JPH0794326B2 - Method for producing SiO 2 lower porous glass - Google Patents
Method for producing SiO 2 lower porous glassInfo
- Publication number
- JPH0794326B2 JPH0794326B2 JP2253972A JP25397290A JPH0794326B2 JP H0794326 B2 JPH0794326 B2 JP H0794326B2 JP 2253972 A JP2253972 A JP 2253972A JP 25397290 A JP25397290 A JP 25397290A JP H0794326 B2 JPH0794326 B2 JP H0794326B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- porous glass
- glass
- gel
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、SiO2系多孔質ガラスの製造法に関し、詳細に
は、分離膜や酵素担体などの如く、微細孔を多数有する
と共に優れた耐熱性や耐食性を有する事が必要とされる
多孔質材料として使用するSiO2系多孔質ガラスの製造法
に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a SiO 2 -based porous glass, and in particular, has a large number of fine pores such as a separation membrane and an enzyme carrier and is excellent. The present invention relates to a method for producing a SiO 2 -based porous glass used as a porous material which is required to have heat resistance and corrosion resistance.
(従来の技術) 分離膜や酵素担体などの多孔質材料としては、微細な
孔、例えば細孔半径:5〜10Å程度の微細孔を多数有する
と共に、耐熱性や耐食性に優れていることが必要であ
る。一方、SiO2系ガラスは耐熱性及び耐酸性に優れ、そ
の中でもZrO2を含有するSiO2系ガラス(ZrO2−SiO2ガラ
ス)は耐熱性に優れると共に、耐アルカリ性にも優れて
いる。従って、微細孔を多数有するSiO2系ガラス(即ち
SiO2系多孔質ガラス)を安定して実用的に製造できれ
ば、分離膜や酵素担体などの多孔質材料として好適に使
用し得るようになる。(Prior art) A porous material such as a separation membrane or an enzyme carrier must have a large number of fine pores, for example, a pore radius of about 5 to 10Å and have excellent heat resistance and corrosion resistance. Is. On the other hand, SiO 2 -based glass is excellent in heat resistance and acid resistance, SiO 2 system glass containing ZrO 2 among them (ZrO 2 -SiO 2 glass) is excellent in heat resistance, is excellent in alkali resistance. Therefore, SiO 2 glass (ie,
If SiO 2 -based porous glass) can be stably and practically produced, it can be suitably used as a porous material such as a separation membrane or an enzyme carrier.
従来SiO2系多孔質ガラスの製造法としては、ガラスの分
相現象を利用した製造法や、ゾル・ゲル法を利用した製
造法が知られている。Conventionally, as a method for manufacturing a SiO 2 -based porous glass, a manufacturing method using a phase separation phenomenon of glass and a manufacturing method using a sol-gel method are known.
前者の製造法は、種々の金属酸化物を含むSiO2系ガラス
を軟化点以下の温度で長時間熱処理して、骨格となるSi
O2相と可溶性の金属酸化物相とに分相させ、可溶相を酸
溶出することによりSiO2系多孔質ガラスを製造するもの
である。In the former manufacturing method, SiO 2 glass containing various metal oxides is heat-treated at a temperature below the softening point for a long time to form a skeleton of Si.
An O 2 phase and a soluble metal oxide phase are separated, and the soluble phase is eluted with an acid to produce a SiO 2 -based porous glass.
後者の製造法は、シリコンアルコキシド(或いはシリコ
ンアルコキシド及びシリコン以外の金属のアルコキシ
ド)を加水分解してゾル化した後ゲル化させ、これを乾
燥して多孔質の乾燥ゲルと成し、該乾燥ゲルを徐々に加
熱してゲル中の水分蒸発と脱水縮合反応によりガラスを
合成してSiO2系多孔質ガラスを製造するものである。
尚、乾燥ゲルの加熱温度をさらに高くすると、焼結反応
によりガラスが緻密化して細孔が消失するため、多孔質
ガラスは得られない。The latter manufacturing method is a method in which a silicon alkoxide (or silicon alkoxide and an alkoxide of a metal other than silicon) is hydrolyzed to form a sol, which is then gelled and dried to form a porous dry gel. Is gradually heated to synthesize glass by evaporation of water in the gel and dehydration condensation reaction to produce a SiO 2 -based porous glass.
If the heating temperature of the dry gel is further increased, the glass will be densified by the sintering reaction and the pores will disappear, so that porous glass cannot be obtained.
(発明が解決しようとする課題) ところが、前記従来のSiO2系多孔質ガラスの製造法の
中、ガラスの分相現象を利用した製造法においては、細
孔半径:20Å以下の微細孔を有するものを製造し得ず、
又、分相したZrO2が酸で溶出されるためZrO2の含有量が
5mol%以下に制限されるので耐アルカリ性が充分でない
という問題点がある。(Problems to be solved by the invention) However, among the conventional methods for producing a SiO 2 -based porous glass, in the production method utilizing the phase separation phenomenon of glass, the pore radius is 20 Å or less You ca n’t manufacture things,
In addition, since the separated ZrO 2 is eluted with acid, the content of ZrO 2 is
Since it is limited to 5 mol% or less, there is a problem that the alkali resistance is not sufficient.
ゾル・ゲル法を利用した従来の多孔質ガラス製造法にお
いては、ZrO2の含有量をより多くし得るので耐アルカリ
性の点では問題はないが、細孔半径:10Å程度の微細孔
を有するものを製造するためには、乾燥ゲルを加熱して
生成したガラスが緻密化する直前で加熱を停止する等の
処置が必要となるが、ガラスの緻密化は狭い温度範囲で
急激に起るので制御が難しい。例えば、乾燥ゲルを300
〜500℃程度で加熱した場合には、生成ガラスの強度及
び耐食性が充分でなく、500℃以上で加熱すると細孔径
の制御が難しくなる。In the conventional porous glass manufacturing method using the sol-gel method, the content of ZrO 2 can be increased, so there is no problem in terms of alkali resistance, but the pore radius is 10 Å In order to manufacture, it is necessary to take measures such as stopping the heating just before the glass produced by heating the dry gel becomes densified, but since the densification of glass occurs rapidly in a narrow temperature range, control is possible. Is difficult. For example, 300 dry gels
When heated at about 500 ° C, the strength and corrosion resistance of the produced glass are not sufficient, and when heated at 500 ° C or higher, it becomes difficult to control the pore size.
又、微細孔は加水分解によるゾル化、ゲル化及びゲルの
加熱温度によって変化するので、生成される微細孔の状
態は当然に該生成条件により定まるが、該生成条件を一
定に精度良く制御するのは極めて難しいので、微細孔の
状態を制御し難く、これは製造の都度異なり、再現性に
欠けるという問題点がある。尚、上記微細孔の状態と
は、基本的には微細孔の大きさ(半径)とその分布及び
数等のことであるが、実用的には微細孔半径、及び、微
細孔の大きさと数等により定まるガラスの単位重量当り
の微細孔の表面積(以降、比表面積という)等のことで
あり、かかる微細孔半径及び比表面積等は多孔質材料の
微細孔の良否や適否、又はその水準を評価する上で重要
な因子である 更に、乾燥ゲルの加熱に時間を要するため、急激に高温
加熱して加熱時間を短縮しようとすると、未反応有機物
が残存し熱分解炭素によりガラスが黒化し易くなるとい
う欠点がある。これを防止するには、乾燥ゲルの加熱前
に水蒸気中で温度を徐々に上昇させ加熱する水蒸気処理
を施し、しかる後乾燥ゲルを加熱するようにするとよい
が、この場合は水蒸気処理に長時間を要する。In addition, since the micropores change depending on the temperature of sol formation, gelation, and gel heating due to hydrolysis, the state of the micropores generated is naturally determined by the production conditions, but the production conditions are controlled to be constant and accurately. Since it is extremely difficult to control the state of the micropores, it is difficult to control the state of the micropores. The state of the fine pores is basically the size (radius) of the fine pores and the distribution and number of the fine pores, but practically, the radius of the fine pores and the size and number of the fine pores are practically used. It is the surface area of the micropores per unit weight of glass (hereinafter referred to as the specific surface area), etc. that is determined by the Further, it is an important factor for evaluation.Moreover, it takes time to heat the dry gel, so if you try to shorten the heating time by heating rapidly at high temperature, unreacted organic matter remains and the glass tends to blacken due to pyrolytic carbon. There is a drawback that In order to prevent this, it is advisable to perform steam treatment by gradually raising the temperature in steam before heating the dry gel, and then heat the dry gel. Requires.
本発明はこの様な事情に着目してなされたものであっ
て、その目的は従来のものがもつ以上のような問題点を
解消し、ゾル・ゲル法によりSiO2系多孔質ガラスを製造
するに際し、細孔半径:5〜10Å程度の微細孔を有するも
のを製造し得ると共に、ゾル・ゲル法による従来法の場
合に比してガラス強度及び耐食性を向上し得、又、ガラ
スの微細孔の状態(微細孔半径及び比表面積など)を制
御し易くその再現性に優れ、更には長時間の水蒸気処理
をせずともガラスの黒化を抑制し得るSiO2系多孔質ガラ
スの製造法を提供しようとするものである。The present invention has been made in view of such circumstances, and its purpose is to solve the above-mentioned problems of conventional ones, and to manufacture a SiO 2 -based porous glass by a sol-gel method. In this case, the pore radius: 5 ~ 10 Å can be produced with those having fine pores, the glass strength and corrosion resistance can be improved as compared with the conventional method by the sol-gel method, and the fine pores of the glass It is easy to control the state (fine pore radius and specific surface area, etc.), has excellent reproducibility, and is a method for producing a SiO 2 -based porous glass that can suppress blackening of glass without steam treatment for a long time. It is the one we are trying to provide.
(課題を解決するための手段) 上記目的を達成するために、本発明に係るSiO2系多孔質
ガラスの製造法は次のような構成としている。(Means for Solving the Problems) In order to achieve the above object, the method for producing a SiO 2 porous glass according to the present invention has the following constitution.
即ち、請求項1に記載のSiO2系多孔質ガラスの製造法
は、ゾル・ゲル法によりSiO2系多孔質ガラスを製造する
に際し、有機高分子であるポリエチレングリコール、ポ
リプロピレングリコール、ポリアクリル酸、ポリビニル
ピロリドン、ポリビニルアルコールから選択される1種
又は2種以上の有機高分子をシリコンアルコキシドを含
有する溶液に分散させた溶液について該シリコンアルコ
キシドを加水分解してゾル化し、次いで該ゾルにシリコ
ン以外の金属のアルコキシドを含有する溶液を添加混合
し、該金属アルコキシドを加水分解してゾル化した後ゲ
ル化させ、これを乾燥して乾燥ゲルと成し、該乾燥ゲル
を500〜800℃の温度で加熱してガラス化すると共に該乾
燥ゲル中の有機高分子を除去することにより、微細孔を
有するSiO2系多孔質ガラスを得ることを特徴とするSiO2
系多孔質ガラスの製造法である。That, SiO 2 based porous glass manufacturing method according to claim 1, upon producing a SiO 2 based porous glass by the sol-gel method, polyethylene glycol is an organic polymer, polypropylene glycol, polyacrylic acid, For a solution in which one or more organic polymers selected from polyvinylpyrrolidone and polyvinyl alcohol are dispersed in a solution containing silicon alkoxide, the silicon alkoxide is hydrolyzed to form a sol, and then the sol containing other than silicon is added. A solution containing a metal alkoxide is added and mixed, and the metal alkoxide is hydrolyzed to form a sol and then gelled, which is dried to form a dry gel, which is dried at a temperature of 500 to 800 ° C. by removing the organic polymer in the dry gel with vitrified heated, SiO 2 based porous glass having fine pores SiO 2, characterized in that to obtain
This is a method for producing a porous glass.
請求項2に記載のSiO2系多孔質ガラスの製造法は、前記
乾燥ゲルの加熱前に水蒸気中で温度を徐々に上昇させ加
熱する水蒸気処理を乾燥ゲルに施す請求項1に記載のSi
O2系多孔質ガラスの製造法である。The method for producing a SiO 2 -based porous glass according to claim 2, wherein the dry gel is subjected to a steam treatment in which the temperature is gradually raised and heated in steam before the dry gel is heated.
This is a method for producing O 2 -based porous glass.
請求項3に記載のSiO2系多孔質ガラスの製造法は、前記
シリコン以外の金属のアルコキシドがジルコニウムアル
コキシドである請求項1に記載のSiO2系多孔質ガラスの
製造法である。SiO 2 based porous glass manufacturing method according to claim 3, alkoxide of a metal other than the silicon is SiO 2 based method for producing a porous glass according to claim 1 zirconium alkoxide.
(作 用) 本発明に係るSiO2系多孔質ガラスの製造法は、前記の如
く、有機高分子であるポリエチレングリコール、ポリプ
ロピレングリコール、ポリアクリル酸、ポリビニルピロ
リドン、ポリビニルアルコールから選択される1種又は
2種以上の有機高分子(以降、特定有機高分子という)
をシリコンアルコキシドを含有する溶液に分散させた溶
液について該シリコンアルコキシドを加水分解してゾル
化し、次いで該ゾルにシリコン以外の金属のアルコキシ
ド(以降、他金属アルコキシドという)を含有する溶液
を添加混合し、該金属アルコキシドを加水分解してゾル
化し、さらにゲル化した後、これを乾燥して乾燥ゲルと
成すようにしているので、特定有機高分子を含有する乾
燥ゲルが得られる。(Operation) As described above, the method for producing a SiO 2 -based porous glass according to the present invention is one selected from organic polymers such as polyethylene glycol, polypropylene glycol, polyacrylic acid, polyvinylpyrrolidone, and polyvinyl alcohol, or Two or more types of organic polymers (hereinafter referred to as specific organic polymers)
In a solution containing silicon alkoxide is hydrolyzed to form a sol, and then a solution containing a metal alkoxide other than silicon (hereinafter referred to as other metal alkoxide) is added and mixed to the sol. Since the metal alkoxide is hydrolyzed to form a sol, which is further gelled and then dried to form a dry gel, a dry gel containing a specific organic polymer can be obtained.
ここで、加水分解によるゾル化に際し、上記の如き順序
としているのは、シリコンアルコキシドは他金属アルコ
キシドに比し加水分解の反応速度が低く、かかる速度が
低いものから加水分解することにより、組成が均質なゾ
ルが得られ、その結果組成均質な乾燥ゲルが得られ、ガ
ラスの機能をより向上し得るようになるからである。即
ち、先に他金属アルコキシドを加水分解するようにする
と、そのゾル化が速いためシリコンアルコキシドを添加
した際に均一に混合されず、均質なゾルが得られ難くな
り、又、同時に加水分解を開始させた場合も、均質なゾ
ルが得られ難くなる。これにより、上記本発明に係るゾ
ル及び乾燥ゲルは組成均質なものとなる。Here, in the sol formation by hydrolysis, the order as described above is that silicon alkoxide has a lower reaction rate of hydrolysis than other metal alkoxides, and the composition is obtained by hydrolysis from a substance having a low speed. This is because a homogeneous sol can be obtained, and as a result, a dry gel having a uniform composition can be obtained, and the function of glass can be further improved. That is, if the other metal alkoxide is hydrolyzed first, its sol formation is fast, so that it is not uniformly mixed when the silicon alkoxide is added, and it becomes difficult to obtain a homogeneous sol. Even in the case of making it possible, it becomes difficult to obtain a uniform sol. As a result, the sol and the dried gel according to the present invention have a uniform composition.
一方、前記特定有機高分子は長さ:5〜20Å程度の細長状
の極小物質であり、シリコンアルコキシド含有溶液中に
均一分散し得、その結果として組成を均質と成すと共に
特定有機高分子を均一分散させた乾燥ゲルが得られる。On the other hand, the specific organic polymer is a long and thin substance having a length of about 5 to 20Å, which can be uniformly dispersed in a solution containing a silicon alkoxide, resulting in a homogeneous composition and a uniform specific organic polymer. A dispersed dry gel is obtained.
次に、上記乾燥ゲルを500〜800℃の温度で加熱して脱水
縮合反応によりガラス化すると共に該乾燥ゲル中の有機
高分子を除去するようにしているので、該除去により下
記の如く微細公が形成される。Next, since the dry gel is heated at a temperature of 500 to 800 ° C. to be vitrified by a dehydration condensation reaction and the organic polymer in the dry gel is removed, the removal of fine particles as described below is performed. Is formed.
即ち、乾燥ゲルは特定有機高分子を含んだ多孔質であ
り、特定有機高分子はゲル自体の細孔と共存しているた
め、上記加熱により特定有機高分子は、先ずゲルの細孔
表面近傍のものからガス化してゲル以外に排出されると
共にガラス化過程のゲル中にガス通路を形成し、それを
介して特定有機高分子は順次ガラス外へ排出(除去)さ
れる。That is, the dry gel is porous containing the specific organic polymer, and the specific organic polymer coexists with the pores of the gel itself. The substance is gasified and discharged in addition to the gel, and a gas passage is formed in the gel during the vitrification process, through which the specific organic polymer is sequentially discharged (removed) out of the glass.
かかる特定有機高分子の加熱除去により、除去された部
分自体が細長状極小の空孔として残留し、細長状の微細
孔が形成される他、乾燥ゲル自体の微細孔も無孔化する
ことなく残留し、より多くの微細孔が形成されるので、
細孔半径は5〜10Å程度にし得る。尚、前記の微細孔生
成・残留の理由はよく判らないが、特定有機高分子の触
媒作用か、もしくは前記ガス通路の作用により、乾燥ゲ
ル自体の微細孔形成が助長されると共に微細孔の消失が
抑制されるためと考えられる。By such heating and removal of the specific organic polymer, the removed portion itself remains as elongated micropores, and elongated fine pores are formed, and the fine pores of the dry gel itself are not made nonporous. Since it remains and more micropores are formed,
The pore radius can be about 5-10Å. Although the reason for the formation and retention of the fine pores is not well understood, the formation of fine pores in the dry gel itself is promoted and disappears due to the catalytic action of the specific organic polymer or the action of the gas passage. Is considered to be suppressed.
このようにして微細孔が形成されるで、細孔半径分布の
狭い微細孔を多数有するSiO2系多孔質ガラスが得られ
る。このとき上記乾燥ゲルを前記の如く特定有機高分子
を均一分散させたものにしておくと、上記ガラスの微細
孔を均一分散したものにし得る。Since the fine pores are formed in this way, a SiO 2 -based porous glass having a large number of fine pores with a narrow pore radius distribution can be obtained. At this time, if the dry gel is made to have the specific organic polymer uniformly dispersed as described above, the fine pores of the glass can be made to be uniformly dispersed.
ここで、乾燥ゲルの加熱温度を500〜800℃としているの
は、500℃未満ではガラス化が不充分となって強度や耐
食性が悪くなり、800℃超では特定有機高分子の除去
後、微細孔が塞がれ、多孔質性が悪くなるからである。Here, the heating temperature of the dry gel is set to 500 to 800 ° C., because the vitrification is insufficient at less than 500 ° C. and the strength and corrosion resistance are deteriorated, and above 800 ° C., after the removal of the specific organic polymer, This is because the pores are blocked and the porosity deteriorates.
上記のように乾燥ゲルを500〜800℃の温度で加熱してガ
ラス化するので、ゾル・ゲル法による従来の多孔質ガラ
ス製造法の場合に比しガラス強度及び耐食性を向上し得
る。As described above, the dry gel is heated at a temperature of 500 to 800 ° C. to be vitrified, so that the glass strength and the corrosion resistance can be improved as compared with the case of the conventional porous glass manufacturing method by the sol-gel method.
微細孔は乾燥ゲルの加熱による特定有機高分子の除去に
より生成させるので、微細孔の状態は該生成条件、即ち
ゲル加熱条件と特定有機高分子の量及び種類とにより定
まり、これらの条件の制御は極めて容易であり、従って
ガラスの微細孔の状態(微細孔半径及び比表面積等)を
制御し易く、その再現性に優れている。特に、特定有機
高分子の添加量を変えることにより、細孔径をほぼ一定
とし細孔の数(比表面積)を調節することも容易にでき
る。Since the micropores are formed by removing the specific organic polymer by heating the dry gel, the state of the micropores is determined by the formation conditions, that is, the gel heating conditions and the amount and type of the specific organic polymer, and controlling these conditions. Is extremely easy, and therefore it is easy to control the state of the fine pores of the glass (fine hole radius, specific surface area, etc.) and its reproducibility is excellent. In particular, it is possible to easily adjust the number of pores (specific surface area) by making the pore diameter almost constant by changing the addition amount of the specific organic polymer.
乾燥ゲルの加熱の際、熱分解炭素は特定有機高分子のガ
ス化に伴って形成されるガス通路を介して、ガラス外へ
排出されるので、残留し難く、従って、長時間の水蒸気
処理をしなくても黒化を抑制し得るようになる。When the dry gel is heated, the pyrolytic carbon is discharged to the outside of the glass through the gas passage formed by the gasification of the specific organic polymer, so that it is difficult to remain and therefore, the steam treatment for a long time is not required. The blackening can be suppressed without doing so.
故に、本発明に係るSiO2系多孔質ガラスの製造法によれ
ば、細孔半径:5〜10Å程度の微細孔を有するものを製造
し得ると共に、ゾル・ゲル法による従来の多孔質ガラス
製造法の場合に比し、ガラス強度及び耐食性を向上し
得、又、ガラスの微細孔の状態(特に比表面積)を制御
し易くその再現性に優れ、更には長時間の水蒸気処理を
せずともガラスの黒化を抑制し得るようになる。Therefore, according to the method for producing a SiO 2 -based porous glass according to the present invention, it is possible to produce one having fine pores having a pore radius of about 5 to 10Å, and the conventional porous glass production by the sol-gel method. Compared with the method, the glass strength and corrosion resistance can be improved, and the state of glass micropores (particularly the specific surface area) can be easily controlled and has excellent reproducibility, and even without long-term steam treatment. It becomes possible to suppress the blackening of the glass.
前記乾燥ゲルの加熱前に水蒸気中で温度を徐々に上昇さ
せ加熱する水蒸気処理を乾燥ゲルに施すと、ゲル加熱の
所要時間は長くなるが、ガラス黒化を確実に防止し得、
又、微細孔の比表面積を増大させ得るようになるので、
必要に応じて水蒸気処理するようにするとよい。When the dry gel is subjected to a steam treatment in which the temperature is gradually raised and heated in steam before heating the dry gel, the gel heating time becomes longer, but it is possible to reliably prevent glass blackening,
Also, since the specific surface area of the micropores can be increased,
Steam treatment may be performed if necessary.
前記シリコン以外の金属のアルコキシドとしてジルコニ
ウムアルコキシドを使用すると、ZrO2を多量に含有する
SiO2系多孔質ガラスとなり、耐アルカリ性を大幅に向上
し得るようになるのでよい。When zirconium alkoxide is used as the alkoxide of metal other than silicon, it contains a large amount of ZrO 2.
This is preferable because it becomes a SiO 2 -based porous glass and the alkali resistance can be greatly improved.
尚、前記特定有機高分子(ポリエチレングリコール、ポ
リプロピレングリコール、ポリアクリル酸、ポリビニル
ピロリドン、ポリビニルアルコールの1種又は2種以
上)は、前記の如く、長さ:5〜20Å程度の細長状の極小
物質(有機高分子)であり、シリコンアルコキシドを含
有する溶液に均一に混合でき、又、加熱除去され易い性
質を有しており、それらに主に起因して、得られるSiO2
系多孔質ガラスは微細孔が均一分散したものになるので
ある。The specific organic polymer (one or more of polyethylene glycol, polypropylene glycol, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol) is an elongated micro substance having a length of about 5 to 20Å as described above. a (organic polymer), silicon alkoxide can be mixed uniformly in a solution containing also has a property of easily be removed by heating, mainly due to their obtained SiO 2
In the porous glass, fine pores are uniformly dispersed.
前記シリコンアルコキシド含有溶液や他金属アルコキシ
ド含有溶液は、必要に応じて無機塩を含有させ得る。他
金属アルコキシド含有溶液は、他金属が1種類に限定さ
れず、2種類以上を同時に含有させ得る。いづれの溶液
もアルコキシドの加水分解のための溶媒を含有させる
が、該溶媒としてはアルコール及び/又は水を使用でき
る。The silicon alkoxide-containing solution and the other metal alkoxide-containing solution may contain an inorganic salt, if necessary. The other metal alkoxide-containing solution is not limited to one type of other metal, and may contain two or more types at the same time. Both solutions contain a solvent for the hydrolysis of the alkoxide, which alcohol and / or water can be used.
(実施例) 実施例1 シリコンエトキシド(以降SEという):20.8gr,分子量60
0のポリエチレングリコール(以降PEG 600という):14.
6gr(SEに対し70wt%に相当),エタノール:適量(相
分離したSEとPEGとを均一混合するに充分な量)になる
アルコキシド含有溶液(a)、即ち、この配合量で特定
有機高分子の中のポリエチレングリコールの1種である
ところのPEG 600をシリコンアルコキシドの1種である
ところのSEを含有する溶液に分散させた溶液(a)と、
水:1.8gr,エタノール:4.6gr,塩酸:0.37grになる加水分
解用溶媒(b)と、ジルコニウムアルコキシドの1種で
あるところのジルコニウムテトラn−プロポキシド:6.6
grになる溶液(c)と、水:3.6gr,エタノール:4.6gr,塩
酸:0.37grになる加水分解用触媒(d)とを各々調整し
準備した。(Example) Example 1 Silicon ethoxide (hereinafter referred to as SE): 20.8 gr, molecular weight 60
0 polyethylene glycol (hereinafter PEG 600): 14.
6 gr (corresponding to 70 wt% with respect to SE), ethanol: alkoxide-containing solution (a) having an appropriate amount (a sufficient amount for phase-separated SE and PEG to be uniformly mixed), that is, a specific organic polymer at this blending amount Solution (a) in which PEG 600, which is one of the polyethylene glycols in the above, is dispersed in a solution containing SE which is one of the silicon alkoxides,
Water: 1.8 gr, ethanol: 4.6 gr, hydrochloric acid: 0.37 gr, a solvent for hydrolysis (b) and zirconium tetra-n-propoxide, which is one of zirconium alkoxides: 6.6.
A solution (c) that becomes gr and a hydrolysis catalyst (d) that becomes water: 3.6 gr, ethanol: 4.6 gr, and hydrochloric acid: 0.37 gr are prepared and prepared.
次に、上記の溶媒(b)の溶液(a)を撹拌しながらゆ
っくり添加し、室温で1時間撹拌し、次いで溶液(c)
を添加し、室温で1時間撹拌した後、さらに溶媒(d)
を添加し10分間撹拌した。かかる混合体をガラスビーカ
に入れたまま、静置状態で室温で風乾した。Then, the solution (a) of the above solvent (b) is slowly added with stirring, the mixture is stirred at room temperature for 1 hour, and then the solution (c) is added.
Was added and the mixture was stirred at room temperature for 1 hour, and then the solvent (d) was added.
Was added and stirred for 10 minutes. While keeping the mixture in a glass beaker, it was air-dried at room temperature while still standing.
数週間後、上記風乾したもの(ゲル)を600℃で約10時
間加熱してガラス化すると共にPEG600をガラス外へ除去
した。After several weeks, the air-dried product (gel) was heated at 600 ° C. for about 10 hours to vitrify and PEG600 was removed to the outside of the glass.
このようにして得られたZrO2を含有するSiO2系多孔質ガ
ラスについて、BET法により比表面積を測定し、Gransto
n−Inkley法により細孔容積及び細孔径分布を求めたと
ころ、微細孔の比表面積は425m2/gr、微細孔容積は0.16
cm3/gr、平均微細孔半径は約6〜9Åであった。For the SiO 2 -based porous glass containing ZrO 2 thus obtained, the specific surface area was measured by the BET method, and Gransto
When the pore volume and pore size distribution were determined by the n-Inkley method, the specific surface area of the micropores was 425 m 2 / gr, and the micropore volume was 0.16.
cm 3 / gr, average micropore radius was about 6-9Å.
又、ガラス強度及び耐食性は、ゾル・ゲル法による従来
の多孔質ガラス製造法の場合に比し、優れていた。Further, the glass strength and the corrosion resistance were excellent as compared with the conventional porous glass manufacturing method by the sol-gel method.
更に、上記ガラスは黒化を生じておらず、透明で均質な
ものであった。Further, the glass was transparent and homogeneous without blackening.
実施例2 溶液(a)のSEに対するPEG600の量(wt%)を変化させ
た。かかる点を除き実施例1と同様の方法によりZrO2を
含有するSiO2系多孔質ガラスを作り、細孔半径の分布及
び比表面積を求めた。その結果を第1図(a)、(b)
及び(c)、並びに第2図に示す。第1図(a)、
(b)、(c)からPEG600:30,50,70wt%のいづれの場
合も平均細孔半径が10Å以下のシャープな細孔径分布を
示す事が判る。第2図の曲線(a)から、細孔径分布が
殆ど同じであるのに、PE600量の増大に伴って比表面積
が増大することが判る。Example 2 The amount (wt%) of PEG600 relative to SE in solution (a) was varied. Except for this point, a SiO 2 -based porous glass containing ZrO 2 was prepared in the same manner as in Example 1, and the distribution of the pore radius and the specific surface area were determined. The results are shown in Figs. 1 (a) and (b).
And (c) and FIG. FIG. 1 (a),
From (b) and (c), it can be seen that a sharp pore diameter distribution with an average pore radius of 10 Å or less is exhibited in any of PEG 600: 30, 50, 70 wt%. It can be seen from the curve (a) in FIG. 2 that the specific surface area increases as the amount of PE600 increases, although the pore size distributions are almost the same.
尚、第2図の曲線(b)は前記ゲル加熱の前に水蒸気処
理を施した場合の結果を示すものであり、曲線(a)に
比し比表面積が大きく、水蒸気処理により比表面積がさ
らに増大することが判る。The curve (b) in FIG. 2 shows the result when steam treatment is performed before the gel heating, and the specific surface area is larger than that of the curve (a). It turns out to increase.
以上の他、前記PEG600に代えて分子量が種々異なるポリ
エチレングリコールを使用し、実施例2と同様の方法に
よりSiO2系多孔質ガラスを作り、細孔半径の分布及び比
表面積を求めたところ、前記実施例2と略同様の結果が
得られた。In addition to the above, using polyethylene glycols having different molecular weights in place of the PEG600, a SiO 2 -based porous glass was prepared in the same manner as in Example 2, and the distribution of the pore radius and the specific surface area were determined. Results similar to those in Example 2 were obtained.
(発明の効果) 本発明に係るSiO2系多孔質ガラスの製造法によれば、ゾ
ル・ゲル法によりSiO2系多孔質ガラスを製造するに際
し、細孔半径:10Å程度の微細孔を有するものを製造し
得ると共に、ゾル・ゲル法による従来法の場合に比して
ガラス強度及び耐食性を向上し得、又、ガラスの微細孔
の状態(微細孔半径及び比表面積等)を制御し易くその
再現性に優れ、更には長時間の水蒸気処理をせずともガ
ラスの黒化を抑制し得るようになる。According to SiO 2 based porous glass manufacturing method according to the present invention (Effect of the Invention), upon the production of SiO 2 based porous glass by the sol-gel method, the pore radius having a 10Å about micropores In addition to being able to manufacture the sol-gel method, it is possible to improve glass strength and corrosion resistance as compared with the conventional method by the sol-gel method, and it is easy to control the state of glass micropores (micropore radius, specific surface area, etc.). The reproducibility is excellent, and the blackening of the glass can be suppressed without the steam treatment for a long time.
第1図(a)、第1図(b)、第1図(c)は、実施例
2に係るSiO2系多孔質ガラスの細孔半径の分布であっ
て、第1図(a)は該ガラス製造の際のPEG600添加量:3
0wt%の場合の細孔半径分布、第1図(b)はPEG600添
加量:50wt%の場合の細孔半径分布、第1図(c)はPEG
600添加量:70wt%の場合の細孔半径分布を示す図であ
る。第2図は、実施例2に係るPEG600添加量(wt%)と
得られたガラス微細孔の比表面積との関係を示す図であ
る。尚、第2図において、ゲル加熱に際し、曲線(a)
は通常の加熱方式により600℃で加熱し、曲線(b)は
ゲルを水蒸気処理した後、600℃で加熱したものであ
る。1 (a), 1 (b), and 1 (c) are distributions of pore radii of the SiO 2 -based porous glass according to Example 2, and FIG. 1 (a) shows Amount of PEG 600 added during the production of the glass: 3
Pore radius distribution in the case of 0 wt%, Fig. 1 (b) is the pore radius distribution in the case of PEG 600 addition amount: 50 wt%, Fig. 1 (c) is the PEG
FIG. 6 is a diagram showing a pore radius distribution in the case of 600 addition amount: 70 wt%. FIG. 2 is a diagram showing the relationship between the added amount (wt%) of PEG600 and the specific surface area of the obtained glass micropores according to Example 2. In addition, in FIG. 2, the curve (a) is shown when the gel is heated.
Is heated at 600 ° C. by a normal heating method, and the curve (b) is obtained by steaming the gel and then heating it at 600 ° C.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 明子 兵庫県神戸市灘区城内通2丁目4―15― 403号 審査官 服部 智 (56)参考文献 特開 昭61−17443(JP,A) 特開 昭62−123032(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akiko Miyake, 2-4-15-403, Jonai-dori, Nada-ku, Kobe-shi, Hyogo Prefecture Examiner: Satoshi Hattori (56) Reference JP-A-61-17443 (JP, A) JP 62-123032 (JP, A)
Claims (3)
製造するに際し、有機高分子であるポリエチレングリコ
ール、ポリプロピレングリコール、ポリアクリル酸、ポ
リビニルピロリドン、ポリビニルアルコールから選択さ
れる1種又は2種以上の有機高分子をシリコンアルコキ
シドを含有する溶液に分散させた溶液について該シリコ
ンアルコキシドを加水分解してゾル化し、次いで該ゾル
にシリコン以外の金属のアルコキシドを含有する溶液を
添加混合し、該金属アルコキシドを加水分解してゾル化
した後ゲル化させ、これを乾燥して乾燥ゲルと成し、該
乾燥ゲルを500〜800℃の温度で加熱してガラス化すると
共に該乾燥ゲル中の有機高分子を除去することにより、
微細孔を有するSiO2系多孔質ガラスを得ることを特徴と
するSiO2系多孔質ガラスの製造法。1. When producing a SiO 2 porous glass by the sol-gel method, one or two selected from organic polymers such as polyethylene glycol, polypropylene glycol, polyacrylic acid, polyvinylpyrrolidone and polyvinyl alcohol. Regarding the solution obtained by dispersing the above organic polymer in a solution containing silicon alkoxide, the silicon alkoxide is hydrolyzed to form a sol, and then a solution containing an alkoxide of a metal other than silicon is added to and mixed with the sol. The alkoxide is hydrolyzed to form a sol and then gelled, which is dried to form a dry gel, which is heated at a temperature of 500 to 800 ° C. to vitrify and the organic gel in the dry gel is heated. By removing the molecule,
SiO 2 system preparation of porous glass, characterized in that to obtain a SiO 2 based porous glass having fine pores.
徐々に上昇させ加熱する水蒸気処理を乾燥ゲルに施す請
求項1に記載のSiO2系多孔質ガラスの製造法。2. The method for producing a SiO 2 -based porous glass according to claim 1, wherein the dry gel is subjected to steam treatment in which the temperature is gradually raised and heated in steam before the dry gel is heated.
ルコニウムアルコキシドである請求項1に記載のSiO2系
多孔質ガラスの製造法。3. The method for producing a SiO 2 porous glass according to claim 1, wherein the metal alkoxide other than silicon is zirconium alkoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2253972A JPH0794326B2 (en) | 1990-09-20 | 1990-09-20 | Method for producing SiO 2 lower porous glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2253972A JPH0794326B2 (en) | 1990-09-20 | 1990-09-20 | Method for producing SiO 2 lower porous glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04130026A JPH04130026A (en) | 1992-05-01 |
JPH0794326B2 true JPH0794326B2 (en) | 1995-10-11 |
Family
ID=17258492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2253972A Expired - Lifetime JPH0794326B2 (en) | 1990-09-20 | 1990-09-20 | Method for producing SiO 2 lower porous glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0794326B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292261A (en) * | 2001-03-30 | 2002-10-08 | Kyocera Corp | Inorganic porous body for gas separation filter, gas separation filter and method for producing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5399535A (en) * | 1993-08-17 | 1995-03-21 | Rohm And Haas Company | Reticulated ceramic products |
US6448331B1 (en) * | 1997-07-15 | 2002-09-10 | Asahi Kasei Kabushiki Kaisha | Alkoxysilane/organic polymer composition for thin insulating film production and use thereof |
CN1227311C (en) | 2000-04-04 | 2005-11-16 | 旭化成株式会社 | Coating composition for preparing insulating film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117443A (en) * | 1984-07-02 | 1986-01-25 | Agency Of Ind Science & Technol | Porous glass and its production |
JPS62123032A (en) * | 1985-08-26 | 1987-06-04 | Seiko Epson Corp | Method for manufacturing porous glass |
-
1990
- 1990-09-20 JP JP2253972A patent/JPH0794326B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002292261A (en) * | 2001-03-30 | 2002-10-08 | Kyocera Corp | Inorganic porous body for gas separation filter, gas separation filter and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH04130026A (en) | 1992-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6207098B1 (en) | Method for producing porous inorganic materials | |
US5028568A (en) | Niobium-doped titanium membranes | |
CN111074379B (en) | Alumina-zirconia composite short fiber and preparation method thereof | |
US5215943A (en) | Ceramic membranes with enhanced thermal stability | |
JP2971457B2 (en) | Silica glass composition and method for producing silica glass using the same | |
EP0065863A2 (en) | Method of producing ceramic-forming metal hydroxide and oxide powders | |
JPH0324255B2 (en) | ||
JPH0794326B2 (en) | Method for producing SiO 2 lower porous glass | |
KR100322132B1 (en) | Silica glass composition for sol-gel process | |
JPH038729A (en) | Production of porous glass | |
Chen et al. | Preparation of alumina-zirconia materials by the sol-gel method from metal alkoxides | |
JPH0474289B2 (en) | ||
CN111074426B (en) | Alumina-zirconia composite fiber blanket and preparation method thereof | |
JP2022017948A (en) | A metal oxide fiber aggregate, a method for producing the same, and a catalyst composed of the metal oxide fiber aggregate. | |
JP4145210B2 (en) | Method for producing conductive short oxide fiber | |
Chan et al. | The pore morphology of fluoride catalyzed xerogels | |
Kamiya et al. | Preparation of Porous ZrO2-SiO2 Glasses by the Sol-Gel Method Effect of Hydrolysis-Condensation Conditions on Pore Characteristics | |
JPH0222121A (en) | Production of spherical silica porous form | |
JPH03285833A (en) | Manufacture of porous glass | |
JPH0686299B2 (en) | Method for producing silica-based glass | |
JPH0547487B2 (en) | ||
JPH0788239B2 (en) | Method for producing porous glass | |
CN115368113A (en) | Method for recycling waste porcelain | |
CN111876842A (en) | Graphene far infrared fiber and preparation method thereof | |
JPH02199033A (en) | Production of optical glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |