JPH0794681B2 - Method for producing iron powder from converter dust - Google Patents
Method for producing iron powder from converter dustInfo
- Publication number
- JPH0794681B2 JPH0794681B2 JP30226788A JP30226788A JPH0794681B2 JP H0794681 B2 JPH0794681 B2 JP H0794681B2 JP 30226788 A JP30226788 A JP 30226788A JP 30226788 A JP30226788 A JP 30226788A JP H0794681 B2 JPH0794681 B2 JP H0794681B2
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- particles
- iron
- converter dust
- grinding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 127
- 239000000428 dust Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002245 particle Substances 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000010439 graphite Substances 0.000 claims description 29
- 229910002804 graphite Inorganic materials 0.000 claims description 29
- 239000002893 slag Substances 0.000 claims description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- 238000000227 grinding Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 14
- 239000002344 surface layer Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 description 34
- 238000010298 pulverizing process Methods 0.000 description 11
- 239000008187 granular material Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 239000011362 coarse particle Substances 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000009628 steelmaking Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- -1 CaO mixed in Chemical class 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は製鋼用転炉のダストから簡易な処理工程によっ
て高品位の鉄粉を製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing high-quality iron powder from dust in a steelmaking converter by a simple treatment process.
[従来の技術] 製鉄所における製鋼用転炉では多量のダストが発生す
る。例えば、湿式集塵処理において、そのダスト発生量
は180トン転炉1基当り約1000トン/月にも及ぶことも
ある。このダストは金属鉄を60〜70%程度含有してお
り、鉄品位が高いがグラファイトやCaO、SiO2などのス
ラグ成分も多量に含まれている。[Prior Art] A large amount of dust is generated in a steelmaking converter in an iron mill. For example, in the wet dust collection process, the amount of dust generated may reach about 1000 tons / month for one 180 ton converter. This dust contains about 60 to 70% of metallic iron and has high iron quality, but also contains a large amount of slag components such as graphite, CaO, and SiO 2 .
従来、かのような転炉ダストはその鉄源回収の見地から
高炉用焼結鉱あるいはペレットの原料の一部として使用
されるのが通常であった。最近では、この転炉ダストか
らより付加価値の高い鉄粉を製造しようとする試みがな
されている。In the past, such converter dust was usually used as a part of raw material for sinter or pellets for blast furnace from the viewpoint of recovering the iron source. Recently, attempts have been made to produce iron powder with higher added value from this converter dust.
金属鉄粉は粉末冶金用、溶接棒用、切断用などの種々の
用途があり、種々の特性が要求されるが、現在のところ
これら工業的に使用される鉄粉のほとんどは噴霧法また
は還元法によって製造されている。Metallic iron powder has various uses such as powder metallurgy, welding rod, and cutting, and various characteristics are required, but at present, most of these industrially used iron powders are atomized or reduced. Manufactured by law.
しかし、製造工程が複雑であったり、高価な原料、多量
のエネルギー、その他噴霧ガス等高価な副資材を必要と
する等から、安価に高品位鉄粉を製造するには限界があ
る。However, since the manufacturing process is complicated and expensive raw materials, a large amount of energy, and other expensive auxiliary materials such as atomized gas are required, there is a limit to inexpensively producing high-grade iron powder.
このようなことから、製鋼副産物である転炉ダストから
高品位の鉄粉を製造することができれば有利である。For this reason, it would be advantageous if high-quality iron powder could be produced from converter dust, which is a by-product of steelmaking.
転炉ダストから鉄粉を回収する方法が従来より幾つか提
唱されている。例えば、特公昭57-44724号公報には転炉
ダストを湿式微粉砕した後、磁力選別他により選鉱する
ことからなる鉄粉の回収方法が開示されている。Several methods have been proposed in the past for recovering iron powder from converter dust. For example, Japanese Examined Patent Publication (Kokoku) No. 57-44724 discloses a method for recovering iron powder, which comprises pulverizing converter dust by wet pulverization and then performing magnetic separation to separate the powder.
また、特開昭59-1602号公報には転炉ダストを粉砕した
後、磁力選別し、得られた鉄粉の表面不純物層を0.3〜
0.9規定の鉱酸で処理し、衝撃圧縮粉砕することからな
る鉄粉の製造方法が開示されている。Further, in JP-A-59-1602, after pulverizing converter dust, magnetic force is selected, and the surface impurity layer of the obtained iron powder is 0.3 to
Disclosed is a method for producing iron powder, which comprises treating with a 0.9 normal mineral acid and subjecting it to impact compression grinding.
[発明が解決しようとする課題] 前記公報に提唱された方法は鉄粉を製造するためにそれ
ぞれ有利な方法であると考えれるが、転炉ダストに随伴
するグラファイトやスラグ成分等の不純物を完全に分離
するには限界がある。特に、いずれの方法でも磁力選別
を行なっているが、ダスト中に混在する微粒の不純物が
鉄粉にからみついて鉄粉もろとも着磁してしまい、鉄粉
の品位を低下させることになる。[Problems to be Solved by the Invention] Although the methods proposed in the above publications are considered to be advantageous methods for producing iron powder, they completely remove impurities such as graphite and slag components accompanying converter dust. There is a limit to the separation. In particular, although magnetic force selection is performed by any of the methods, fine particles of impurities mixed in the dust become entangled with the iron powder and magnetize the iron powder and the iron powder, which deteriorates the quality of the iron powder.
更に、特公昭57-44724号公報では湿式微粉砕が行なわれ
ているが、この湿式微粉砕時に金属鉄粉表面が著しく酸
化して酸化スケール層を形成し、還元処理工程あるいは
酸化処理工程を必要とするので製造工程が複雑となり且
つ鉄粉の収量が低下し、必然的にコストアップとなる。Further, in JP-B-57-44724, wet pulverization is carried out, but during this wet pulverization, the surface of the metallic iron powder is significantly oxidized to form an oxide scale layer, which requires a reduction treatment step or an oxidation treatment step. As a result, the manufacturing process becomes complicated, the yield of iron powder decreases, and the cost inevitably increases.
本発明は磁力選別工程及び湿式微粉砕工程を行なうこと
なく、グラファイト、スラグ成分等の不純物を完全に分
離する転炉ダストから高品位高価値の鉄粉を安価に製造
することを意図したものである。The present invention is intended to inexpensively produce high-grade and high-value iron powder from converter dust that completely separates impurities such as graphite and slag components without performing a magnetic separation step and a wet milling step. is there.
[課題を解決するための手段] すなわち、本発明は(a)捕集された転炉ダストを分級
して粒径が20〜500μmの粒体を分別する第1工程と、
(b)分別後の粒体を乾式粉砕機により粉砕摩鉱し、前
記粒体表層のグラファイト、スラグ等の付着物を剥離す
る第2工程と、(c)粉砕摩鉱後の粒体を傾斜角が5〜
40°の斜面に分散落下させ、落鉱側に鉄粉を採取し、残
鉱側にグラファイト、スラグ分を分離、除去する第3工
程とからなることを特徴とする転炉ダストからの鉄粉の
製造方法に係る。[Means for Solving the Problem] That is, the present invention comprises: (a) a first step of classifying the collected converter dust to classify particles having a particle size of 20 to 500 μm;
(B) The second step of pulverizing and grinding the separated granules with a dry pulverizer to remove the deposits such as graphite and slag on the surface layer of the particles, and (c) the inclination of the granules after the pulverization and grinding. 5 corners
Iron powder from converter dust, which comprises a third step of dispersing and dropping onto a slope of 40 °, collecting iron powder on the falling ore side, and separating and removing graphite and slag on the residual ore side. Related to the manufacturing method of.
更に、本発明は(a)集塵機にて捕集されて転炉ダスト
を分級して粒径が20〜500μmの粒体を分別する第1工
程と、(b)分別後の粒体を乾式粉砕機により粉砕摩鉱
し、前記粒体表層のグラファイト、スラグ等の付着物を
剥離する第2工程と、(c)粉砕摩鉱後の粒体を傾斜角
が5〜40°の斜面に分散落下させ、落鉱側に鉄粉を採取
し、残鉱側にグラファイト、スラグ分を分離、除去する
第3工程と、(d)落鉱側の鉄粉を1〜10規定の塩酸水
溶液で処理する第4工程とからなることを特徴とする転
炉ダストからの鉄粉の製造方法に係る。Further, the present invention includes (a) a first step of classifying the converter dust collected by a dust collector to classify granules having a particle size of 20 to 500 μm, and (b) dry granulation of the granules after classification. The second step of crushing and grinding by a machine to remove the deposits such as graphite and slag on the surface layer of the particles, and (c) the particles after crushing and grinding are dispersed and dropped on the slope with an inclination angle of 5 to 40 °. Then, the iron powder is collected on the falling ore side, the third step of separating and removing the graphite and slag from the residual ore side, and (d) the iron powder on the falling ore side is treated with a 1-10 N hydrochloric acid aqueous solution. The present invention relates to a method for producing iron powder from converter dust, which comprises a fourth step.
[作用] 転炉製鋼時に排ガス中に持ち去られ、これを捕集した転
炉ダストはある粒径範囲内の粗粒のものと、それ以外の
微粒または過大粒のものでは成分的にも物理的な形状特
性も異なった状態で分布しており、特定範囲の粒径のも
のを選別するならば、それ以外の粒径のものでは得られ
ないような高鉄品位の二次処理がし易い粗粒鉄粉が得ら
れるが判った。[Function] The converter dust that is carried away in the exhaust gas during steelmaking of the converter and collects the converter dust is of a coarse particle size within a certain particle size range and other fine particle size or oversize particle size. The shape characteristics are also distributed in different states, and if you select particles with a particle size in a specific range, it is easy to carry out secondary treatment of high iron quality that cannot be obtained with particles with other particle sizes. It was found that granular iron powder was obtained.
以下の第1表は転炉ダスト中に存在する鉄粉(粗粒鉄粉
と超微粉状の酸化鉄粉)、グラファイト及び石灰の各成
分の物理的形状を示したものである。Table 1 below shows the physical shapes of the iron powder (coarse iron powder and ultrafine iron oxide powder), graphite and lime present in the converter dust.
第1表に記載されているように、転炉ダスト中には、そ
の発生形態のままにおいて、粒径20〜500μmの範囲の
粗粒鉄粉が存在し、これは微細な酸化鉄粉やグラファイ
ト、石灰等とは大きさ及び形状において大きな相違が存
在することから単体分離ができるものである。この粗粒
鉄粉は球形の金属鉄粗粒の表面に酸化スケールやグラフ
ァイトやスラグ成分が付着した状態にある。 As shown in Table 1, in the converter dust, coarse iron powder having a particle size in the range of 20 to 500 μm exists in the dust as it is generated, which is a fine iron oxide powder or graphite. Since there is a great difference in size and shape from lime and the like, simple substances can be separated. This coarse iron powder is in a state where oxide scale, graphite and slag components are attached to the surface of spherical metallic iron coarse particles.
これは、転炉製鋼時に溶鋼から飛散した鋼の溶滴がその
表面張力によって球状となった状態で凝固し、飛翔中ま
たは集塵機中においてその表面に酸化皮膜が形成される
と共に排ガス中に随伴する鋼以外の物質例えばスラグ分
やグラファイトが表面に付着するという現象が生ずるか
らであろうと思われる。This is because the droplets of steel scattered from molten steel during converter steelmaking solidify in a spherical state due to its surface tension, and an oxide film is formed on the surface during flight or in a dust collector, and it accompanies the exhaust gas. This is probably because there occurs a phenomenon that substances other than steel such as slag and graphite adhere to the surface.
この粗粒鉄粉の表面を乾式粉砕機を用いて粉砕摩鉱する
と、表面に付着していたグラファイトやスラグ分は寸法
が44μm未満の微粉として球形の金属鉄粗粒の表面から
剥離されることが判った。If the surface of this coarse iron powder is ground and ground using a dry pulverizer, the graphite and slag adhering to the surface will be separated from the surface of the spherical metallic iron coarse particles as fine powder with a size of less than 44 μm. I understood.
この金属鉄粗粒は剥離されたグラファイトやスラグ分と
はその大きさ及び形状において大きな相違があり、この
点において単体分離がし易い形態で存在する。The metallic iron coarse particles have a large difference in size and shape from the exfoliated graphite and slag, and in this respect, they exist in a form that allows easy separation of simple substances.
本発明方法は上記のような転炉ダストの物理的性状の特
質を利用するものである。The method of the present invention utilizes the characteristics of the physical properties of converter dust as described above.
本発明の第1工程において、集塵機等において捕集され
た転炉ダストを分級して粒径が20〜500μmの粒体を分
別する。この分別によって鉄品位が低く、酸化鉄分の多
い20μm未満の微粉と、鉄品位が低く、グラファイトや
石灰粒が多い粒径が500μmを超える粗大粒を分離する
ことができるので高い鉄分回収歩留りのもとで、転炉ダ
ストから鉄分つまり粗大鉄粉を採取することができる。
この分級処理は転炉ダストから粒径が2.0〜500μmの寸
法の粒体を分級できる方法であればその種類は問わない
が、湿式分級方式が適している。In the first step of the present invention, the converter dust collected by a dust collector or the like is classified to separate particles having a particle size of 20 to 500 μm. By this separation, it is possible to separate fine powder with a low iron quality and a high iron oxide content of less than 20 μm from coarse powder with a low iron quality and a large grain size of more than 500 μm with a large amount of graphite and lime particles, which results in a high iron recovery yield. Thus, iron, that is, coarse iron powder, can be collected from the converter dust.
The classification treatment may be of any type as long as it can classify particles having a particle size of 2.0 to 500 μm from converter dust, but a wet classification method is suitable.
第2工程において、第1工程で分別した粒径が20〜500
μmの粒体を乾式粉砕機により粉砕摩鉱し、粗粒鉄粉表
層のグラファイト、スラグ等の付着物を剥離する。使用
する粉砕機としては乾式のボールミルや振動ミル等を用
いることができる。湿式粉砕機を使用すると、その湿式
粉砕時に金属表面が酸化して酸化スケール層を形成し、
鉄粉の収量が低下するため好ましくない。粉砕摩鉱処理
の程度については特に問わないが、粉砕摩鉱が不充分な
場合には、グラファイト、スラグの剥離が不充分とな
り、得られる金属鉄粉の鉄品位が低下し、一方、粉砕摩
鉱が過剰に行なわれた場合は金属鉄粒子の一部まで粉砕
されてしまい、グラファイト、スラグ分に混入されて金
属鉄粉の収量が低下するために好ましくない。すなわ
ち、金属鉄粗粒表面のグラファイト、スラグ分のみを粉
砕し、剥離させて金属鉄粗粒はその本来の球形粗粒のま
まであるように粉砕摩鉱処理することが、得られる金属
鉄粉の純度と収量の上から有利である。In the second step, the particle size separated in the first step is 20 to 500
Grain particles having a diameter of μm are crushed and ground by a dry crusher to remove adhered substances such as graphite and slag on the surface layer of coarse iron powder. As the crusher used, a dry ball mill, a vibration mill or the like can be used. When a wet pulverizer is used, the metal surface is oxidized during the wet pulverization to form an oxide scale layer,
It is not preferable because the yield of iron powder decreases. Although the degree of grinding ore treatment is not particularly limited, when the grinding ore is insufficient, the exfoliation of graphite and slag becomes insufficient, and the iron quality of the obtained metal iron powder deteriorates. If the ore is excessively added, a part of the metallic iron particles will be crushed, and it will be mixed with graphite and slag to reduce the yield of metallic iron powder, which is not preferable. That is, only the graphite and slag components on the surface of the metallic iron coarse particles are crushed, peeled off, and crushed and ground so that the metallic iron coarse particles remain the original spherical coarse particles. Is advantageous in terms of purity and yield.
第3工程において、第2工程での粉砕摩鉱後の粒体にお
ける金属鉄粒子と剥離されたグラファイトやスラグ分と
の形状における大きな相違を利用して前記粉砕摩鉱後の
粒体を斜面上に分散落下させ、落鉱側で鉄粉を採取し、
残鉱側でグラファイト、スラグ分を分離、除去する(以
下、この工程を斜面落下選別と記載する)。すなわち、
球形の金属鉄粒子のみが斜面上をころがり落下し、不定
形のグラファイト、スラグ分は斜面上に留まるため、落
鉱側に金属鉄粒子を単体分離することができる。この
際、斜面の傾斜角は5〜40°にする必要がある。傾斜角
が5°未満の場合には、斜面上に留まる金属鉄粒子が著
しく増大するために好ましくなく、また、傾斜角が40°
を超えると不定形のグラファイト、スラグ分まで斜面上
をころがり落下してしまい鉄粉の鉄品位が低下する。斜
面上への粉砕摩鉱後の粒体の供給速度はなるべく遅い方
が望ましい。一度に大量の粉砕摩鉱後の粒体を斜面上へ
供給すると、球形の金属鉄粒子と不定形のグラファイト
やスラグ分とが絡み合った状態で斜面上を落下し、落鉱
側にグラフィトやスラグ分が混入する弊害を生ずるため
に好ましくない。In the third step, by utilizing the large difference in shape between the metallic iron particles and the exfoliated graphite or slag in the particles after the grinding and grinding in the second step, the particles after the grinding and grinding are placed on the slope. Dispersed and dropped into the
On the residual ore side, graphite and slag are separated and removed (hereinafter, this step is referred to as slope drop selection). That is,
Since only spherical metallic iron particles roll down on the slope and fall, and amorphous graphite and slag are retained on the slope, the metallic iron particles can be separated on the falling side. At this time, the inclination angle of the slope must be 5 to 40 °. If the tilt angle is less than 5 °, it is not preferable because the metallic iron particles remaining on the slope significantly increase, and the tilt angle is 40 °.
If it exceeds, the amorphous graphite and slag will fall on the slope and fall, and the iron quality of the iron powder will deteriorate. It is desirable that the feed rate of the granules after grinding and grinding on the slope be as slow as possible. When a large amount of crushed and ground granules are supplied to the slope at once, the spherical metallic iron particles and the amorphous graphite and slag are intertwined and fall on the slope, and the graffiti and slag on the falling side. This is not preferable because it causes a harmful effect of mixing the components.
なお、斜面上に留まるグラファイトやスラグ分は適宜取
り除き、金属鉄粒子の落下の障害とならないようにする
ことが望ましい。It is desirable that graphite and slag remaining on the slope be appropriately removed so as not to obstruct the fall of the metallic iron particles.
また、斜面の表面材質は特に限定されるものではない
が、比較的微細なグラファイトやスラグ分を斜面上に留
めることが可能な程度の表面粗度を有することが望まし
い。Further, the surface material of the slope is not particularly limited, but it is desirable that the slope has a surface roughness such that relatively fine graphite or slag can be retained on the slope.
以上の第1工程すなわち分級工程と、第2工程すなわち
粉砕摩鉱工程と、第3工程すなわち斜面落下選別工程を
経るだけで転炉ダストから金属鉄が94重量%以上の鉄粉
を得ることができる。It is possible to obtain iron powder containing 94% by weight or more of metallic iron from converter dust only by passing through the first step, that is, the classification step, the second step, that is, the crushing and grinding step, and the third step, that is, the slope drop selection step. it can.
得られた鉄粉はこのままでも工業用鉄粉として利用に供
することができるが、更に高品位の鉄粉を得るには、第
4工程として前記落鉱側の鉄粉を1〜10規定の塩酸で塩
酸処理を施すことができる。これによって鉄粉表面に存
在している酸化スケール層を溶出させることができ、金
属鉄が98重量%の高品位鉄粉とすることができる。この
場合、混入するCaO等の塩基性化合物による酸の中和を
考慮すると、酸濃度としては1規定以上の濃度の強酸で
の処理が必要である。酸は塩酸を使用する。硫酸や硝酸
などの酸化力をもつ酸は高濃度では鉄を酸化して不動態
化させるので好ましくない。なお、10規定を超えるよう
な濃塩酸を使用しなくても充分に酸化スケール層を溶出
させることができる。The obtained iron powder can be used as an industrial iron powder as it is, but in order to obtain a higher quality iron powder, the iron powder on the falling ore side is added with 1 to 10N hydrochloric acid in the fourth step. Can be treated with hydrochloric acid. As a result, the oxide scale layer existing on the surface of the iron powder can be eluted, and the high-quality iron powder containing 98% by weight of metallic iron can be obtained. In this case, considering the neutralization of the acid by the basic compound such as CaO mixed in, it is necessary to treat the acid with a strong acid having a concentration of 1 N or higher. Hydrochloric acid is used as the acid. Acids having oxidizing power, such as sulfuric acid and nitric acid, are not preferable because they oxidize and passivate iron at high concentrations. The oxide scale layer can be sufficiently eluted without using concentrated hydrochloric acid that exceeds 10 N.
以上のように本発明は磁力選別工程や湿式微粉砕工程を
行なうことなく、転炉ダスト中に存在する粗粒鉄粉が乾
式での粉砕摩鉱により金属鉄粒子からグラファイト、ス
ラグ分が剥離、分離され、しかも金属鉄粒子が球形を呈
するのに対してグラファイト、スラグ分は比較的微細な
不定形を呈するという形状における大きな相違を利用し
て鉄粉を転炉ダストから分別するものであり、分級と、
粉砕と、斜面落下選別という簡単且つ経済的な工程によ
って高付加価値鉄粉を製造できる点に特徴がある。As described above, the present invention does not carry out the magnetic separation step or the wet fine pulverization step, and the coarse iron powder present in the converter dust is separated from the metallic iron particles by the pulverizing grinding mill in the graphite, and the slag is separated. Separation, yet the iron and iron particles are separated from the converter dust by utilizing the large difference in the shape that the metallic iron particles have a spherical shape, whereas the graphite and the slag have a relatively fine amorphous shape. Classification
The feature is that high value-added iron powder can be manufactured by a simple and economical process of crushing and slope drop selection.
[実施例] 以下に実施例を挙げて本発明方法を更に説明する。[Examples] Hereinafter, the method of the present invention will be further described with reference to Examples.
実施例 集塵機で捕集された転炉ダスト5kgを発生形態のままテ
ーラー標準篩にて湿式分級し、粒径が20〜500μmの粒
体を分別した。得られた粒体を100〜120℃に3時間保持
して乾燥させた後、振動ミルを用いて約3分間乾式での
粉砕摩鉱を行なった。更に、粉砕摩鉱後の粒体を傾斜角
が20°の斜面上に分散落下させ、落鉱と残鉱とを分離し
た。斜面としては表面粗度が10μmの低炭素冷延鋼板を
用いた。Example 5 kg of converter dust collected by a dust collector was wet classified with a Taylor standard sieve in the form of generation to separate particles having a particle size of 20 to 500 μm. The obtained granules were kept at 100 to 120 ° C. for 3 hours to be dried, and then pulverized at a dry mill using a vibration mill for about 3 minutes. Further, the particles after crushing and grinding were dispersedly dropped onto a slope having an inclination angle of 20 ° to separate the falling ore and the residual ore. As the slope, a low carbon cold rolled steel sheet having a surface roughness of 10 μm was used.
供試した転炉ダスト、第1工程の分級により採取した乾
燥分級品、及び第3工程の斜面落下選別で落鉱側に得ら
れた鉄粉をそれぞれ分析し、第2表に示す結果を得た。The converter dust tested, the dry classified product collected by the classification in the first step, and the iron powder obtained on the falling ore side by the slope drop selection in the third step were analyzed, and the results shown in Table 2 were obtained. It was
第2表の結果に見られるように、転炉ダストは発生形態
のままでも20〜500μmの粒体を分別しただけで金属鉄
(M.Fe)が81.5重量%のものとなり、斜面落下選別によ
って金属鉄品位は94.6重量%まで向上することが判る。 As can be seen from the results in Table 2, even if the converter dust remains in the generated form, metallic iron (M.Fe) becomes 81.5% by weight only by separating 20 to 500 μm particles, It can be seen that the quality of metallic iron improves to 94.6% by weight.
なお、20°の傾斜角の斜面に代えて5°及び40°の斜面
角の斜面を用いて斜面落下選別を行なったが、同様の結
果が得られた。The slope drop selection was performed using slopes with slope angles of 5 ° and 40 ° instead of slopes with slope angle of 20 °, and similar results were obtained.
更に、斜面落下選別の落鉱側に得られた粒体を5規定の
塩酸1.5l中で3分間機械撹拌しつつ浸出した後、過
し、残渣を乾燥した。この乾燥品粒体の成分も第2表に
併記した。第2表に示される通り、この粒体は金属鉄が
98.3重量%の高品位鉄粉であった。Further, the granules obtained on the falling side of the slope drop screening were leached in 1.5 l of 5 N hydrochloric acid with mechanical stirring for 3 minutes, then, leached, and the residue was dried. The components of the dried granules are also shown in Table 2. As shown in Table 2, this granular material contains metallic iron.
It was 98.3% by weight of high-grade iron powder.
なお、5規定の塩酸に代えて1規定及び10規定の塩酸を
用いて処理したが結果は同様であった。The treatment was performed using 1N and 10N hydrochloric acid instead of 5N hydrochloric acid, but the results were the same.
5規定の塩酸により処理を行なった鉄粉の顕微鏡写真を
第1図に示す。第1図に見られる通り、この鉄粉は真球
形状を有した粉体であることが判る。A micrograph of iron powder treated with 5N hydrochloric acid is shown in FIG. As seen in FIG. 1, it can be seen that this iron powder is a powder having a spherical shape.
また、第2表には市販の還元鉄粉の代表的な成分を比較
のために示したが、本発明方法により製造された鉄粉は
成分的に全く遜色のないものであることが判る。Further, Table 2 shows representative components of commercially available reduced iron powder for comparison, but it is understood that the iron powder produced by the method of the present invention is comparable in composition.
[発明の効果] 上述のように本発明方法によると球形の高品位鉄粉が分
級と、粉砕と、斜面落下選別という簡単且つ少ない工程
で転炉ダストから製造することができ、また、鉄粉の目
的とする用途に応じて第4工程の塩酸処理を施すことに
より更に高品位の鉄粉を得ることができる。[Effects of the Invention] As described above, according to the method of the present invention, spherical high-grade iron powder can be produced from converter dust by a simple and small number of steps of classification, pulverization, and slope drop selection. By performing the hydrochloric acid treatment in the fourth step depending on the intended use of (1), a higher quality iron powder can be obtained.
従って、製鋼副産物である転炉ダストを切断用、溶接棒
用、粉末冶金用などに好適な工業用鉄粉として経済的に
高付加価値化を図ることができる。Therefore, the converter dust, which is a by-product of steelmaking, can be economically added as an industrial iron powder suitable for cutting, welding rods, powder metallurgy, and the like.
第1図は実施例で得られた鉄粉の粒子構造を示す顕微鏡
写真(倍率×100倍)である。FIG. 1 is a micrograph (magnification × 100) showing the particle structure of iron powder obtained in the examples.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−14825(JP,A) 特開 昭59−1602(JP,A) 特開 昭54−127804(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-55-14825 (JP, A) JP-A-59-1602 (JP, A) JP-A-54-127804 (JP, A)
Claims (2)
粒径が20〜500μmの粒体を分別する第1工程と、 (b) 分別後の粒体を乾式粉砕機により粉砕摩鉱し、
前記粒体表層の付着物を剥離する第2工程と、 (c) 粉砕摩鉱後の粒体を傾斜角が5〜40°の斜面に
分散落下させ、落鉱側に鉄粉を採取し、残鉱側にグラフ
ァイト、スラグ分を分離、除去する第3工程とからなる
ことを特徴とする転炉ダストからの鉄粉の製造方法。1. A first step of (a) classifying the collected converter dust to classify particles having a particle size of 20 to 500 μm, and (b) crushing the particles after classification with a dry crusher. Mine,
A second step of peeling off the deposits on the surface layer of the particles, (c) the particles after grinding and grinding are dispersedly dropped onto a slope having an inclination angle of 5 to 40 °, and iron powder is collected on the falling side, A method for producing iron powder from converter dust, comprising a third step of separating and removing graphite and slag on the residual ore side.
粒径が20〜500μmの粒体を分別する第1工程と、 (b) 分別後の粒体を乾式粉砕機により粉砕摩鉱し、
前記粒体表層の付着物を剥離する第2工程と、 (c) 粉砕摩鉱後の粒体を傾斜角が5〜40°の斜面に
分散落下させ、落鉱側に鉄粉を採取し、残鉱側にグラフ
ァイト、スラグ分を分離、除去する第3工程と、 (d) 落鉱側の鉄粉を1〜10規定の塩酸水溶液で処理
する第4工程とからなることを特徴とする転炉ダストか
らの鉄粉の製造方法。2. A first step of: (a) classifying the collected converter dust to classify particles having a particle size of 20 to 500 μm; and (b) crushing the particles after classification with a dry crusher. Mine,
A second step of peeling off the deposits on the surface layer of the particles, (c) the particles after grinding and grinding are dispersedly dropped onto a slope having an inclination angle of 5 to 40 °, and iron powder is collected on the falling side, A transfer process characterized by comprising a third step of separating and removing graphite and slag on the residual ore side, and (d) a fourth step of treating iron powder on the falling ore side with a 1-10 N hydrochloric acid aqueous solution. Method for producing iron powder from furnace dust.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30226788A JPH0794681B2 (en) | 1988-12-01 | 1988-12-01 | Method for producing iron powder from converter dust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30226788A JPH0794681B2 (en) | 1988-12-01 | 1988-12-01 | Method for producing iron powder from converter dust |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02149607A JPH02149607A (en) | 1990-06-08 |
JPH0794681B2 true JPH0794681B2 (en) | 1995-10-11 |
Family
ID=17906955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30226788A Expired - Lifetime JPH0794681B2 (en) | 1988-12-01 | 1988-12-01 | Method for producing iron powder from converter dust |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0794681B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1087984C (en) * | 1999-03-08 | 2002-07-24 | 中南工业大学 | Method for preparing iron powder used in metallurgy from converter mud |
KR102054626B1 (en) * | 2019-07-22 | 2020-01-22 | 변태식 | A Particle Iron MAnufacturing Method of Low Sulfur |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950731B2 (en) * | 1978-03-28 | 1984-12-10 | 光和精鉱株式会社 | How to recover metallic iron powder from converter dust |
JPS5514825A (en) * | 1978-07-15 | 1980-02-01 | Kowa Seikou Kk | Production of iron powder for welding, cutting and powder metallurgy from converter dust |
JPS591602A (en) * | 1982-06-25 | 1984-01-07 | Nippon Kokan Kk <Nkk> | Production of iron powder for industrial purpose using converter off-gas dust |
-
1988
- 1988-12-01 JP JP30226788A patent/JPH0794681B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02149607A (en) | 1990-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU741669B2 (en) | Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags | |
US4416688A (en) | Direct reduction of ores and concentration of metallic values | |
US5427607A (en) | Process for the recovery of metallic iron from slags and other residues | |
US4860957A (en) | Treatment of middlings | |
JPH0794681B2 (en) | Method for producing iron powder from converter dust | |
JPS5950731B2 (en) | How to recover metallic iron powder from converter dust | |
JPH02149606A (en) | Manufacture of iron powder from converter dust | |
JPS5815179B2 (en) | Metal material recovery method | |
US20190169704A1 (en) | Reduced iron production method and production apparatus | |
US6355088B1 (en) | Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags | |
US4182498A (en) | Recovery of round metal granules from process sludge | |
US2765988A (en) | Reduction of iron ores | |
JP2017190529A (en) | Method of processing electric/electronic parts scrap in copper smelting | |
JPS5827917A (en) | Treatment of converter slag or the like | |
KR101091244B1 (en) | Method for producing iron oxide by purification of scale | |
JPH01294802A (en) | Production of flat fine fe-ni-al alloy powder | |
JPS61158807A (en) | Dry purification method of Kitsushi graphite | |
JP4907284B2 (en) | Method for processing ferrous waste materials | |
GB1596515A (en) | Separating solid materials | |
JPH02111840A (en) | Treatment for nickel oxide ore | |
JPS591602A (en) | Production of iron powder for industrial purpose using converter off-gas dust | |
JPS61215220A (en) | Production of iron oxide for ferrite raw material from iron ore | |
KR101969106B1 (en) | Method for processing sludge | |
JPH0355521B2 (en) | ||
JPS6221053B2 (en) |