[go: up one dir, main page]

JPH0797659B2 - SiC blue light emitting diode - Google Patents

SiC blue light emitting diode

Info

Publication number
JPH0797659B2
JPH0797659B2 JP26438387A JP26438387A JPH0797659B2 JP H0797659 B2 JPH0797659 B2 JP H0797659B2 JP 26438387 A JP26438387 A JP 26438387A JP 26438387 A JP26438387 A JP 26438387A JP H0797659 B2 JPH0797659 B2 JP H0797659B2
Authority
JP
Japan
Prior art keywords
type
sic layer
sic
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26438387A
Other languages
Japanese (ja)
Other versions
JPH01106476A (en
Inventor
和幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26438387A priority Critical patent/JPH0797659B2/en
Publication of JPH01106476A publication Critical patent/JPH01106476A/en
Publication of JPH0797659B2 publication Critical patent/JPH0797659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/826Materials of the light-emitting regions comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はSiC青色発光ダイオードに関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a SiC blue light emitting diode.

(ロ) 従来の技術 6H−SiCはバンドギヤップが大きく、pn両伝導形が得ら
れることから青色発光ダイオード用材料として注目を浴
びてきた。
(B) Conventional technology 6H-SiC has attracted attention as a material for blue light emitting diodes because of its large bandgap and pn dual conductivity type.

また、6H−SiCからなる青色発光ダイオードの発光層は
L.Heffmannらの報告(Journal of Applied Physics
53(10),6962,(1982))から、カソードルミネッセ
ンスを用いた測定でn側エピタキシャル成長層で発光し
ていることが知られている。更にGnther Zieglerら
の報告(IEEE Trans,Electron Devices,ED−30,277
(1983))では、アルミニウムドープp型6H−SiCとア
ンドープn型6H−SiCとを比較すると、アルミニウムド
ープp型6H−SiCの方がかなり透過率が低いことが記載
されている。
The light emitting layer of the blue light emitting diode made of 6H-SiC is
Report by L. Heffmann et al. (Journal of Applied Physics
53 (10), 6962, (1982)), it is known that light is emitted in the n-side epitaxial growth layer by measurement using cathodoluminescence. Furthermore, a report by Gnther Ziegler et al. (IEEE Trans, Electron Devices, ED-30,277
(1983)), comparing aluminum-doped p-type 6H-SiC and undoped n-type 6H-SiC, it is described that aluminum-doped p-type 6H-SiC has a considerably lower transmittance.

これらの点から、SiC青色発光ダイオードの構造として
は、一般に第3図に示す如く、p型の6H−SiC基板
(1)上にアルミニウム(Al)がドープされたp型6H−
SiC層(2)とアルミニウム及び窒素(N)がドープさ
れたn型6H−SiC層(3)とを順次積層すると共に基板
(1)裏面及びn型SiC層(3)上に第1、第2のオー
ミック電極(4)(5)が形成されたものが知られてい
る。
From these points, as a structure of a SiC blue light emitting diode, as shown in FIG. 3, generally, a p-type 6H-SiC substrate (1) is a p-type 6H-doped with aluminum (Al).
A SiC layer (2) and an n-type 6H-SiC layer (3) doped with aluminum and nitrogen (N) are sequentially laminated, and the first and second layers are formed on the back surface of the substrate (1) and the n-type SiC layer (3). It is known that two ohmic electrodes (4) and (5) are formed.

(ハ) 発明が解決しようとする問題点 然るに、このようなホモ接合のSiC発光ダイオードでは
発光効率が低いという問題があった。
(C) Problems to be Solved by the Invention However, there is a problem that such a homojunction SiC light emitting diode has low luminous efficiency.

斯る原因を鋭意研究した結果、上記したホモ接合では第
4図にそのエネルギ図を示す如く、順方向バイアス印加
時の接合(6)がなだらかな接合となるため、実際の発
光領域となるn型6H−SiC層(3)の接合近傍において
キャリアの高密度状態が生じにくく、その結果、n型Si
C層(3)中のドナレベル(7)とアクセプタレベル
(8)との間もしくは伝導帯(9)とアクセプタレベル
(8)との間で生じる電子(11)と正孔(12)との再結
合効率が低くなるためであることが判明した。
As a result of diligent research on such a cause, as shown in the energy diagram of FIG. 4, in the homojunction described above, the junction (6) when a forward bias is applied becomes a gentle junction, and thus the actual light emitting region becomes n. The carrier high density state is unlikely to occur in the vicinity of the junction of the type 6H-SiC layer (3).
Regeneration of electrons (11) and holes (12) generated between the donor level (7) and the acceptor level (8) or between the conduction band (9) and the acceptor level (8) in the C layer (3). It was found that this was because the coupling efficiency was low.

尚、第4図中、(10)は価電子帯を示しまたドナレベル
(7)及びアクセプタレベル(8)は夫々窒素及びアル
ミニウムにより形成される不純物レベルである。
In FIG. 4, (10) indicates a valence band, and the donor level (7) and the acceptor level (8) are impurity levels formed by nitrogen and aluminum, respectively.

(ニ) 問題点を解決するための手段 本発明は斯る点に鑑みてなされたもので、その構成的特
徴は、一導電型の6H−SiC層を該層と同導電型を示す4H
−SiC層及び該4H−SiC層とは逆導電型を示す4H−SiC層
で挾装したことにある。
(D) Means for Solving the Problems The present invention has been made in view of the above point, and its structural feature is that a 6H-SiC layer of one conductivity type is 4H that exhibits the same conductivity type as the layer.
The -SiC layer and the 4H-SiC layer have an opposite conductivity type to the 4H-SiC layer.

(ホ) 作用 斯る構造では順方向バイアス印加時に、6H−SiC層中に
電子及び正孔の密度が高くなる。
(E) Action In such a structure, when a forward bias is applied, the density of electrons and holes becomes high in the 6H-SiC layer.

(ヘ) 実施例 第1図は本発明の第1の実施例を示し、p型4HSiC基板
(11)上にアルミニウムがドープされたp型4H−SiC層
(12)と、アルミニウム及び窒素ドープされたn型6H−
SiC層(13)及び窒素がドープされたn型4H−SiC層(1
4)の順次積層すると共に基板(11)裏面及びp型4H−S
iC層(14)上にオーミック性の、第1、第2電極(15)
(16)が形成されている。
(F) Example FIG. 1 shows a first example of the present invention. A p-type 4H—SiC layer (12) doped with aluminum and a aluminum- and nitrogen-doped p-type 4HSiC substrate (11). N-type 6H-
SiC layer (13) and nitrogen-doped n-type 4H-SiC layer (1
4) Sequential stacking and backside of substrate (11) and p-type 4H-S
Ohmic first and second electrodes (15) on the iC layer (14)
(16) is formed.

第2図(a)(b)は斯る本実施例のP型4H4SiC層(1
2)、n型6H−SiC層(13)及びn型4H−SiC層(14)の
エネルギ状態を示し、具体的には第2図(a)は熱平衡
時のエネルギ状態を、又第2図(b)は順方向バイアス
印加時のエネルギ状態を夫々示す。
2 (a) and 2 (b) show the P-type 4H4SiC layer (1
2) shows the energy states of the n-type 6H-SiC layer (13) and the n-type 4H-SiC layer (14). Specifically, FIG. 2 (a) shows the energy state at the time of thermal equilibrium, and FIG. (B) shows the energy states when a forward bias is applied.

第2図(a)に示す如く、p型4H−SiC層(12)及びn
型4H−SiC層(14)の禁制帯幅は約3.27eVであり、又n
型6H−SiC層(13)の禁制帯幅は約3.02eVである。この
ため、順方向バイアスを印加すると第2図(b)に示す
如く、n型6H−SiC層(13)とp型4H−SiC層(12)との
接合(17)の伝導帯(18)側及びn型4H−SiC層(14)
とn型6H−SiC層(13)との接合(19)の価電子帯(2
0)側に夫々高さ約0.2eVの障壁(21)(22)が生じる。
このため、n型6H−SiC層(13)からp型4H−SiC層(1
2)への電子(23)の注入及びn型6H−SiC層(13)から
n型4H−SiC層(14)への正孔(24)の注入はその大部
分が上記障壁(21)(22)により阻止される。尚、この
とき、n型4H−SiC層(14)とn型6H−SiC層(13)との
接合(19)の伝導帯(18)側及びn型6H−SiC層(13)
とp型4H−SiC層(12)との接合(17)の価電子帯(2
0)側にも夫々障壁(25)(26)が生じるが、斯る障壁
(25)(26)は非常に低いため、n型4H−SiC層(14)
からn型6H−SiC層(13)への電子(23)の注入及びp
型4H−SiC層(12)からn型6H−SiC層(13)への正孔
(24)の注入は効率良く行なわれる。
As shown in FIG. 2 (a), the p-type 4H-SiC layer (12) and n
The band gap of the type 4H-SiC layer (14) is about 3.27 eV, and n
The band gap of the type 6H-SiC layer (13) is about 3.02 eV. Therefore, when a forward bias is applied, as shown in FIG. 2 (b), the conduction band (18) of the junction (17) between the n-type 6H-SiC layer (13) and the p-type 4H-SiC layer (12). Side and n-type 4H-SiC layer (14)
Valence band (2) of the junction (19) between the n-type 6H-SiC layer (13) and
Barriers (21) and (22) with a height of about 0.2 eV are generated on the 0) side, respectively.
Therefore, from the n-type 6H-SiC layer (13) to the p-type 4H-SiC layer (1
Most of the injection of electrons (23) into the 2) and injection of holes (24) from the n-type 6H-SiC layer (13) into the n-type 4H-SiC layer (14) are caused by the barriers (21) ( 22). At this time, the n-type 4H-SiC layer (14) and the n-type 6H-SiC layer (13) are connected to the conduction band (18) side of the junction (19) and the n-type 6H-SiC layer (13).
Valence band (2) of the junction (17) between the p-type 4H-SiC layer (12) and
Barriers (25) and (26) also occur on the 0) side, respectively, but since the barriers (25) and (26) are very low, the n-type 4H-SiC layer (14)
Injection of electrons (23) from the n-type 6H-SiC layer (13) and p
The holes (24) are efficiently injected from the type 4H-SiC layer (12) to the n-type 6H-SiC layer (13).

この結果、本実施例装置ではn型6H−SiC層(13)にお
いて、伝導帯(18)もしくはドナレベル(27)に位置す
る電子(23)とアクセプタレベル(28)に位置する正孔
(24)とが再結合し、エネルギhv≒2.6eVの光即ち波長4
80nmの青色光を発することとなる。また、このとき、障
壁(21)(22)によりp型4H−SiC層(12)への電子(2
3)の注入及びn型4H−SiC層(14)への正孔(24)の注
入が阻止されているため、n型6H−SiC層(13)中は電
子(23)及び正孔(24)が高密度に存在する領域とな
る。従って、斯るn型6H−SiC層(13)では、第3図の
従来装置の接合(6)近傍に較べて電子(23)と正孔
(24)との再結合効率が向上し、その結果発光効率も向
上することとなる。
As a result, in the device of this embodiment, in the n-type 6H—SiC layer (13), the electron (23) located at the conduction band (18) or the donor level (27) and the hole (24) located at the acceptor level (28). And are recombined, and light with energy hv ≈ 2.6 eV, that is, wavelength 4
It will emit blue light of 80 nm. In addition, at this time, electrons (2) to the p-type 4H-SiC layer (12) are generated by the barriers (21) (22).
Since the injection of 3) and the injection of holes (24) into the n-type 4H-SiC layer (14) are blocked, electrons (23) and holes (24) are contained in the n-type 6H-SiC layer (13). ) Is a high density area. Therefore, in such an n-type 6H-SiC layer (13), recombination efficiency of electrons (23) and holes (24) is improved as compared with the vicinity of the junction (6) of the conventional device of FIG. As a result, the luminous efficiency is also improved.

尚、第2図中、ドナレベル(27)及びアクセプタレベル
(28)は夫々不純物としてドープされた窒素もしくはア
ルミニウムが形成するレベルである。
In FIG. 2, the donor level (27) and the acceptor level (28) are levels formed by nitrogen or aluminum doped as impurities, respectively.

また、本実施例では、6H−SiC層(13)をn型とした
が、p型としても同様な効果が得られることを実験によ
り確認した。更に斯る層(13)へのキャリアの注入効率
を上げるために斯る層(13)をn型もしくはp型として
も良い。
In addition, although the 6H—SiC layer (13) is of the n-type in this example, it was confirmed by experiments that the same effect can be obtained by using the p-type. Furthermore, in order to increase the efficiency of carrier injection into the layer (13), the layer (13) may be of n-type or p-type.

(ト) 発明の効果 本発明によれば、電子と正孔とが再結合を生じる領域に
おけるキヤリアの高密度化がはかれるので、従来に比し
て高効率で青色光を発生することができる。
(G) Effect of the Invention According to the present invention, the density of carriers in the region where electrons and holes are recombined can be increased, so that blue light can be generated with higher efficiency than ever before.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す断面図、第2図
(a)(b)は本実施例のエネルギ状態を示す模式図、
第3図は従来例を示す断面図、第4図は従来例のエネル
ギ状態を示す模式図である。 (12)……p型4H−SiC層、(13)……n型6H−SiC層、
(14)……n型4H−SiC層。
FIG. 1 is a sectional view showing a first embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are schematic views showing an energy state of the present embodiment,
FIG. 3 is a sectional view showing a conventional example, and FIG. 4 is a schematic diagram showing an energy state of the conventional example. (12) …… p-type 4H-SiC layer, (13) …… n-type 6H-SiC layer,
(14) ... n-type 4H-SiC layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型の6H−SiC層を該層と同導電型を
示す4H−SiC層及び該4H−SiC層とは逆導電型を示す4H−
SiC層で挾装したことを特徴とするSiC青色発光ダイオー
ド。
1. A 6H-SiC layer of one conductivity type, a 4H-SiC layer having the same conductivity type as the layer, and a 4H-SiC layer having a conductivity type opposite to that of the 4H-SiC layer.
A SiC blue light-emitting diode characterized by being equipped with a SiC layer.
JP26438387A 1987-10-20 1987-10-20 SiC blue light emitting diode Expired - Lifetime JPH0797659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26438387A JPH0797659B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26438387A JPH0797659B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Publications (2)

Publication Number Publication Date
JPH01106476A JPH01106476A (en) 1989-04-24
JPH0797659B2 true JPH0797659B2 (en) 1995-10-18

Family

ID=17402391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26438387A Expired - Lifetime JPH0797659B2 (en) 1987-10-20 1987-10-20 SiC blue light emitting diode

Country Status (1)

Country Link
JP (1) JPH0797659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201211A (en) * 2014-08-27 2014-12-10 温州大学 Base graded P+-N-N+ type SiC ultrafast recovery diodes fabricated on 4H type single crystal silicon carbide epitaxial layer and its technology

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027168A (en) * 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5079601A (en) * 1989-12-20 1992-01-07 International Business Machines Corporation Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions
US5270554A (en) * 1991-06-14 1993-12-14 Cree Research, Inc. High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
US5338944A (en) * 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US6906350B2 (en) 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7326962B2 (en) 2004-12-15 2008-02-05 Cree, Inc. Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201211A (en) * 2014-08-27 2014-12-10 温州大学 Base graded P+-N-N+ type SiC ultrafast recovery diodes fabricated on 4H type single crystal silicon carbide epitaxial layer and its technology

Also Published As

Publication number Publication date
JPH01106476A (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US7737451B2 (en) High efficiency LED with tunnel junction layer
US5338944A (en) Blue light-emitting diode with degenerate junction structure
EP0448607B1 (en) Blue light emitting diode formed in silicon carbide
US4918497A (en) Blue light emitting diode formed in silicon carbide
JP2650744B2 (en) Light emitting diode
US4864369A (en) P-side up double heterojunction AlGaAs light-emitting diode
JP3643665B2 (en) Semiconductor light emitting device
JPH0797659B2 (en) SiC blue light emitting diode
JP3675003B2 (en) Semiconductor light emitting device
JPH0695588B2 (en) Semiconductor device
KR101265178B1 (en) Electroluminescence device using indirect bandgab semiconductor
JP2765256B2 (en) Light emitting diode
US4296425A (en) Luminescent diode having multiple hetero junctions
US3927385A (en) Light emitting diode
JPH0797658B2 (en) SiC blue light emitting diode
US3488542A (en) Light emitting heterojunction semiconductor devices
CN116111012B (en) A light-emitting diode with adjustable polarization light emission mode
US5084748A (en) Semiconductor optical memory having a low switching voltage
WO1988002557A1 (en) Modulation doped radiation emitting semiconductor device
JP3119513B2 (en) Avalanche light emitting device
JP3057547B2 (en) Green light emitting diode
JP2912781B2 (en) Semiconductor light emitting device
JPH07169992A (en) Semiconductor light emitter
JPH07335940A (en) Compound semiconductor light emitting device
JPH0632326B2 (en) Light emitting element