[go: up one dir, main page]

JPH0796379A - Carbon dioxide laser welding method for metallic material and welding and joining material - Google Patents

Carbon dioxide laser welding method for metallic material and welding and joining material

Info

Publication number
JPH0796379A
JPH0796379A JP5265625A JP26562593A JPH0796379A JP H0796379 A JPH0796379 A JP H0796379A JP 5265625 A JP5265625 A JP 5265625A JP 26562593 A JP26562593 A JP 26562593A JP H0796379 A JPH0796379 A JP H0796379A
Authority
JP
Japan
Prior art keywords
welding
laser
carbon dioxide
angle
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5265625A
Other languages
Japanese (ja)
Inventor
Yasusuke Kawamura
川村康亮
Masanori Moribe
森部正典
Takatoo Mizoguchi
溝口孝遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5265625A priority Critical patent/JPH0796379A/en
Publication of JPH0796379A publication Critical patent/JPH0796379A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To efficiently obtain a CO2 laser weld zone having decreased blowhole (porosity) defects without requiring intricate welding parameter management even with metallic materials with which the blowhole (porosity) defects are liable to arise. CONSTITUTION:The plural metallic materials are subjected to CO2 laser welding by controlling the irradiation angle of a CO2 laser to an advance angle 10 to 60 deg. or retreat angle 20 to 60 deg. with the welding direction in the method for welding and joining the plural metallic materials by the CO2 laser. The CO2 laser welding is executed by controlling the irradiation angle of the CO2 laser to the advance angle 10 to 60 deg. or retreat angle 20 to 60 deg. with the welding direction in at least the final pass in the case of executing of the welding by superposing the joint parts of the metallic materials with >=2 passes by the CO2 laser. A good effect is obtd. when this method is applied to welding of aluminum or aluminum alloys (sheets, extrudates, etc.) in particular in addition to steel materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属材料の炭酸ガスレー
ザ溶接技術に関し、より詳しくは、金属材料の炭酸ガス
レーザ溶接によりブローホール欠陥の少ない溶接部が得
られる炭酸ガスレーザ溶接方法並びにそれにより得られ
る溶接接合部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide laser welding technique for metallic materials, and more particularly to a carbon dioxide laser welding method and a welding method obtained by the carbon dioxide laser welding of metallic materials, by which a weld portion having few blowhole defects can be obtained. Regarding a joining member.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、金属材料の溶接方法としては、TIG、MIG等の
アーク溶接や、電子ビーム(EB)溶接等々が行われてい
る。しかし、薄板をアーク溶接する際は溶接変形が大き
くなるという問題があり、また、EB溶接は真空中で行
う必要があり、真空チャンバーへの被加工材料の出し入
れ等の作業が必要であるという問題があった。そこで、
近年、高速・低歪溶接加工が大気中(加工ガスを使用す
る場合も含めて)で可能であるレーザ溶接方法が各金属
材料に対して実施又は試みられている。
2. Description of the Related Art Conventionally, arc welding such as TIG and MIG, electron beam (EB) welding, and the like have been performed as welding methods for metallic materials. However, there is a problem that welding deformation becomes large when performing arc welding on a thin plate, and it is necessary to perform EB welding in a vacuum, which requires work such as putting a work material in and out of a vacuum chamber. was there. Therefore,
In recent years, a laser welding method capable of performing high-speed / low-distortion welding processing in the atmosphere (including the case of using a processing gas) has been implemented or attempted for each metal material.

【0003】しかし、金属材料のレーザ溶接部にはブロ
ーホール(ポロシティ)欠陥が発生し易いことが知られて
いる。
However, it is known that blowhole (porosity) defects are likely to occur in laser welded portions of metallic materials.

【0004】すなわち、レーザ溶接の際、アスペクト比
(溶込み深さ/表面ビード幅)の高い溶込み形状が得られ
る鋼系材料等では、ブローホール(ポロシティ)欠陥は主
に溶接ルート部に発生しており、その発生機構としてレ
ーザビーム照射により形成されるキーホールが何らかの
原因で不安定になり、キーホール底部の金属蒸気又はシ
ールドガスが溶湯内に巻込まれ、凝固時に残存(凝固速
度が速い場合)することによって生ずると考えられてい
る。そして、キーホールを不安定化させる要因として
は、溶接時にキーホール内に発生するスパッタリング、
キーホールから噴出する金属蒸気の変動、またキーホー
ル形状(これは溶接パラメータによって変化する)と周囲
の溶融金属との安定性等が考えられている。
That is, in laser welding, the aspect ratio
Blowhole (porosity) defects are mainly generated in the welding root part of steel-based materials, etc., where a high penetration depth / surface bead width can be obtained. It is considered that the formed keyhole becomes unstable for some reason, the metal vapor or the shield gas at the bottom of the keyhole is caught in the molten metal, and remains at the time of solidification (when the solidification rate is high). And as a factor that destabilizes the keyhole, sputtering generated in the keyhole during welding,
It is considered that the fluctuation of the metal vapor ejected from the keyhole, the shape of the keyhole (which changes depending on the welding parameters) and the stability of the surrounding molten metal are considered.

【0005】一方、非鉄材料で、近年鋼材の代替材料と
して構造物の軽量化の観点から注目されているアルミニ
ウム及びアルミニウム合金は、その溶融金属の粘性が低
いこと、更に添加元素としてマグネシウム・亜鉛等の低
融点・高蒸気圧元素が含まれていること、レーザ溶接の
際にスパッタリングが発生し易いこと、熱伝導度が高く
凝固速度が速いこと、等のキーホールを不安定化する要
因が多く、そのレーザ溶接部にはシールドガスが溶湯内
に巻込まれ残存・凝固したブローホール(ポロシティ)欠
陥が著しく発生することが知られている。
On the other hand, aluminum and aluminum alloys, which are non-ferrous materials and have recently attracted attention as a substitute material for steel materials from the viewpoint of weight reduction of structures, have a low viscosity of molten metal, and magnesium, zinc, etc. as additional elements. Including the low melting point and high vapor pressure elements, the tendency of sputtering to occur during laser welding, the high thermal conductivity and fast solidification rate, and many other factors that destabilize the keyhole. It is known that the shield gas is entrapped in the molten metal at the laser welded portion, and blowhole (porosity) defects that remain and solidify remarkably occur.

【0006】そこで、鋼系材料のレーザ溶接では、前記
のブローホール(ポロシティ)欠陥を抑制するための溶接
方法として、以下のような溶接方法が従来より実施若し
くは提案されている。
Therefore, in laser welding of steel-based materials, the following welding methods have been conventionally implemented or proposed as a welding method for suppressing the above-mentioned blowhole (porosity) defects.

【0007】まず、適当量の焦点外し(デフォーカス)を
行うことにより被溶接材表面での焦点スポット直径を拡
大する、つまり、加工物表面でのパワー密度を下げる
(アスペクト比:小さくなる)と同時にキーホールの体積
を大きくすることにより、溶融金属に対してキーホール
の安定性を保つ溶接方法がある。但し、溶融を起こすた
めのパワー密度は確保しておく必要がある。
First, an appropriate amount of defocusing is performed to enlarge the diameter of the focal spot on the surface of the material to be welded, that is, lower the power density on the surface of the workpiece.
There is a welding method that keeps the stability of the keyhole against the molten metal by increasing the volume of the keyhole at the same time (decreasing the aspect ratio: smaller). However, it is necessary to secure a power density for causing melting.

【0008】また、溶融金属内に巻込まれたガスの排出
を容易にするため、凝固速度を下げる、つまり、被加工
物の余熱及び溶融池を後加熱するための他の熱源と組合
わされた溶接方法がある。
Also, in order to facilitate the discharge of the gas entrained in the molten metal, the solidification rate is reduced, that is, welding in combination with the remaining heat of the work piece and other heat sources for post-heating the molten pool. There is a way.

【0009】一方、アルミニウム及びアルミニウム合金
のレーザ溶接では、前記のブローホール(ポロシティ)欠
陥を抑制するための溶接方法として、鋼系材料の場合と
同様、適当量の焦点外し(デフォーカス)を行う溶接方法
が従来より用いられてきた。
On the other hand, in laser welding of aluminum and aluminum alloys, as a welding method for suppressing the above-mentioned blowhole (porosity) defects, an appropriate amount of defocusing is performed as in the case of steel-based materials. Welding methods have been used in the past.

【0010】しかしながら、鋼系材料及びアルミニウム
及びアルミニウム合金のレーザ溶接において、デフォー
カスを行った場合には、材料毎のデフォーカス量の適切
な管理が必要となり、また、溶け込みが減少するので溶
接速度を下げる必要があった。更には、光学系を工夫す
る場合には、光学装置、レーザ光伝送経路、溶接ノズル
周辺が複雑になるという問題があった。
However, in laser welding of steel-based materials and aluminum and aluminum alloys, when defocusing is performed, proper control of the defocusing amount for each material is required, and since the penetration decreases, the welding speed is reduced. Had to lower. Furthermore, when devising an optical system, there is a problem that the optical device, the laser light transmission path, and the periphery of the welding nozzle become complicated.

【0011】溶接速度を下げることは、レーザ溶接の特
長である高速加工性が活かせないばかりか、アルミニウ
ム合金ではスパッタリングが激しく発生し溶接ビードに
大きなアンダーフィルが発生し易く、スパッタリングが
集光光学系に悪影響を及ぼすという問題があった。
Reducing the welding speed not only makes it impossible to make use of the high-speed workability that is a characteristic of laser welding, but also causes a large amount of underfill in the welding bead due to the intense sputtering of the aluminum alloy, and the sputtering causes the condensing optical system. There was a problem that it adversely affected the.

【0012】また、鋼系材料では、前述の従来の方法で
ブローホール(ポロシティ)欠陥発生数を低減化できる
が、アルミニウム及びアルミニウム合金のような特にブ
ローホール(ポロシティ)欠陥が発生し易い材料では著し
い効果が得られるものではなかった。
Further, in the case of steel-based materials, the number of blowhole (porosity) defects generated can be reduced by the above-mentioned conventional method, but in the case of materials such as aluminum and aluminum alloys which are particularly prone to blowhole (porosity) defects. No significant effect was obtained.

【0013】本発明は、上記の従来技術の欠点を解消し
て、ブローホール(ポロシティ)欠陥の発生し易い金属材
料であっても、複雑な溶接パラメータ管理を必要とせ
ず、ブローホール(ポロシティ)欠陥の少ない炭酸ガスレ
ーザ溶接部が効率的に得られる溶接技術を提供すること
を目的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art, and does not require complicated welding parameter management even for a metal material that is prone to generate blowhole (porosity) defects, and does not require blowhole (porosity). It is an object of the present invention to provide a welding technique capable of efficiently obtaining a carbon dioxide laser welded portion with few defects.

【0014】[0014]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、複数の金属材料を炭酸ガスレ
ーザにより溶接接合する方法において、炭酸ガスレーザ
の照射角度を、溶接方向に対して前進角20°〜60°
或いは後退角20°〜60°に制御して、炭酸ガスレー
ザ溶接を行うことを特徴とする金属材料の炭酸ガスレー
ザ溶接方法を要旨としている。
As a means for solving the above problems, the present invention is a method for welding and joining a plurality of metal materials by a carbon dioxide gas laser, in which the irradiation angle of the carbon dioxide gas laser is advanced with respect to the welding direction. Angle 20 ° -60 °
Alternatively, the gist is a carbon dioxide laser welding method for a metal material, which is characterized in that the carbon dioxide laser welding is performed by controlling the receding angle to 20 ° to 60 °.

【0015】[0015]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0016】レーザ溶接法には、熱源(固体レーザ、気
体レーザ等)の種類に応じて種々のレーザ溶接法に区分
されるが、本発明では、出力が大きく、深溶込みが得ら
れる炭酸ガスレーザを対象とする。
The laser welding method is classified into various laser welding methods according to the type of heat source (solid-state laser, gas laser, etc.), but in the present invention, a carbon dioxide gas laser with a large output and deep penetration can be obtained. Target.

【0017】本発明による炭酸ガスレーザ溶接法では、
溶接方向に対するレーザ照射角度に所定の傾きを施すこ
とにより(前進角又は後退角のどちらの場合でも)、キー
ホールが加工物表面に対して垂直方向より傾いて形成さ
れ、加工物表面でのビームスポット形状が楕円型とな
り、金属蒸気の噴出孔が大きくなること、また溶接が進
行する際にはスパッタリングが発生しても、その発生方
向を一定に保てることによりキーホールの安定性が増
し、シールドガスの溶湯への巻込みが低減化され、ブロ
ーホール(ポロシティ)欠陥の少ないレーザ溶接部を得る
ことができるようになる。
In the carbon dioxide laser welding method according to the present invention,
By setting the laser irradiation angle relative to the welding direction at a predetermined angle (whether it is an advancing angle or a receding angle), the keyhole is formed to be inclined with respect to the vertical direction with respect to the workpiece surface, and the beam on the workpiece surface is formed. The spot shape becomes elliptical, the ejection holes for metal vapor become large, and even if sputtering occurs during welding, the direction of the generation can be kept constant, which increases the stability of the keyhole and shields it. Entrainment of gas in the molten metal is reduced, and it becomes possible to obtain a laser welded portion with few blowhole (porosity) defects.

【0018】特にレーザ光照射角度として前進角を採用
した場合には、溶融プールにレーザ照射部直上で生じる
レーザ誘起プラズマによる後加熱の作用が働くことによ
り、溶融金属の凝固速度が遅くなり、すなわち、溶融池
内のガスの排出が促進され、更なるブローホール(ポロ
シティ)欠陥の低減化が期待できる。
In particular, when the advancing angle is adopted as the laser light irradiation angle, the solidification rate of the molten metal is slowed by the post-heating effect of the laser-induced plasma generated directly above the laser irradiation portion on the molten pool, that is, , The discharge of gas in the molten pool is promoted, and further reduction of blowhole (porosity) defects can be expected.

【0019】このようなブローホール(ポロシティ)欠陥
低減の効果を得るには、前進角又は後退角を20゜以上
とすることが必要である。この効果のためには前進角又
は後退角が大きいほど良い。しかし、大きくするに従
い、デフォーカスを行った場合ほどではないが、試料表
面でのパワー密度を低下させ、また溶込み方向が被加工
材直角方向から傾くことにより溶込み深さが浅くなるた
め、前進角又は後退角は60゜以下に制限する必要があ
る。実用的な照射角度としては前進角、後退角とも30
°〜50°程度が望ましい。
In order to obtain such an effect of reducing blowhole (porosity) defects, it is necessary to set the advancing angle or the receding angle to 20 ° or more. For this effect, the larger the advancing angle or the receding angle, the better. However, as the size is increased, the power density on the surface of the sample is reduced, and the penetration depth is shallower because the penetration direction is inclined from the direction perpendicular to the workpiece, though not as much as when defocusing. The advancing or receding angle must be limited to 60 ° or less. A practical irradiation angle is 30 for both forward and backward angles.
It is desirable that the angle is between about 50 ° and 50 °.

【0020】ここで、前進角、後退角とは、図1に示す
ように、溶接方向に対するレーザ照射角度をθとする
と、θが正である場合のレーザ照射角度を前進角、負で
ある場合のレーザ照射角度を後退角という。θ=0゜の
場合は垂直入射である。なお、溶接方向に直角な方向に
対するレーザ照射角度を前進角又は後退角といわれるこ
ともあるが、この場合の前進角又は後退角と本発明にい
う前進角又は後退角とは異なるものである。
Here, the advancing angle and the receding angle, as shown in FIG. 1, where the laser irradiation angle with respect to the welding direction is θ, the laser irradiation angle when θ is positive is the advancing angle and is negative. The laser irradiation angle is called the receding angle. When θ = 0 °, it is vertical incidence. The laser irradiation angle with respect to the direction perpendicular to the welding direction may be referred to as the advancing angle or the receding angle, but the advancing angle or the receding angle in this case is different from the advancing angle or the receding angle in the present invention.

【0021】本発明は、1パスのみの溶接施工法のみな
らず、2パス以上を重畳する溶接施工法にも適用できる
ことは云うまでもない。
It goes without saying that the present invention can be applied not only to the welding execution method of only one pass but also to the welding execution method of superposing two or more passes.

【0022】後者の2パス以上を重畳する溶接施工法の
場合、全てのパス又は一部のパスを前記のレーザ照射角
にてレーザ溶接する態様があり、少なくとも最終パスに
おいて前進角20°〜60°或いは後退角20°〜60
°に制御して、炭酸ガスレーザ溶接を行う施工方法が望
ましい。
In the case of the latter welding method in which two or more passes are superposed, there is a mode in which all or a part of the passes are laser-welded at the laser irradiation angle described above, and the advancing angle is 20 ° to 60 ° at least in the final pass. ° or receding angle 20 ° to 60
It is desirable to use a construction method in which carbon dioxide laser welding is performed at a controlled temperature.

【0023】このような施工方法としては、例えば、1
パス目に垂直入射等の照射角度により希望の溶込み深さ
を確保し、2パス目以降、各パス毎に溶込み深さを順次
浅くすることにより、溶接ビード上部に発生し易いブロ
ーホール(ポロシティ)欠陥を順次上部に移し、最終パス
で前述の傾斜角度での照射により欠陥の発生を抑え、ブ
ローホール(ポロシティ)欠陥の少ない溶接部を得る方法
が挙げられる。図2に2パス重畳レーザ溶接の概略図を
示す。
As such a construction method, for example, 1
A desired penetration depth is ensured by the irradiation angle such as vertical incidence at the pass, and the penetration depth is made shallower for each pass after the second pass. (Porosity) defects are sequentially transferred to the upper part, and the generation of defects is suppressed by irradiation at the above-mentioned inclination angle in the final pass to obtain a weld portion with few blowhole (porosity) defects. FIG. 2 shows a schematic diagram of two-pass superposition laser welding.

【0024】この施工方法は、ブローホール(ポロシテ
ィ)欠陥が溶接金属内の比較的上部に発生することを利
用した溶接法で、比較的熱伝導度の低いAl−Mg系及び
Al−Zn−Mg系のアルミニウム合金に適用すると効果
的である。Al−Mg系及びAl−Zn−Mg系の場合にブ
ローホール(ポロシティ)欠陥がレーザ溶接ビードの比較
的上部に位置するのは、溶融池内に巻き込まれたシール
ドガスが溶接の進行と共に溶融池表面方向へ浮上し、溶
融池外へ放出されようとするが、溶融池の凝固速度が凝
固速度が速くガスが溶融池表面に達する前に溶接金属内
にトラップされるためと考えられる。
This construction method is a welding method utilizing the fact that blowhole (porosity) defects are generated in the relatively upper part of the weld metal, and it has a relatively low thermal conductivity of Al-Mg system and Al-Zn-Mg. It is effective when applied to a series of aluminum alloys. In the case of Al-Mg system and Al-Zn-Mg system, the blowhole (porosity) defect is located relatively above the laser welding bead because the shield gas caught in the molten pool is the surface of the molten pool as welding progresses. It tends to float in the direction of the molten pool and is released to the outside of the molten pool. This is probably because the solidification rate of the molten pool is high and the gas is trapped in the weld metal before it reaches the surface of the molten pool.

【0025】しかし、他のアルミニウム合金は熱伝導度
が大きく、凝固速度が速いため溶接部の比較的下方(ル
ート部)に欠陥が発生し易く、適用効果が比較的小さ
い。鋼系材料も同様である。
However, since other aluminum alloys have high thermal conductivity and a high solidification rate, defects are likely to occur relatively below the welded portion (root portion), and the application effect is relatively small. The same applies to steel materials.

【0026】また、2パス以上の重畳溶接の場合、2パ
ス目以降をタンデムで溶接しても、或いは前パスの溶接
後同一ノズルで溶接条件を変えて溶接しても欠陥の少な
い溶接部が得られる。
Further, in the case of superposition welding of two or more passes, even if the second and subsequent passes are welded in tandem, or after welding in the previous pass and welding is performed by changing the welding conditions with the same nozzle, a welded portion with few defects will be obtained. can get.

【0027】なお、炭酸ガスレーザ溶接の他の溶接条件
は特に制限されるものではない。アシストガス、シール
ドガス、溶加材等々は適宜使用することができる。
The other welding conditions for carbon dioxide laser welding are not particularly limited. Assist gas, shield gas, filler material, etc. can be used appropriately.

【0028】特に、焦点外し(ディフォーカス)に関して
は、キーホールの表面寸法を大きくしキーホール内部の
ガスを排出し易くするという効果があるが、一方、溶込
み深さが浅くなるので溶接速度を低下させて深い溶込み
深さを得ようとすると、特にアルミニウム合金の場合に
は、溶接速度の低下に起因してスパッタリングが発生し
溶接ビードに大きなアンダーフィルが発生し易くなると
いう欠点もある。しかも、所定の前進角又は後退角とす
る本発明においては、焦点外しを併せて行うと溶込み深
さが大幅に減少するというような不都合が生じるので、
実質的に焦点外しは行わない方が望ましい。仮に、焦点
外しを行う場合には、前進角又は後退角を考慮して、±
3mmより小さい焦点外しとするのが望ましい。
In particular, with regard to defocusing, there is an effect that the surface size of the keyhole is increased to facilitate discharge of gas inside the keyhole, but on the other hand, since the penetration depth becomes shallow, the welding speed When trying to obtain a deep penetration depth by lowering the welding temperature, there is also a drawback in that, particularly in the case of aluminum alloys, a large underfill is likely to occur in the welding bead due to sputtering due to the lowering of the welding speed. . In addition, in the present invention in which the predetermined advance angle or retreat angle is set, if defocusing is also performed, there arises such a disadvantage that the penetration depth is significantly reduced.
It is desirable not to perform defocusing substantially. If defocusing is performed, consider the forward or backward angle, and
Defocus less than 3 mm is desirable.

【0029】本発明では、従来技術のようにブローホー
ル欠陥抑制手段としての焦点外しを行なわずとも、レー
ザ照射角度を所定の前進角又は後退角とするので、ブロ
ーホール欠陥を低減できるため、溶接速度を低下させる
必要がなく、1.5m/min以上の高い溶接速度が可能で
ある。
In the present invention, since the laser irradiation angle is set to a predetermined advancing angle or receding angle without defocusing as a blowhole defect suppressing means as in the prior art, it is possible to reduce the blowhole defect, and therefore the welding is performed. A high welding speed of 1.5 m / min or more is possible without lowering the speed.

【0030】金属材料の材質としては、炭素鋼、ステン
レス鋼等々の低合金鋼や、高合金鋼等の各種の鋼系材
料、アルミニウム及びアルミニウム合金、他の金属及び
その合金も可能である。板材のほか、型材、管等々の形
状も可能である。また、溶接継手形状も突合わせ形状、
重ね継手形状、すみ肉形状等々が可能である。
As the material of the metal material, various steel materials such as low alloy steel such as carbon steel and stainless steel, high alloy steel, aluminum and aluminum alloys, other metals and alloys thereof can be used. Besides plates, shapes such as molds and tubes are also possible. Also, the weld joint shape is a butt shape,
Lap joint shapes, fillet shapes, etc. are possible.

【0031】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0032】[0032]

【実施例1】被溶接材料として鋼系材料(SUS30
4)、Al合金(A5083)及び純Al(A1050)の各
板材を使用し、表1に示すレーザ照射角度にて1パスの
炭酸ガスレーザ溶接を行った(図1参照)。他の溶接条件
は、SUS304、A5083の場合は低次マルチモー
ドで出力4500W、A1050の場合は位相整合型モ
ードで出力4000W、溶接速度はいずれも2m/minと
した。継手形状は突合せ形状である。焦点外しは行なわ
なかった。
[Example 1] A steel material (SUS30) as a material to be welded
4), Al alloy (A5083) and pure Al (A1050) plate materials were used, and one pass carbon dioxide laser welding was performed at the laser irradiation angle shown in Table 1 (see FIG. 1). Other welding conditions were: SUS304, A5083, low-order multimode output: 4500 W, A1050: phase matching mode output: 4000 W, welding speed: 2 m / min. The joint shape is a butt shape. No defocusing was done.

【0033】ブローホール欠陥の評価は、SUS304
の場合はJISZ3104の放射線透過試験により、ア
ルミニウム材の場合はJISZ3105の放射線透過試
験により行い評価し(その溶込み深さを対象板厚とし
た)、1級以上を◎、2級以上を○、3級以下を×とし
た。溶込み深さ・ブローホール(ポロシティ)欠陥の評価
結果を表1に示す。
The blowhole defects are evaluated by SUS304.
In the case of, the evaluation is performed by the radiation transmission test of JISZ3104, and in the case of aluminum material, the radiation transmission test of JISZ3105 is performed (the penetration depth is taken as the target plate thickness), and grade 1 or higher is marked ◎, grade 2 or higher is marked ○, Grades 3 and below were marked with x. Table 1 shows the evaluation results of penetration depth and blowhole (porosity) defects.

【0034】表1より明らかなように、いずれの被溶接
材料の場合も、本発明例はブローホール(ポロシティ)欠
陥が極めて少ないレーザ溶接部が得られている。
As is clear from Table 1, in any of the materials to be welded, the example of the present invention provides a laser welded portion having extremely few blowhole (porosity) defects.

【0035】図3〜図4は本発明例のアルミニウム合金
(A5083)のレーザ溶接ビード縦断面写真であり、図
3は前進角40゜の場合でブローホール欠陥がなく、図
4は前進角20゜の場合で若干ブローホールが見られ
る。一方、図5〜図6は比較例のアルミニウム合金(A
5083)のレーザ溶接ビード縦断面写真であり、図5
は前進角15゜の場合、図6は垂直入射の場合で共にブ
ローホール欠陥が多い。図7はA5083の場合のレー
ザ照射角度とブローホール欠陥点数の関係を整理したも
のである。
3 to 4 are aluminum alloys according to the present invention.
(A5083) is a longitudinal cross-sectional photograph of a laser welding bead. FIG. 3 shows no blowhole defects when the advancing angle is 40 °, and FIG. 4 shows some blowholes when the advancing angle is 20 °. On the other hand, FIGS. 5 to 6 show aluminum alloys (A
5083) is a longitudinal cross-sectional photograph of a laser welding bead of FIG.
There are many blowhole defects both when the advancing angle is 15 ° and when vertical incidence is shown in FIG. FIG. 7 shows the relationship between the laser irradiation angle and the number of blowhole defects in the case of A5083.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【実施例2】被溶接材料としてAl合金(A5083)の
板材を使用し、狙い溶込み深さを4mmとし、重畳溶接回
数2回の炭酸ガスレーザ溶接を行った。その際、1パス
目は低次マルチモードでレーザ出力4000W、溶接速
度2m/minとし、2パス目は低次マルチモードでレーザ
出力4000W、溶接速度2m/min、前進角35゜とし
た(図2参照)。継手形状は突合せ形状で、焦点外しは行
なわなかった。
[Example 2] A plate material of Al alloy (A5083) was used as a material to be welded, a target penetration depth was set to 4 mm, and carbon dioxide laser welding was performed twice with overlapping welding. At that time, the first pass had a low-order multimode laser output of 4000 W and a welding speed of 2 m / min, and the second pass had a low-order multimode laser output of 4000 W, a welding speed of 2 m / min, and an advancing angle of 35 ° (Fig. 2). The joint shape was a butt shape, and defocusing was not performed.

【0038】ブローホール欠陥の評価方法は、JISZ
3105の放射線透過試験により行い評価した(狙い溶
込み深さを対象板厚とした)。図8はレーザ溶接ビード
縦断面写真であり、ブローホール欠陥は1級(◎)であっ
た。
The method for evaluating blowhole defects is JISZ.
The evaluation was performed by the radiation transmission test of 3105 (the target penetration depth was defined as the target plate thickness). FIG. 8 is a vertical cross-sectional photograph of the laser weld bead, and the blowhole defect was grade 1 (⊚).

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
焦点外し量の適切な管理、光学装置、レーザ光伝達経路
の変更、溶接用ノズル周辺の改変といった溶接パラメー
タの複雑化なしに、ブローホール(ポロシティ)欠陥の少
ないレーザ溶接部を効率的に得ることができるという顕
著な効果が得られる。
As described in detail above, according to the present invention,
Efficiently obtain a laser weld with few blowhole (porosity) defects without complication of welding parameters such as proper management of defocus amount, change of optical device, laser light transmission path, and modification of welding nozzle periphery. The remarkable effect of being able to do is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭酸ガスレーザ溶接の要領を説明する概略図で
ある。
FIG. 1 is a schematic diagram illustrating the procedure of carbon dioxide laser welding.

【図2】炭酸ガスレーザ溶接で2パス重畳溶接の要領を
説明する概略図である。
FIG. 2 is a schematic diagram illustrating the procedure of 2-pass superposition welding in carbon dioxide laser welding.

【図3】アルミニウム合金(A5083)のレーザ溶接ビ
ード縦断面(金属組織)を示す写真で、前進角40゜の場
合である。
FIG. 3 is a photograph showing a vertical cross section (metal structure) of a laser welding bead of an aluminum alloy (A5083), in the case of an advance angle of 40 °.

【図4】アルミニウム合金(A5083)のレーザ溶接ビ
ード縦断面(金属組織)を示す写真で、前進角20゜の場
合である。
FIG. 4 is a photograph showing a vertical cross section (metal structure) of a laser welding bead of an aluminum alloy (A5083), in the case of an advancing angle of 20 °.

【図5】アルミニウム合金(A5083)のレーザ溶接ビ
ード縦断面(金属組織)を示す写真で、前進角15゜の場
合である。
FIG. 5 is a photograph showing a vertical cross section (metal structure) of a laser weld bead of an aluminum alloy (A5083) in the case of an advance angle of 15 °.

【図6】アルミニウム合金(A5083)のレーザ溶接ビ
ード縦断面(金属組織)を示す写真で、垂直入射の場合で
ある。
FIG. 6 is a photograph showing a vertical cross section (metal structure) of a laser weld bead of an aluminum alloy (A5083), in the case of vertical incidence.

【図7】レーザ照射角度とブローホール欠陥点数の関係
を示す図である。
FIG. 7 is a diagram showing a relationship between a laser irradiation angle and the number of blowhole defects.

【図8】アルミニウム合金(A5083)のレーザ溶接ビ
ード縦断面(金属組織)を示す写真で、2パス重畳溶接の
場合である。
FIG. 8 is a photograph showing a vertical cross section (metal structure) of a laser welding bead of an aluminum alloy (A5083) in the case of two-pass superposition welding.

【符号の説明】[Explanation of symbols]

a レーザ照射角度(θが正の場合は前進角、負の場合
は後退角) b 被溶接材料 c 溶接金属部 c´ 溶接金属部(2パス目) d 加工ノズル e 放物面鏡(集光用レンズでも可) f ブローホール(ポロシティ)欠陥
a Laser irradiation angle (advancing angle when θ is positive, receding angle when negative) b Welding material c Weld metal part c'Welding metal part (2nd pass) d Machining nozzle e Parabolic mirror (focusing) Lens is acceptable) f Blowhole (porosity) defect

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の金属材料を炭酸ガスレーザにより
溶接接合する方法において、炭酸ガスレーザの照射角度
を、溶接方向に対して前進角20°〜60°或いは後退
角20°〜60°に制御して、炭酸ガスレーザ溶接を行
うことを特徴とする金属材料の炭酸ガスレーザ溶接方
法。
1. A method of welding and joining a plurality of metal materials by a carbon dioxide laser, wherein the irradiation angle of the carbon dioxide laser is controlled to an advancing angle of 20 ° to 60 ° or a receding angle of 20 ° to 60 ° with respect to the welding direction. And a carbon dioxide laser welding method for a metal material, which comprises performing carbon dioxide laser welding.
【請求項2】 前記金属材料の接合部を炭酸ガスレーザ
により2パス以上重畳して溶接を行うに際し、少なくと
もその最終パスにおいて、炭酸ガスレーザの照射角度
を、溶接方向に対して前進角20°〜60°或いは後退
角20°〜60°に制御して、炭酸ガスレーザ溶接を行
うことを特徴とする請求項1に記載の方法。
2. When performing welding by superposing two or more passes of the joint portion of the metallic material by a carbon dioxide gas laser, at least in the final pass thereof, the irradiation angle of the carbon dioxide gas laser is an advance angle of 20 ° to 60 ° with respect to the welding direction. 2. The method according to claim 1, wherein the carbon dioxide laser welding is performed by controlling the angle or the receding angle to be 20 to 60 degrees.
【請求項3】 レーザ照射角度を制御して、1パス目で
所望の溶込み深さを確保し、2パス目以降で順次溶込み
深さを浅くする請求項2に記載の方法。
3. The method according to claim 2, wherein the laser irradiation angle is controlled to secure a desired penetration depth in the first pass, and the penetration depth is successively reduced in the second and subsequent passes.
【請求項4】 1.5m/min以上の溶接速度で、実質的
に焦点外しを行うことなく炭酸ガスレーザ溶接を行う請
求項1、2又は3に記載の方法。
4. The method according to claim 1, 2 or 3, wherein carbon dioxide laser welding is carried out at a welding speed of 1.5 m / min or more without substantially defocusing.
【請求項5】 アルミニウム又はアルミニウム合金製の
押出型材同士を炭酸ガスレーザ溶接する請求項1、2、
3又は4に記載の方法。
5. The carbon dioxide gas laser welding of extruded die members made of aluminum or an aluminum alloy,
The method according to 3 or 4.
【請求項6】 アルミニウム又はアルミニウム合金製の
板材同士を炭酸ガスレーザ溶接する請求項1、2、3又
は4に記載の方法。
6. The method according to claim 1, 2, 3 or 4 in which plate materials made of aluminum or an aluminum alloy are laser-welded together with carbon dioxide gas.
【請求項7】 請求項5又は6に記載の炭酸ガスレーザ
溶接により得られたアルミニウム又はアルミニウム合金
製の押出型材又は板材であって、その溶接部におけるJ
IS3105規定の放射線透過試験によるブローホール
欠陥の評価が2級以上であることを特徴とする自動車用
アルミニウム又はアルミニウム合金製溶接接合部材。
7. An extruded die or plate made of aluminum or an aluminum alloy obtained by the carbon dioxide laser welding according to claim 5 or 6, wherein J at the welded portion.
A welded joint member made of aluminum or an aluminum alloy for automobiles, characterized in that the evaluation of blowhole defects by a radiation transmission test prescribed by IS3105 is 2 or higher.
JP5265625A 1993-09-29 1993-09-29 Carbon dioxide laser welding method for metallic material and welding and joining material Withdrawn JPH0796379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265625A JPH0796379A (en) 1993-09-29 1993-09-29 Carbon dioxide laser welding method for metallic material and welding and joining material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265625A JPH0796379A (en) 1993-09-29 1993-09-29 Carbon dioxide laser welding method for metallic material and welding and joining material

Publications (1)

Publication Number Publication Date
JPH0796379A true JPH0796379A (en) 1995-04-11

Family

ID=17419736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265625A Withdrawn JPH0796379A (en) 1993-09-29 1993-09-29 Carbon dioxide laser welding method for metallic material and welding and joining material

Country Status (1)

Country Link
JP (1) JPH0796379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164757A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Laser welding method
JP2017202509A (en) * 2016-05-12 2017-11-16 三菱重工業株式会社 Repair method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164757A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Laser welding method
JP2017202509A (en) * 2016-05-12 2017-11-16 三菱重工業株式会社 Repair method

Similar Documents

Publication Publication Date Title
JP3159593B2 (en) Laser processing method and apparatus
US8253060B2 (en) Hybrid laser arc welding process and apparatus
US8253061B2 (en) Hybrid laser arc welding process and apparatus
US5821493A (en) Hybrid laser and arc process for welding workpieces
JP5531623B2 (en) Laser lap welding method of galvanized steel sheet
WO2011111634A1 (en) Laser/arc hybrid welding method and method of producing welded member using same
JPS58119481A (en) Laser beam melting welding method
JP2008126315A (en) Laser welding process with improved penetration
Katayama Defect formation mechanisms and preventive procedures in laser welding
JP3115456B2 (en) Laser welding method for galvanized steel sheet
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JP2012045570A (en) Method for manufacturing aluminum joined body
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
JP2009166080A (en) Laser welding method
Hayashi et al. High-power CO2 laser-MIG hybrid welding for increased gap tolerance. Hybrid weldability of thick steel plates with a square groove
JPH10216973A (en) Laser welding method of aluminum and aluminum alloy
JPH06198472A (en) High-speed laser beam welding method
JPH0796379A (en) Carbon dioxide laser welding method for metallic material and welding and joining material
JP3352960B2 (en) Manufacturing method of titanium or titanium alloy welded pipe
JPH08309568A (en) Laser welding method for aluminum alloy
JPH08309567A (en) Method for welding aluminum alloy
CN112207443B (en) Laser arc hybrid welding device
JPH07144288A (en) Laser pipe welding method
JP3634819B2 (en) Laser welding method
JP2005040806A (en) Laser beam irradiation arc welding method for galvanized steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226