる出力光
導波路に光が出力されることになる。こうしてアレイ導
波路回折格子は光波長合分波器として機能する。すなわ
ち、アレイ導波路回折格子のある入力光導波路301
に、例えば、波長λ-j,…,λj の光を多重して入射す
ると、アレイ導波路回折格子は合分波機能を持つため出
力光導波路303にはそれぞれの波長の光が分波されて
出力される。The structure is such that the arrayed-waveguide diffraction grating, and the slab optical waveguide 402 and the output optical waveguide 30 on the output side thereof.
The optical power splitter sharing 3 is integrated. Input optical waveguide 304 of optical power splitter
The light of wavelength λ k that is incident from is distributed to each output optical waveguide at a constant ratio or an appropriate power ratio. On the other hand, in the arrayed waveguide 302 of the arrayed waveguide diffraction grating, since the length of each optical waveguide is different, the wavefront of light is inclined, and the input optical waveguide 30
Coupled to another output waveguide 303 different from 1. Here, since the inclination of the wavefront changes depending on the light wavelength, when the light wavelength is changed, light is output to a different output optical waveguide in the output optical waveguide 303. Thus, the arrayed waveguide diffraction grating functions as an optical wavelength multiplexer / demultiplexer. That is, the input optical waveguide 301 having the arrayed waveguide diffraction grating
, For example, when lights of wavelengths λ -j , ..., λ j are multiplexed and incident, the arrayed waveguide diffraction grating has a multiplexing / demultiplexing function, so that the lights of the respective wavelengths are demultiplexed into the output optical waveguide 303. Is output.
【0016】シリコン基板上に光導波路を作製して図1
に示す回路を作製した。作製方法については、河内正夫
“石英系光導波路と集積光部品への応用”(光学、第1
8巻、第12号、1989年)に詳しく示されている。
すなわち、シリコン基板上に火炎堆積法でガラス層を形
成し、これをフォトリソグラフィ技術と反応性イオンエ
ッチング法で任意のパターンに加工することによって図
1に示す回路を作製した。ただし、出力光導波路303
の数は8本とした。この時、光パワースプリッタの光挿
入損失が最も小さく、かつその出力光導波路への分配比
が一定になるように光導波路の設計を行った。すなわ
ち、光パワースプリッタの入力光導波路304からスラ
ブ光導波路402に入射された光はガウス分布に従って
広がる。この光を出力光導波路303に集分配するため
に出力光導波路303のスラブ光導波路402側の入口
を図4に示すようにラッパ状にしてその幅を中央部で狭
く、周辺部で広くとった。光パワースプリッタの挿入損
失の特性図を図5に、アレイ導波路回折格子の中央の入
力光導波路から光が入射されたときの各出力光導波路へ
の挿入損失を波長に対して示した特性図を図6に示す。
光パワースプリッタの原理的な分配損失が9dBである
ため図5より過剰損失は、1ないし2dBであることが
解る。この値は、1.3〜1.55μmの光の波長に対
してほぼ一定であった。図6からアレイ導波路回折格子
の各出力光導波路の最大透過波長における挿入損失は5
dB程度であることが解る。An optical waveguide is manufactured on a silicon substrate and the structure shown in FIG.
The circuit shown in was produced. Regarding the fabrication method, Masao Kawauchi “Applications to silica-based optical waveguides and integrated optical components” (Optics, No. 1
8, Vol. 12, No. 1989).
That is, a glass layer was formed on a silicon substrate by a flame deposition method, and this was processed into an arbitrary pattern by a photolithography technique and a reactive ion etching method, whereby the circuit shown in FIG. 1 was produced. However, the output optical waveguide 303
The number of was eight. At this time, the optical waveguide was designed so that the optical insertion loss of the optical power splitter was the smallest and the distribution ratio to the output optical waveguide was constant. That is, the light incident on the slab optical waveguide 402 from the input optical waveguide 304 of the optical power splitter spreads according to the Gaussian distribution. In order to collect and distribute this light to the output optical waveguide 303, the inlet of the output optical waveguide 303 on the slab optical waveguide 402 side is made into a trumpet shape as shown in FIG. 4 so that the width is narrow in the central portion and wide in the peripheral portion. . Fig. 5 is a characteristic diagram of the insertion loss of the optical power splitter, and Fig. 5 is a characteristic diagram showing the insertion loss with respect to the wavelength when the light is incident from the input optical waveguide in the center of the arrayed waveguide diffraction grating. Is shown in FIG.
Since the principle distribution loss of the optical power splitter is 9 dB, it can be seen from FIG. 5 that the excess loss is 1 to 2 dB. This value was almost constant for the wavelength of light of 1.3 to 1.55 μm. From FIG. 6, the insertion loss at the maximum transmission wavelength of each output optical waveguide of the arrayed waveguide grating is 5
It turns out that it is about dB.
【0017】実施例2 図7に光波長合分波器および光パワースプリッタの集積
光導波回路の他の実施例を示す。ここで、305はアレ
イ導波路回折格子の入力光導波路および光パワースプリ
ッタの出力光導波路である。 Embodiment 2 FIG. 7 shows another embodiment of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter. Here, 305 is an input optical waveguide of the arrayed waveguide diffraction grating and an output optical waveguide of the optical power splitter.
【0018】この構成は実施例1の集積光導波回路とほ
ぼ同じであるが、本実施例の集積光導波回路ではアレイ
導波路回折格子の入力側のスラブ光導波路401にも出
力側と同様に光パワースプリッタを作製した。その結
果、光パワースプリッタの入力光導波路304Aに波長
λm の光を入射して、アレイ導波路回折格子の入力光導
波路305にそれぞれλm の波長の光を出力させること
が可能になった。This structure is almost the same as that of the integrated optical waveguide circuit of the first embodiment, but in the integrated optical waveguide circuit of the present embodiment, the slab optical waveguide 401 on the input side of the arrayed waveguide diffraction grating is the same as the output side. An optical power splitter was manufactured. As a result, the light having a wavelength lambda m the input optical waveguide 304A of the optical power splitter, it has become possible to output light of wavelengths of lambda m the input optical waveguide 305 of the arrayed waveguide grating.
【0019】実施例3 図8に光波長合分波器および光パワースプリッタの集積
光導波回路の他の実施例を示す。図9は光パワースプリ
ッタ入力用光ファイバとスラブ光導波路との接続部の一
部を拡大して示した斜視図である。 Embodiment 3 FIG. 8 shows another embodiment of the integrated optical waveguide circuit of the optical wavelength multiplexer / demultiplexer and the optical power splitter. FIG. 9 is an enlarged perspective view showing a part of the connection between the optical fiber for inputting the optical power splitter and the slab optical waveguide.
【0020】ここで、4はコア層であり、図3のスラブ
光導波路401の一部に当る。ただし、その周囲を囲む
クラッドは示されていない。5は光パワースプリッタ入
力用光ファイバ、6は光パワースプリッタ入力用ファイ
バ挿入溝である。Here, 4 is a core layer, which corresponds to a part of the slab optical waveguide 401 in FIG. However, the cladding surrounding it is not shown. Reference numeral 5 is an optical fiber for inputting an optical power splitter, and 6 is a fiber insertion groove for inputting an optical power splitter.
【0021】この構成も実施例1の集積光導波回路とほ
ぼ同じであるが、本実施例の集積光導波回路では、光パ
ワースプリッタの入力として光導波路ではなく光ファイ
バを用いている。この構成の特徴は、アレイ導波路回折
格子の挿入損失を増加させることなく光パワースプリッ
タの挿入損失を最小にすることができることにある。This structure is also almost the same as the integrated optical waveguide circuit of the first embodiment, but in the integrated optical waveguide circuit of the present embodiment, an optical fiber is used as an input of the optical power splitter instead of the optical waveguide. The feature of this configuration is that the insertion loss of the optical power splitter can be minimized without increasing the insertion loss of the arrayed waveguide grating.
【0022】この集積光導波回路の作製は、実施例1に
示した方法で行った。光パワースプリッタ入力用ファイ
バ挿入溝6はフォトリソグラフィ技術と反応性イオンエ
ッチング法により作製し、光ファイバの固定は、コアの
屈折率と同じ屈折率を有する紫外線硬化樹脂を用いた。The integrated optical waveguide circuit was manufactured by the method shown in the first embodiment. The fiber insertion groove 6 for inputting the optical power splitter was prepared by the photolithography technique and the reactive ion etching method, and the optical fiber was fixed by using an ultraviolet curable resin having the same refractive index as the core.
【0023】光パワースプリッタの挿入損失は、図5に
示した挿入損失よりもわずかに大きくなり約12dB程
度であった。これは入力用光ファイバとスラブ光導波路
との接続損失が2dB程度あるためと考えられる。アレ
イ導波路回折格子の挿入損失は各出力光導波路の最大透
過波長において約3dBとなり、実施例1の集積光導波
回路の挿入損失よりも良好な値を示した。何故ならば、
本実施例においては、光パワースプリッタの入力を光フ
ァイバで行っているため、アレイ導波路回折格子の形状
は光パワースプリッタの形状によらず最適化できるから
である。The insertion loss of the optical power splitter was about 12 dB, which was slightly larger than the insertion loss shown in FIG. It is considered that this is because the connection loss between the input optical fiber and the slab optical waveguide is about 2 dB. The insertion loss of the arrayed waveguide diffraction grating was about 3 dB at the maximum transmission wavelength of each output optical waveguide, which was a better value than the insertion loss of the integrated optical waveguide circuit of Example 1. because,
This is because, in the present embodiment, since the input of the optical power splitter is performed by the optical fiber, the shape of the arrayed waveguide diffraction grating can be optimized regardless of the shape of the optical power splitter.
【0024】実施例4 図10に本発明の第4の実施例としての光波長合分波器
および光パワースプリッタの集積光導波回路を示す。 Embodiment 4 FIG. 10 shows an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter as a fourth embodiment of the present invention.
【0025】404は波長フィルタ7の挿入されたスラ
ブ光導波路である。図11は波長フィルタ7の挿入部の
拡大斜視図である。ここで、波長フィルタ7は例えばポ
リイミド樹脂からなる高分子薄膜フィルム表面にSiO
2 およびTiO2 を多層に堆積することによって作製さ
れる。8は波長フィルタ7を挿入するための溝である。
本実施例では、波長フィルタ7としては1.3μm帯の
光は反射し、1.55μm帯の光は透過するものを用い
た。また、波長フィルタ7の挿入用溝はフォトリソグラ
フィと反応性イオンエッチング法で作製し、波長フィル
タ7の固定は、コアと同じ屈折率を有する紫外線硬化樹
脂12を溝8中に充填して行った。Reference numeral 404 is a slab optical waveguide in which the wavelength filter 7 is inserted. FIG. 11 is an enlarged perspective view of the insertion portion of the wavelength filter 7. Here, the wavelength filter 7 is made of, for example, SiO 2 on the surface of a polymer thin film made of polyimide resin.
It is made by depositing 2 and TiO 2 in multiple layers. Reference numeral 8 is a groove into which the wavelength filter 7 is inserted.
In the present embodiment, the wavelength filter 7 used is one that reflects light in the 1.3 μm band and transmits light in the 1.55 μm band. The groove for insertion of the wavelength filter 7 was made by photolithography and reactive ion etching, and the wavelength filter 7 was fixed by filling the groove 8 with an ultraviolet curable resin 12 having the same refractive index as the core. .
【0026】本実施例が実施例1の集積光導波回路と異
なる点は、アレイ導波路回折格子の出力側スラブ光導波
路404に波長フィルタ7を挿入している点である。こ
の特徴は、薄膜の波長フィルタ7に、例えば、1.3μ
m帯の光と1.55μm帯の光を分離する機能を持たせ
ることによって、波長の分波と波長に依存しないパワー
スプリッタとを同時に実現できる点である。また、薄膜
の波長フィルタ7がスラブ光導波路中に挿入されている
ため、チャンネル光導波路の途中に挿入されている場合
に比べて、波長フィルタ7で反射した光も効率よく出力
光導波路に結合することができる。The present embodiment differs from the integrated optical waveguide circuit of the first embodiment in that the wavelength filter 7 is inserted in the output side slab optical waveguide 404 of the arrayed waveguide diffraction grating. This feature is, for example, 1.3 μm in the thin film wavelength filter 7.
By providing the function of separating the m band light and the 1.55 μm band light, it is possible to simultaneously realize the wavelength demultiplexing and the wavelength independent power splitter. Further, since the thin film wavelength filter 7 is inserted in the slab optical waveguide, the light reflected by the wavelength filter 7 is also efficiently coupled to the output optical waveguide as compared with the case where it is inserted in the middle of the channel optical waveguide. be able to.
【0027】具体的な機能を説明する。まず、図10に
示したように、光パワースプリッタ用に入力光導波路3
04を通してλk として1.3μm帯の光を、またλm
として1.55μm帯の光を、それぞれ入射させる。こ
れらの光はアレイ導波路回折格子の出力側スラブ光導波
路404中の薄膜の波長フィルタ7により1.3μm帯
の光は反射され、1.55μm帯の光は透過することに
より分離される。その結果、λk は第1の出力側の各出
力光導波路303Aに分配される。同様に、1.55μ
m帯の光は第2の出力側の各出力光導波路303Bに分
配される。一方、アレイ導波路回折格子の任意の入力光
導波路301から1.3μm帯の例えばλ′j として1
00GHz間隔で並べられたいくつかの波長の光と、例
えばλjとして1.55μm帯のいくつかの波長の光を
多重して入射すると、光パワースプリッタの時と同様に
出力側スラブ光導波路404中の薄膜フィルタ7で1.
3μm帯の光と1.55μm帯の光が分離される。さら
に1.3μm帯のいくつかの波長の光は第2の出力側の
各出力光導波路303Bに波長に依存して分配される。
同様に、1.55μm帯の光は第1の出力側の各出力光
導波路303Aに波長に依存して出力される。Specific functions will be described. First, as shown in FIG. 10, the input optical waveguide 3 for the optical power splitter is used.
The light in the 1.3 μm band as λ k through 04, and λ m
As a result, light in the 1.55 μm band is made incident. The light in the 1.3 μm band is reflected by the thin film wavelength filter 7 in the slab optical waveguide 404 on the output side of the arrayed waveguide diffraction grating, and the light in the 1.55 μm band is transmitted to be separated. As a result, λ k is distributed to each output optical waveguide 303A on the first output side. Similarly, 1.55μ
The light in the m band is distributed to each output optical waveguide 303B on the second output side. On the other hand, from the arbitrary input optical waveguide 301 of the arrayed waveguide diffraction grating, for example, λ ′ j in the 1.3 μm band
When light of several wavelengths arranged at intervals of 00 GHz and light of several wavelengths in the 1.55 μm band as λ j are multiplexed and incident, the output side slab optical waveguide 404 is output as in the case of the optical power splitter. With the thin film filter 7 inside, 1.
The light in the 3 μm band and the light in the 1.55 μm band are separated. Further, light of some wavelengths in the 1.3 μm band is distributed to each output optical waveguide 303B on the second output side depending on the wavelength.
Similarly, light in the 1.55 μm band is output to each output optical waveguide 303A on the first output side depending on the wavelength.
【0028】実施例5 図12に光波長合分波器および光パワースプリッタの集
積光導波回路の他の実施例を示す。 Embodiment 5 FIG. 12 shows another embodiment of the integrated optical waveguide circuit of the optical wavelength multiplexer / demultiplexer and the optical power splitter.
【0029】ここで、9は薄膜ヒータを用いた熱光学位
相シフタ、10はアレイ導波路回折格子への入力光を2
つに分離するためのY分岐である。Here, 9 is a thermo-optical phase shifter using a thin film heater, and 10 is 2 for input light to the arrayed waveguide diffraction grating.
It is a Y branch for separating into two.
【0030】この構成について実施例1と異なる点は、
光パワースプリッタの挿入損失を最小に保ったままアレ
イ導波路回折格子の挿入損失も小さくするために、光パ
ワースプリッタの入力光導波路304をアレイ導波路3
02の中央に配置した点にある。このため、アレイ導波
路回折格子の入力側のスラブ光導波路を左右の2つに分
離して各々のスラブ光導波路401,401でアレイ導
波路への光の分配を行った。熱光学位相シフタ9は2つ
に分離したアレイ導波路回折格子への入力光がお互い
に、ある相対位相条件を満たすように調整するために設
けてある。This configuration differs from the first embodiment in that
In order to reduce the insertion loss of the arrayed waveguide diffraction grating while keeping the insertion loss of the optical power splitter at a minimum, the input optical waveguide 304 of the optical power splitter is set to the arrayed waveguide 3
It is located at the center of 02. Therefore, the slab optical waveguide on the input side of the arrayed waveguide diffraction grating is divided into two on the left and right, and light is distributed to the arrayed waveguide by each of the slab optical waveguides 401, 401. The thermo-optic phase shifter 9 is provided for adjusting the input lights to the two separated arrayed waveguide diffraction gratings so that they meet certain relative phase conditions.
【0031】実施例6 図13に光波長合分波器および光パワースプリッタの集
積光導波回路の他の実施例を示す。ここで306はアレ
イ導波路回折格子および光パワースプリッタへの入力光
導波路、11は非対称マッハツェンダ干渉計による波長
合分波器を示す。 Embodiment 6 FIG. 13 shows another embodiment of the integrated optical waveguide circuit of the optical wavelength multiplexer / demultiplexer and the optical power splitter. Here, 306 is an input optical waveguide to the arrayed waveguide diffraction grating and the optical power splitter, and 11 is a wavelength multiplexer / demultiplexer using an asymmetric Mach-Zehnder interferometer.
【0032】この構成について実施例5の集積光導波回
路と異なる点は、アレイ導波路回折格子への入力光と光
スプリッタへの入力光とを同じ入力光導波路306から
入射できるよう熱光学位相シフタ9の前に非対称マッハ
ツェンダ干渉計11による波長合分波器を入れた点であ
る。この非対称マッハツェンダ干渉計11による波長合
分配器は、例えば、1.3μm帯の光と1.55μm帯
の光を分離する機能を持つ。This structure is different from the integrated optical waveguide circuit of the fifth embodiment in that the input light to the arrayed waveguide diffraction grating and the input light to the optical splitter can be made to enter from the same input optical waveguide 306. 9 is that a wavelength multiplexer / demultiplexer using an asymmetric Mach-Zehnder interferometer 11 is inserted before 9. The wavelength multiplexer / distributor including the asymmetric Mach-Zehnder interferometer 11 has a function of separating light in the 1.3 μm band and light in the 1.55 μm band, for example.
【0033】実施例7 図14に光波長合分波器および光パワースプリッタの他
の実施例としての集積光導波回路を示す。 Embodiment 7 FIG. 14 shows an integrated optical waveguide circuit as another embodiment of the optical wavelength multiplexer / demultiplexer and the optical power splitter.
【0034】この光導波回路はアレイ導波路回折格子の
中央部で回路を切断し、そこに例えばSiO2 とTiO
2 からなる誘電体多層膜反射フィルタ501を形成する
ことによって、反射型の光波長合分波器を構成したもの
である。ここでアレイ導波路回折格子の入力光導波路3
01に入射された光は、スラブ光導波路405で回折さ
れて複数本のアレイ光導波路307に分配される。その
後これらの光は誘電体多層膜フィルタ501で反射さ
れ、再びスラブ光導波路405に放射される。このとき
各アレイ光導波路の長さが異なるため光の波面が傾き、
入力光導波路301とは異なる別の出力光導波路303
に結合する。ここで波面の傾きは光波長によって変化す
るために、光波長を変化させると出力光導波路303の
なかで異なる出力光導波路に光が出力されることにな
る。こうして本光導波回路は反射型の光波長合分波器と
して機能する。ここで誘電体多層膜フィルタ501は基
板1の端面を鏡面研磨した後に真空蒸着法によって形成
した。本実施例ではこの誘電体多層膜フィルタで1.3
μm帯の光は透過し、1.55μm帯の光は反射するよ
うに設計した。よってこのアレイ導波路回折格子は1.
55μm帯の光に対して反射型の光波長合分波器として
機能する。In this optical waveguide circuit, the circuit is cut at the central portion of the arrayed waveguide diffraction grating and, for example, SiO 2 and TiO 2 are cut there.
A reflection type optical wavelength multiplexer / demultiplexer is configured by forming a dielectric multilayer film reflection filter 501 composed of two. Here, the input optical waveguide 3 of the arrayed waveguide diffraction grating
The light incident on 01 is diffracted by the slab optical waveguide 405 and distributed to the plurality of array optical waveguides 307. After that, these lights are reflected by the dielectric multilayer film filter 501 and emitted again to the slab optical waveguide 405. At this time, since the lengths of the arrayed optical waveguides are different, the wavefront of light is inclined,
Another output optical waveguide 303 different from the input optical waveguide 301
Bind to. Here, since the inclination of the wavefront changes depending on the light wavelength, when the light wavelength is changed, light is output to a different output optical waveguide in the output optical waveguide 303. Thus, the optical waveguide circuit functions as a reflection type optical wavelength multiplexer / demultiplexer. Here, the dielectric multilayer filter 501 was formed by vacuum deposition after mirror polishing the end face of the substrate 1. In this embodiment, the dielectric multilayer film filter is 1.3
It was designed such that light in the μm band was transmitted and light in the 1.55 μm band was reflected. Therefore, this arrayed waveguide diffraction grating is 1.
It functions as a reflection-type optical wavelength multiplexer / demultiplexer for 55 μm band light.
【0035】一方アレイ光導波路307の中央付近の導
波路端面から光ファイバを用いて誘電体多層膜フィルタ
501が透過として機能する1.3μm帯(λk )の光
を直接結合(バットジョイント)して入射すると、この
光はスラブ光導波路405で回折されて出力光導波路3
03に分配される。よって本光導波回路は光パワースプ
リッタとしても機能する。このときアレイ導波路回折格
子の入力光導波路301に分配された光は戻り光として
悪影響を及ぼす可能性がある。それを防ぐためには入力
光導波路301あるいはこれに入射する光ファイバの途
中に1.3μm帯カットフィルタを挿入することで防ぐ
ことができる。On the other hand, light of the 1.3 μm band (λ k ) which the dielectric multilayer filter 501 functions as transmission is directly coupled (butt joint) from the end face of the waveguide near the center of the array optical waveguide 307 using an optical fiber. Incident on the output optical waveguide 3 is diffracted by the slab optical waveguide 405.
It is distributed to 03. Therefore, this optical waveguide circuit also functions as an optical power splitter. At this time, the light distributed to the input optical waveguide 301 of the arrayed waveguide diffraction grating may adversely affect the returned light. This can be prevented by inserting a 1.3 μm band cut filter in the middle of the input optical waveguide 301 or the optical fiber incident on this.
【0036】本発明の各実施例では、シリコン基板上の
ガラス導波路を用いて光波長合分波器および光パワース
プリッタの集積光導波回路を実現したが、この回路はそ
の他の光導波回路部品でも同様に実現できるものであ
る。In each of the embodiments of the present invention, an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter is realized by using a glass waveguide on a silicon substrate, but this circuit is another optical waveguide circuit component. However, it can be realized similarly.
【0037】[0037]
【発明の効果】以上説明したように、本発明によれば、
波長に依存せず各出力光導波路に光の分配が行われる光
パワースプリッタと波長に依存して出力光導波路が選択
される波長合分波器の機能を共に有するという機能を実
現することができる。As described above, according to the present invention,
It is possible to realize the function of having both the function of an optical power splitter in which light is distributed to each output optical waveguide without depending on the wavelength and the function of a wavelength multiplexer / demultiplexer in which the output optical waveguide is selected depending on the wavelength. .
【図1】本発明の実施例1の光波長合分波器および光パ
ワースプリッタの集積光導波回路の平面図である。FIG. 1 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a first embodiment of the present invention.
【図2】図1のAA′線の拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along the line AA ′ of FIG.
【図3】図1のBB′線の拡大断面図である。FIG. 3 is an enlarged sectional view taken along line BB ′ of FIG.
【図4】図1におけるアレイ導波路回折格子の出力光導
波路とスラブ光導波路との界面の拡大図である。FIG. 4 is an enlarged view of an interface between an output optical waveguide and a slab optical waveguide of the arrayed waveguide diffraction grating in FIG.
【図5】本発明の第1の実施例の光パワースプリッタの
挿入損失を示す特性図である。FIG. 5 is a characteristic diagram showing insertion loss of the optical power splitter according to the first embodiment of the present invention.
【図6】本発明の第1の実施例のアレイ導波路回折格子
の挿入損失の特性図である。FIG. 6 is a characteristic diagram of insertion loss of the arrayed waveguide diffraction grating according to the first embodiment of the present invention.
【図7】本発明の第2の実施例の光波長合分波器および
光パワースプリッタの集積光導波回路の平面図である。FIG. 7 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a second embodiment of the present invention.
【図8】本発明の第3の実施例の光波長合分波器および
光パワースプリッタの集積光導波回路の平面図である。FIG. 8 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a third embodiment of the present invention.
【図9】光パワースプリッタ入力用光ファイバとスラブ
導波路との接続部の拡大斜視図である。FIG. 9 is an enlarged perspective view of a connecting portion between an optical fiber for inputting an optical power splitter and a slab waveguide.
【図10】本発明の第4の実施例の光波長合分波器およ
び光パワースプリッタの集積光導波回路の平面図であ
る。FIG. 10 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a fourth embodiment of the present invention.
【図11】図10に示した波長フィルタの挿入部の拡大
斜視図である。11 is an enlarged perspective view of an insertion portion of the wavelength filter shown in FIG.
【図12】本発明の第5の実施例の光波長合分波器およ
び光パワースプリッタの集積光導波回路の平面図であ
る。FIG. 12 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a fifth embodiment of the present invention.
【図13】本発明の第6の実施例の光波長合分波器およ
び光パワースプリッタの集積光導波回路の平面図であ
る。FIG. 13 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a sixth embodiment of the present invention.
【図14】本発明の第7の実施例の光波長合分波器およ
び光パワースプリッタの集積光導波回路の平面図であ
る。FIG. 14 is a plan view of an integrated optical waveguide circuit of an optical wavelength multiplexer / demultiplexer and an optical power splitter according to a seventh embodiment of the present invention.
【図15】従来のアレイ導波路回折格子型光波長合分波
器の平面図である。FIG. 15 is a plan view of a conventional arrayed waveguide diffraction grating type optical wavelength multiplexer / demultiplexer.
【図16】従来のN×Mスターカプラ型光パワースプリ
ッタの平面図である。FIG. 16 is a plan view of a conventional N × M star coupler type optical power splitter.
1 基板 2 クラッド層 3 コア部 5 光パワースプリッタ入力用光ファイバ 6 光パワースプリッタ入力用光ファイバ挿入溝 7 多層膜波長フィルタ 8 多層膜波長フィルタ挿入用溝 9 熱光学位相シフタ 10 Y分岐 11 マッハツェンダ干渉計型波長合分波器 12 紫外線硬化樹脂 301 アレイ導波路回折格子への入力光導波路 302 アレイ導波路回折格子のアレイ光導波路 303 アレイ導波路回折格子および光パワースプリッ
タの出力光導波路 304 光パワースプリッタの入力光導波路 305 アレイ導波路回折格子への入力光導波路および
光パワースプリッタの出力光導波路 306 アレイ導波路回折格子への入力光導波路および
光パワースプリッタへの入力光導波路 307 アレイ光導波路 308 アレイ導波路回折格子の出力光導波路 309 光パワースプリッタの出力光導波路 401,402,403,404,405,406 ス
ラブ光導波路 501 誘電体多層膜フィルタ1 substrate 2 clad layer 3 core portion 5 optical fiber for optical power splitter input 6 optical fiber insertion groove for optical power splitter 7 multilayer film wavelength filter 8 multilayer film wavelength filter insertion groove 9 thermo-optical phase shifter 10 Y branch 11 Mach-Zehnder interference Meter type wavelength multiplexer / demultiplexer 12 UV curable resin 301 Input optical waveguide to array waveguide diffraction grating 302 Array optical waveguide of array waveguide diffraction grating 303 Output optical waveguide of array waveguide diffraction grating and optical power splitter 304 Optical power splitter Input optical waveguide 305 Input optical waveguide to array waveguide diffraction grating and output optical waveguide of optical power splitter 306 Array optical waveguide Input waveguide to diffraction grating and input optical waveguide to optical power splitter 307 Array optical waveguide 308 Array guide Waveguide Grating Output Waveguide 309 Output optical waveguide of optical power splitter 401, 402, 403, 404, 405, 406 Slab optical waveguide 501 Dielectric multilayer filter
Claims (2)
入力光導波路、第1のスラブ光導波路、並列に並べられ
た長さの異なる複数本のアレイ光導波路、第2のスラブ
光導波路および並列に並べられた複数本の出力光導波路
を縦列に接続することによって構成された光波長合分波
器と、一本あるいは並列に並べられた複数本の入力光導
波路、スラブ光導波路および並列に並べられた複数本の
出力光導波路を縦列に接続することによって構成された
光パワースプリッタとが同一の二次元平面上に形成さ
れ、かつ前記光波長合分波器の前記第1および第2のス
ラブ光導波路の少なくとも一方と前記光パワースプリッ
タの前記スラブ光導波路とが共有され、かつ前記光波長
合分波器の前記入力光導波路および前記出力光導波路の
少なくとも一方と前記光パワースプリッタの前記出力光
導波路とが共有されていることを特徴とする集積光導波
回路。1. A single or a plurality of input optical waveguides arranged in parallel, a first slab optical waveguide, a plurality of array optical waveguides arranged in parallel and having different lengths, a second slab optical waveguide, and An optical wavelength multiplexer / demultiplexer configured by connecting a plurality of output optical waveguides arranged in parallel in cascade, and one or a plurality of input optical waveguides arranged in parallel, a slab optical waveguide, and An optical power splitter configured by connecting a plurality of arranged output optical waveguides in cascade is formed on the same two-dimensional plane, and the first and second optical wavelength division multiplexers are provided. At least one of the slab optical waveguide and the slab optical waveguide of the optical power splitter are shared, and at least one of the input optical waveguide and the output optical waveguide of the optical wavelength multiplexer / demultiplexer and the An integrated optical waveguide circuit, wherein the output optical waveguide of the optical power splitter is shared.
路、スラブ光導波路、並列に並べられた長さの異なる複
数本のアレイ光導波路および特定の波長の光を反射する
ミラーによって構成された光波長合分波器と、一本ある
いは並列に並べられた複数本の入力光導波路、スラブ光
導波路、および並列に並べられた複数本の出力光導波路
を縦列に接続することによって構成された光パワースプ
リッタとが同一の二次元平面上に形成され、かつ前記光
波長合分波器の前記アレイ導波路と前記光パワースプリ
ッタの前記入力光導波路とが共有され、前記光波長合分
波器の前記スラブ光導波路と前記光パワースプリッタの
前記スラブ光導波路とが共有され、さらに、前記光波長
合分波器の前記入出力光導波路と前記光パワースプリッ
タの前記出力光導波路とが共有されていることを特徴と
する集積光導波回路。2. A plurality of input / output optical waveguides arranged in parallel, a slab optical waveguide, a plurality of array optical waveguides arranged in parallel with different lengths, and a mirror for reflecting light of a specific wavelength. The optical wavelength multiplexer / demultiplexer, and one or more input optical waveguides arranged in parallel, a slab optical waveguide, and a plurality of output optical waveguides arranged in parallel are connected in series. An optical power splitter is formed on the same two-dimensional plane, and the arrayed waveguide of the optical wavelength multiplexer / demultiplexer and the input optical waveguide of the optical power splitter are shared, and the optical wavelength multiplexer / demultiplexer is used. The slab optical waveguide and the slab optical waveguide of the optical power splitter are shared, and further, the input / output optical waveguide of the optical wavelength multiplexer / demultiplexer and the output optical waveguide of the optical power splitter are shared. An integrated optical waveguide circuit characterized by being shared with a path.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28334893A JP3317312B2 (en) | 1993-08-02 | 1993-11-12 | Integrated optical waveguide circuit |
EP94111970A EP0639782B1 (en) | 1993-08-02 | 1994-08-01 | Integrated optical waveguide circuit and optical branch line test system using the same |
US08/285,633 US5546483A (en) | 1993-08-02 | 1994-08-01 | Integrated optical waveguide circuit and optical branch line test system using the same |
DE69421579T DE69421579T2 (en) | 1993-08-02 | 1994-08-01 | Integrated optical waveguide circuit and test system for branched optical lines using it |
CA002129292A CA2129292C (en) | 1993-08-02 | 1994-08-02 | Integrated optical waveguide circuit and optical branch line test system using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19118393 | 1993-08-02 | ||
JP5-191183 | 1993-08-02 | ||
JP28334893A JP3317312B2 (en) | 1993-08-02 | 1993-11-12 | Integrated optical waveguide circuit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002121379A Division JP3396477B2 (en) | 1993-08-02 | 2002-04-23 | Integrated optical waveguide circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0798419A true JPH0798419A (en) | 1995-04-11 |
JP3317312B2 JP3317312B2 (en) | 2002-08-26 |
Family
ID=26506550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28334893A Expired - Fee Related JP3317312B2 (en) | 1993-08-02 | 1993-11-12 | Integrated optical waveguide circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3317312B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100296384B1 (en) * | 1999-06-21 | 2001-07-12 | 윤종용 | AWG WDM comprising alignment waveguide and apparatus for aligning it |
KR100416983B1 (en) * | 2001-10-31 | 2004-02-05 | 삼성전자주식회사 | Alignment element for planar lightguide circuit module |
KR100421137B1 (en) * | 2002-03-30 | 2004-03-04 | 삼성전자주식회사 | Dual wavelength division multiplexing/demultiplexing device using one planar lightguide circuit |
JP2006005595A (en) * | 2004-06-17 | 2006-01-05 | Nec Magnus Communications Ltd | CATV optical transmission apparatus and optical transmission system using the apparatus |
JP2010532877A (en) * | 2007-07-07 | 2010-10-14 | 独立行政法人情報通信研究機構 | Multiport optical spectral phase encoder |
-
1993
- 1993-11-12 JP JP28334893A patent/JP3317312B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100296384B1 (en) * | 1999-06-21 | 2001-07-12 | 윤종용 | AWG WDM comprising alignment waveguide and apparatus for aligning it |
KR100416983B1 (en) * | 2001-10-31 | 2004-02-05 | 삼성전자주식회사 | Alignment element for planar lightguide circuit module |
KR100421137B1 (en) * | 2002-03-30 | 2004-03-04 | 삼성전자주식회사 | Dual wavelength division multiplexing/demultiplexing device using one planar lightguide circuit |
JP2006005595A (en) * | 2004-06-17 | 2006-01-05 | Nec Magnus Communications Ltd | CATV optical transmission apparatus and optical transmission system using the apparatus |
JP4718799B2 (en) * | 2004-06-17 | 2011-07-06 | Necマグナスコミュニケーションズ株式会社 | CATV optical transmission apparatus and optical transmission system using the apparatus |
JP2010532877A (en) * | 2007-07-07 | 2010-10-14 | 独立行政法人情報通信研究機構 | Multiport optical spectral phase encoder |
Also Published As
Publication number | Publication date |
---|---|
JP3317312B2 (en) | 2002-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6351581B1 (en) | Optical add-drop multiplexer having an interferometer structure | |
US5745618A (en) | Optical device having low insertion loss | |
US6049640A (en) | Wavelength-division-multiplexing cross-connect using angular dispersive elements and phase shifters | |
US5953467A (en) | Switchable optical filter | |
US6141467A (en) | Wavelength-division-multiplexing programmable add/drop using interleave-chirped waveguide grating router | |
US6421478B1 (en) | Tapered MMI coupler | |
CA2564658A1 (en) | Integrated etched multilayer grating based wavelength demultiplexer | |
JPH06250030A (en) | Optical interconnection device and optical transmission system | |
US6125228A (en) | Apparatus for beam splitting, combining wavelength division multiplexing and demultiplexing | |
US6266460B1 (en) | Large-channel-count programmable wavelength add-drop | |
US6587615B1 (en) | Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband | |
US6885823B2 (en) | Wavelength multiplexing/demultiplexing unit, wavelength multiplexing/demultiplexing apparatus and wavelength multiplexing/demultiplexing method | |
US7006729B2 (en) | Optical components having reduced insertion loss | |
JP2002323626A (en) | Optical wavelength multiplexing and demultiplexing device and optical multiplexing and demultiplexing system | |
JP3317312B2 (en) | Integrated optical waveguide circuit | |
EP0463779A1 (en) | Fibre optic waveguide beam splitter | |
JPH03171115A (en) | Optical multiplexer/demultiplexer | |
JP4350044B2 (en) | Optical switch device | |
JP3396477B2 (en) | Integrated optical waveguide circuit | |
JP2000221350A (en) | Optical waveguide device | |
KR101227651B1 (en) | A splitter planar lightwave circuit element | |
JPH04264506A (en) | Optical multiplexer/demultiplexer | |
KR20020008455A (en) | Low loss Multi Mode Interferometer for optical distributer and Wavelength division Multiplexer module | |
EP1122905A2 (en) | Apparatus and method for wavelength multiplexing/demultiplexing | |
JPH02126205A (en) | Optical branching circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100614 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100614 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110614 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120614 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |