[go: up one dir, main page]

JPH0794200A - Reactive air supply device for fuel cell power generation system - Google Patents

Reactive air supply device for fuel cell power generation system

Info

Publication number
JPH0794200A
JPH0794200A JP5240759A JP24075993A JPH0794200A JP H0794200 A JPH0794200 A JP H0794200A JP 5240759 A JP5240759 A JP 5240759A JP 24075993 A JP24075993 A JP 24075993A JP H0794200 A JPH0794200 A JP H0794200A
Authority
JP
Japan
Prior art keywords
fuel cell
impurity
reaction air
organic solvent
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240759A
Other languages
Japanese (ja)
Inventor
Nobuhiro Iwasa
信弘 岩佐
Masato Hanazawa
真人 花沢
Yasumiki Kubota
康幹 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5240759A priority Critical patent/JPH0794200A/en
Publication of JPH0794200A publication Critical patent/JPH0794200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【目的】反応空気中に含まれる有機溶剤などの微量の不
純物ガス成分を簡便かつ効率よく除去することにより、
セル特性への悪影響を排除する。 【構成】反応空気供給装置10がフィルタ−6,ブロワ
7,および不純物除去手段としての不純物吸着装置11
を含み、塵埃を除去した前処理済空気6A中に含まれる
有機溶剤等の不純物ガス成分を不純物吸着装置中の吸着
剤が吸着して反応空気13Aを浄化し、不純物ガス成分
を含む反応空気が燃料電池スタック1の空気極に供給さ
れることによって生ずる電解質の変質および電極触媒の
酸素吸着能の低下、さらにこれらが原因で発生するセル
特性の低下を防止する。
(57) [Summary] [Purpose] By simply and efficiently removing trace amounts of impurity gas components such as organic solvents contained in reaction air,
Eliminates adverse effects on cell characteristics. [Structure] A reaction air supply device (10) is a filter (6), a blower (7), and an impurity adsorption device (11) as an impurity removing means.
And the adsorbent in the impurity adsorbing device adsorbs the impurity gas component such as the organic solvent contained in the pretreated air 6A from which the dust is removed to purify the reaction air 13A. The deterioration of the electrolyte and the decrease of the oxygen adsorption capacity of the electrode catalyst caused by the supply to the air electrode of the fuel cell stack 1 and the deterioration of the cell characteristics caused by these are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水素リッチな燃料ガ
スと、酸化剤としての反応空気との電気化学反応によっ
て発電を行う燃料電池発電システムにおいて、燃料電池
の酸化剤極に清浄な反応空気を供給する反応空気供給装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system for generating electric power by an electrochemical reaction between hydrogen-rich fuel gas and reaction air as an oxidant, and a clean reaction air at the oxidizer electrode of the fuel cell. The present invention relates to a reaction air supply device for supplying air.

【0002】[0002]

【従来の技術】図4は燃料電池発電システムの要部を示
すシステム構成図であり、単位セルの積層体からなる燃
料電池スタック1を含む燃料電池発電システムは、化石
燃料,炭化水素系燃料を水素リッチな燃料ガスに改質し
て燃料電池1の燃料極に供給する燃料処理装置2と、酸
化剤としての反応空気を燃料電池1の酸化剤極(空気
極)に供給する空気供給装置3と、燃料電池1の出力直
流電力を交流電力に変換して外部負荷に供給する電力変
換装置4と、これら各部を制御する制御装置5などで構
成される。
2. Description of the Related Art FIG. 4 is a system configuration diagram showing a main part of a fuel cell power generation system. A fuel cell power generation system including a fuel cell stack 1 composed of a stack of unit cells uses fossil fuel and hydrocarbon fuel. A fuel processing device 2 that reforms to hydrogen-rich fuel gas and supplies it to the fuel electrode of the fuel cell 1, and an air supply device 3 that supplies reaction air as an oxidant to the oxidant electrode (air electrode) of the fuel cell 1. And a power converter 4 that converts the output DC power of the fuel cell 1 into AC power and supplies the AC power to an external load, and a controller 5 that controls these units.

【0003】このように構成された燃料電池発電システ
ムの運転中における外部負荷への供給電力の上昇,降下
は、制御装置5が負荷変化指令9Sを受けて燃料処理装
置2および空気供給装置3に向けて発する制御信号2
S,3S,電力変換装置4に向けて発する制御信号4
S,および燃料電池スタック1に向けて発する制御信号
1S等によって制御され、燃料ガスおよび反応空気の供
給量および外部負荷への供給電力,燃料電池スタックに
おける水素,酸素の利用率などが、負荷変化指令9Sに
対応するそれぞれの目標値に一致するよう制御され、定
電圧に保持された交流電力が外部負荷に供給される。
When the fuel cell power generation system configured as described above is operated, the control device 5 receives the load change command 9S to increase or decrease the power supplied to the external load. Control signal 2 directed toward
S, 3S, control signal 4 issued to the power converter 4
S, and the control signal 1S emitted to the fuel cell stack 1, etc., and the load changes such as the supply amount of fuel gas and reaction air, the power supplied to an external load, the utilization rate of hydrogen and oxygen in the fuel cell stack, and the like. The AC power that is controlled to match the respective target values corresponding to the command 9S and that is maintained at a constant voltage is supplied to the external load.

【0004】図5は従来の反応空気供給装置を最も簡単
な構成を例に示すブロック図であり、反応空気供給装置
3はフィルタ−6およびブロワ7で構成され、フィルタ
−6で塵埃を除去した前処理済空気を反応空気3Aとし
て燃料電池スタック1の酸化剤極(空気極)に供給す
る。なお、燃料電池が加圧形である場合には、ブロワの
代わりにタ−ボコンプレッサが用いられ、また、予熱器
を設けて反応空気温度を燃料電池の運転温度近くに昇温
した状態で燃料電池に供給するよう構成したものも知ら
れている。
FIG. 5 is a block diagram showing an example of the simplest structure of a conventional reaction air supply apparatus. The reaction air supply apparatus 3 is composed of a filter 6 and a blower 7, and dust is removed by the filter-6. The pretreated air is supplied to the oxidizer electrode (air electrode) of the fuel cell stack 1 as reaction air 3A. When the fuel cell is of the pressurized type, a turbo compressor is used instead of the blower, and a preheater is provided and the reaction air temperature is raised to near the operating temperature of the fuel cell. It is also known to be configured to supply a battery.

【0005】[0005]

【発明が解決しようとする課題】従来の反応空気供給装
置では、燃料電池発電システム周辺の空気(外気)中に
含まれる塵埃を除去するだけの簡単な前処理によって反
応空気3Aを生成しているため、外気中に有機溶剤蒸気
などの不純物ガス成分が含まれている場合には、不純物
ガス成分を含む反応空気3Aが燃料電池スタック1の空
気極にそのまま供給される。ところで、例えばりん酸型
燃料電池の場合、単位セルは多孔質電極基材の一方の面
に電極触媒層を支持した燃料極および空気極と、両者の
間に挟持されて電解質としての例えばりん酸を保持する
マトリックスとで構成され、反応空気中の酸素が電極基
材を透過してりん酸で濡れた電極触媒の界面に到達して
電気化学反応に基づく起電反応が行われる。したがっ
て、反応空気中に含まれる不純物ガスは酸素とともに電
極基材を透過して電極触媒層に到達し、電解質と接触し
て化学反応を起こし、この化学反応によって電解質が変
質して電解質としての機能が低下するとともに、電極触
媒の酸素吸着機能が阻害されるため、これらが原因で燃
料電池のセル特性や寿命特性の低下を招くという問題が
発生する。
In the conventional reaction air supply apparatus, the reaction air 3A is generated by a simple pretreatment for removing dust contained in the air (outside air) around the fuel cell power generation system. Therefore, when the outside air contains an impurity gas component such as an organic solvent vapor, the reaction air 3A containing the impurity gas component is directly supplied to the air electrode of the fuel cell stack 1. By the way, in the case of a phosphoric acid fuel cell, for example, the unit cell is a fuel electrode and an air electrode supporting an electrode catalyst layer on one surface of a porous electrode base material, and phosphoric acid as an electrolyte sandwiched between them. The oxygen in the reaction air permeates the electrode substrate and reaches the interface of the electrocatalyst that is wet with phosphoric acid to cause an electromotive reaction based on an electrochemical reaction. Therefore, the impurity gas contained in the reaction air permeates the electrode base material together with oxygen to reach the electrode catalyst layer, contacts the electrolyte to cause a chemical reaction, and the chemical reaction changes the electrolyte to function as an electrolyte. And the oxygen adsorbing function of the electrode catalyst is hindered, which causes a problem that the cell characteristics and life characteristics of the fuel cell are deteriorated.

【0006】この発明の目的は、反応空気中に含まれる
有機溶剤などの微量の不純物ガス成分を簡便かつ効率よ
く除去することにより、セル特性への悪影響を排除する
ことにある。
An object of the present invention is to eliminate adverse effects on cell characteristics by simply and efficiently removing a trace amount of impurity gas components such as an organic solvent contained in reaction air.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、塵埃を除去した前処理済空気を
反応空気として燃料電池の酸化剤極に供給するものにお
いて、反応空気中に含まれる有機溶剤等の不純物ガス成
分を除去する不純物除去手段を設けてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, pre-treated air from which dust has been removed is supplied as reaction air to an oxidizer electrode of a fuel cell. An impurity removing means for removing an impurity gas component such as an organic solvent contained in the above is provided.

【0008】不純物除去手段が有機溶剤の吸着剤層を含
むものとする。不純物除去手段が有機溶剤の燃焼触媒層
を含むものとする。不純物除去手段が有機溶剤の燃焼触
媒層と、有機溶剤の吸着剤層とを含むものとする。
The impurity removing means includes an adsorbent layer of an organic solvent. The impurity removing means includes an organic solvent combustion catalyst layer. The impurity removing unit includes an organic solvent combustion catalyst layer and an organic solvent adsorbent layer.

【0009】[0009]

【作用】この発明において、反応空気供給装置が反応空
気中に含まれる有機溶剤等の不純物ガスを除去する不純
物除去手段を備えるよう構成したことにより、不純物ガ
スを含まない清浄な反応空気を燃料極に供給し、不純物
ガスと電解質との化学反応に基づく電解質の変質、およ
び電極触媒の酸素吸着能の低下を防ぎ、これらが原因で
発生するセル特性の低下を回避する機能が得られる。
In the present invention, the reaction air supply device is provided with the impurity removing means for removing the impurity gas such as the organic solvent contained in the reaction air, so that the clean reaction air containing no impurity gas can be supplied to the fuel electrode. To prevent deterioration of the electrolyte due to the chemical reaction between the impurity gas and the electrolyte and deterioration of the oxygen adsorption capacity of the electrode catalyst, and to avoid the deterioration of cell characteristics caused by these.

【0010】不純物除去手段として有機溶剤の吸着剤,
例えば活性炭層を用いれば、不純物ガスを吸着して反応
空気を浄化する作用が得られる。また、不純物除去手段
として有機溶剤の燃焼触媒,例えば白金系合金触媒層を
用いれば、反応空気中の不純物ガスを触媒に接触させて
燃焼分解し、無害化する機能が得られる。
As an impurity removing means, an organic solvent adsorbent,
For example, if an activated carbon layer is used, the action of adsorbing the impurity gas and purifying the reaction air can be obtained. Further, if a combustion catalyst of an organic solvent, for example, a platinum alloy catalyst layer is used as the impurity removing means, a function of bringing the impurity gas in the reaction air into contact with the catalyst for combustion decomposition and detoxification is obtained.

【0011】さらに、不純物除去手段として有機溶剤の
燃焼触媒層と、有機溶剤の吸着剤層との直列接続体を用
いれば、不純物ガスを燃焼触媒層で燃焼分解した後、さ
らに残存不純物ガスを吸着剤層に吸着除去することが可
能となり、不純物ガス濃度の高い反応空気に対しても安
定した浄化作用が得られる。
Furthermore, if a series connection body of an organic solvent combustion catalyst layer and an organic solvent adsorbent layer is used as the impurity removing means, after the impurity gas is combusted and decomposed in the combustion catalyst layer, the residual impurity gas is further adsorbed. It becomes possible to adsorb and remove the agent layer, and a stable purifying action can be obtained even for reaction air having a high impurity gas concentration.

【0012】[0012]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電システ
ムの反応空気供給装置を示す構成図であり、従来技術と
同じ構成部分には同一参照符号を付すことにより、重複
した説明を省略する。図において、反応空気供給装置1
0は不純物除去手段として活性炭などの吸着剤を容器に
充填した不純物吸着装置11を備え、フィルタ−6およ
びブロワ7を介して不純物吸着装置に送られる塵埃を除
去した前処理済空気6Aが、不純物吸着装置11中の吸
着剤と接触し、前処理済空気6A中に含まれる微量の有
機溶剤などの不純物ガス成分を吸着剤が吸着するので、
フィルタ−6によって塵埃が,不純物吸着装置11によ
って有機溶剤等の不純物ガスが吸着除去された清浄な状
態の反応空気13Aを燃料電池スタック1の酸化剤極に
供給することが可能となる。したがって、不純物ガス成
分と電解質との化学反応に基づく電解質の変質、および
電極触媒の酸素吸着能の低下を防ぐことが可能となり、
従来これが原因で発生したセル特性の低下を回避でき、
燃料電池を長寿命化できる利点が得られる。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a configuration diagram showing a reaction air supply device of a fuel cell power generation system according to an embodiment of the present invention, and the same components as those in the prior art are designated by the same reference numerals, and a duplicate description will be omitted. In the figure, a reaction air supply device 1
0 is provided with an impurity adsorbing device 11 in which a container is filled with an adsorbent such as activated carbon as an impurity removing means, and the pretreated air 6A from which dust sent to the impurity adsorbing device via the filter 6 and the blower 7 is removed is the impurity. Since the adsorbent adsorbs impurity gas components such as a trace amount of organic solvent contained in the pretreated air 6A by coming into contact with the adsorbent in the adsorption device 11,
It becomes possible to supply the reaction air 13A in a clean state in which dust is adsorbed and removed by the impurity adsorbing device 11 by the filter 6 to the oxidant electrode of the fuel cell stack 1 by the filter 6. Therefore, it becomes possible to prevent alteration of the electrolyte based on the chemical reaction between the impurity gas component and the electrolyte, and to prevent the oxygen adsorption capacity of the electrode catalyst from decreasing.
It is possible to avoid the deterioration of cell characteristics caused by this in the past,
The advantage of extending the life of the fuel cell is obtained.

【0013】図2はこの発明の異なる実施例になる反応
空気供給装置を示す構成図であり、反応空気供給装置2
0が不純物除去手段として有機溶剤など可燃性ガスの接
触燃焼触媒装置21を備えた点が前述の実施例と異なっ
ており、接触燃焼触媒として、例えば白金系合金触媒を
用いることにより、前処理済反応空気6A中に含まれる
可燃性の不純物ガス成分が白金系合金触媒と接触して燃
焼分解するので、有機溶剤などの不純物ガス成分が排除
された反応空気23Aを燃料電池スタック1の空気極に
供給できる利点が得られる。
FIG. 2 is a block diagram showing a reaction air supply apparatus according to another embodiment of the present invention.
0 is equipped with a catalytic combustion catalyst device 21 for combustible gas such as an organic solvent as an impurity removing means, which is different from the above-mentioned embodiment, and is pretreated by using, for example, a platinum alloy catalyst as the catalytic combustion catalyst. Since the combustible impurity gas component contained in the reaction air 6A comes into contact with the platinum alloy catalyst and is decomposed by combustion, the reaction air 23A from which the impurity gas component such as the organic solvent is removed is supplied to the air electrode of the fuel cell stack 1. The advantage that can be supplied is obtained.

【0014】図3はこの発明のさらに異なる実施例にな
る反応空気供給装置を示す構成図であり、反応空気供給
装置30が不純物除去手段31として有機溶剤など可燃
性ガスの接触燃焼触媒装置21と、活性炭などの吸着剤
を容器に充填した不純物吸着装置11との直列体として
構成された点が前述の各実施例と異なっており、接触燃
焼触媒として、例えば白金系合金触媒を用いることによ
り、前処理済反応空気6A中に含まれる可燃性の不純物
ガス成分が白金系合金触媒と接触して燃焼分解し、さら
に残存した微量の有機溶剤などの不純物ガス成分を吸着
剤が吸着除去するので、例えば高濃度の有機溶剤蒸気な
どを過渡的に含む前処理済空気6Aが不純物除去手段3
0に流入した場合にも、これらを燃焼分解,さらには吸
着除去して清浄な雰囲気の反応空気33Aを燃料電池に
供給できる不純物ガスの除去性能の高い不純物除去手段
を備えた反応空気供給装置30が得られる。
FIG. 3 is a block diagram showing a reaction air supply device according to a further different embodiment of the present invention. The reaction air supply device 30 serves as an impurity removing means 31 and a catalytic combustion catalyst device 21 for a combustible gas such as an organic solvent. , Is different from each of the above-described embodiments in that it is configured as a series body with the impurity adsorbing device 11 in which a container is filled with an adsorbent such as activated carbon. By using, for example, a platinum alloy catalyst as the catalytic combustion catalyst, Since the flammable impurity gas component contained in the pretreated reaction air 6A comes into contact with the platinum-based alloy catalyst for combustion decomposition, and the adsorbent adsorbs and removes the remaining trace amount of the impurity gas component such as the organic solvent, For example, the pretreated air 6A transiently containing high-concentration organic solvent vapor is the impurity removing means 3
Even if the reaction gas flows into 0, the reaction air supply device 30 is provided with an impurity removal means having a high impurity gas removal performance capable of combustion-decomposing and further adsorbing and removing these to supply reaction air 33A in a clean atmosphere to the fuel cell. Is obtained.

【0015】以上、図1,図2,および図3に示す不純
物除去手段11,21,および31の不純物ガス除去性
能を検証するために、有機溶剤ガス成分としてトルエ
ン,アセトン,およびキシレンをそれぞれ100ppm 含
む模擬反応空気を反応空気供給装置10,20,および
30に流し、得られた反応空気13A,23A,および
33A中の有機溶剤ガス濃度をガス濃度測定装置を用い
て測定した。その結果、いずれの反応空気供給装置にお
いても有機溶剤ガス濃度はガス濃度測定装置の検出限界
以下に低下し、有機溶剤など可燃性ガスの接触燃焼触媒
装置21,活性炭などの吸着剤を充填した不純物吸着装
置11,および両者の直列体のいずれもが高い有機溶剤
ガス成分の除去性能を有することが実証された。
As described above, in order to verify the impurity gas removing performance of the impurity removing means 11, 21, and 31 shown in FIGS. 1, 2 and 3, toluene, acetone and xylene are each 100 ppm as the organic solvent gas component. The simulated reaction air containing the same was passed through the reaction air supply devices 10, 20, and 30, and the organic solvent gas concentrations in the obtained reaction air 13A, 23A, and 33A were measured using a gas concentration measuring device. As a result, in any reaction air supply device, the organic solvent gas concentration falls below the detection limit of the gas concentration measuring device, and the catalytic combustion catalyst device 21 for combustible gas such as an organic solvent, the impurities filled with the adsorbent such as activated carbon, etc. It was demonstrated that both the adsorption device 11 and the in-line body of both have high organic solvent gas component removal performance.

【0016】[0016]

【発明の効果】この発明は前述のように、燃料電池の反
応空気供給装置が反応空気中に含まれる有機溶剤等の不
純物ガスを除去する不純物除去手段として、接触燃焼触
媒装置,不純物吸着装置,あるいは両者の直列体のいず
れかを備えるよう構成した。その結果、塵埃を除去した
前処理済反応空気中に含まれる微量の有機溶剤などの不
純物ガス成分を燃焼分解,あるいは吸着除去して清浄な
反応空気を燃料電池スタックの空気極に供給することが
可能となり、不純物ガス成分を含む反応空気が燃料電池
スタックの空気極にそのまま供給されることによって従
来燃料電池に生じた電解質の変質,およびこれに起因す
る電解質の機能低下、あるいは電極触媒の酸素吸着能の
低下などを阻止し、これらが原因で燃料電池のセル特性
が低下するという問題を排除し、燃料電池を長寿命化で
きる反応空気供給装置を備えた燃料電池発電システムを
提供することができる。
As described above, the present invention provides a catalytic combustion catalyst device, an impurity adsorbing device, as an impurity removing means for removing an impurity gas such as an organic solvent contained in the reaction air by the reaction air supply device of the fuel cell. Alternatively, it is configured so as to have either of the two series bodies. As a result, a minute amount of impurity gas components such as organic solvent contained in the pretreated reaction air from which dust has been removed can be decomposed by combustion or adsorbed and removed to supply clean reaction air to the air electrode of the fuel cell stack. When the reaction air containing the impurity gas component is supplied to the air electrode of the fuel cell stack as it is, the deterioration of the electrolyte that has occurred in the conventional fuel cell and the resulting deterioration of the electrolyte function, or the oxygen adsorption of the electrode catalyst It is possible to provide a fuel cell power generation system equipped with a reaction air supply device that can prevent the deterioration of the performance of the fuel cell, eliminate the problem that the cell characteristics of the fuel cell deteriorate due to these, and prolong the life of the fuel cell. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる燃料電池発電システム
の反応空気供給装置を示す構成図
FIG. 1 is a configuration diagram showing a reaction air supply device of a fuel cell power generation system according to an embodiment of the present invention.

【図2】この発明の異なる実施例になる反応空気供給装
置を示す構成図
FIG. 2 is a configuration diagram showing a reaction air supply device according to another embodiment of the present invention.

【図3】この発明のさらに異なる実施例になる反応空気
供給装置を示す構成図
FIG. 3 is a configuration diagram showing a reaction air supply device according to a further different embodiment of the present invention.

【図4】燃料電池発電システムの要部を示すシステム構
成図
FIG. 4 is a system configuration diagram showing a main part of a fuel cell power generation system.

【図5】従来の反応空気供給装置を最も簡単な構成を例
に示すブロック図
FIG. 5 is a block diagram showing an example of the simplest configuration of a conventional reaction air supply device.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 2 燃料改質装置 3 反応空気供給装置 4 電力変換装置 5 制御装置 6 フィルタ− 7 ブロワ 10 反応空気供給装置 11 不純物除去手段(不純物吸着装置) 20 反応空気供給装置 21 不純物除去手段(接触燃焼触媒装置) 31 不純物除去手段(燃焼触媒装置と不純物吸着装
置の直列体)
1 Fuel Cell Stack 2 Fuel Reforming Device 3 Reactive Air Supply Device 4 Power Converter 5 Control Device 6 Filter-7 Blower 10 Reactive Air Supply Device 11 Impurity Removal Means (Impurity Adsorption Device) 20 Reactive Air Supply Device 21 Impurity Removal Means ( Catalytic combustion catalyst device) 31 Impurity removing means (serial body of combustion catalyst device and impurity adsorption device)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 康幹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasumiki Kubota 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】塵埃を除去した前処理済空気を反応空気と
して燃料電池の酸化剤極に供給するものにおいて、反応
空気中に含まれる有機溶剤等の不純物ガス成分を除去す
る不純物除去手段を設けてなることを特徴とする燃料電
池発電システムの反応空気供給装置。
1. In a device for supplying pretreated air from which dust has been removed to an oxidizer electrode of a fuel cell as reaction air, an impurity removing means for removing an impurity gas component such as an organic solvent contained in the reaction air is provided. A reaction air supply device for a fuel cell power generation system characterized by the following.
【請求項2】不純物除去手段が有機溶剤の吸着剤層を含
むことを特徴とする請求項1記載の燃料電池発電システ
ムの反応空気供給装置。
2. The reactive air supply device for a fuel cell power generation system according to claim 1, wherein the impurity removing means includes an adsorbent layer of an organic solvent.
【請求項3】不純物除去手段が有機溶剤の燃焼触媒層を
含むことを特徴とする請求項1記載の燃料電池発電シス
テムの反応空気供給装置。
3. The reaction air supply apparatus for a fuel cell power generation system according to claim 1, wherein the impurity removing means includes a combustion catalyst layer of an organic solvent.
【請求項4】不純物除去手段が有機溶剤の燃焼触媒層
と、有機溶剤の吸着剤層とを含むことを特徴とする請求
項1記載の燃料電池発電システムの反応空気供給装置。
4. The reactive air supply apparatus for a fuel cell power generation system according to claim 1, wherein the impurity removing means includes an organic solvent combustion catalyst layer and an organic solvent adsorbent layer.
JP5240759A 1993-09-28 1993-09-28 Reactive air supply device for fuel cell power generation system Pending JPH0794200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240759A JPH0794200A (en) 1993-09-28 1993-09-28 Reactive air supply device for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240759A JPH0794200A (en) 1993-09-28 1993-09-28 Reactive air supply device for fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPH0794200A true JPH0794200A (en) 1995-04-07

Family

ID=17064298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240759A Pending JPH0794200A (en) 1993-09-28 1993-09-28 Reactive air supply device for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0794200A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383676B1 (en) 1999-03-01 2002-05-07 Sanyo Electric Co., Ltd. Polymer electrolyte fuel cell device
WO2003085768A1 (en) * 2002-04-05 2003-10-16 Bridgestone Corporation Fluid cleaner and fuel cell power generator facility
JP2004327429A (en) * 2003-04-11 2004-11-18 Matsushita Electric Ind Co Ltd Fuel cell and air purifier for fuel cell
US6866950B2 (en) 2000-12-08 2005-03-15 Questair Technologies Inc. Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
WO2005055356A1 (en) * 2003-12-03 2005-06-16 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2006032078A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Fuel cell generator
JP2006032159A (en) * 2004-07-16 2006-02-02 Honda Motor Co Ltd Gas purification unit for fuel cell
JP2006059673A (en) * 2004-08-20 2006-03-02 Victor Co Of Japan Ltd Fuel cell drive device
US7101419B2 (en) * 2000-09-12 2006-09-05 Donaldson Company, Inc. Air filter assembly for low temperature catalytic processes
KR100652611B1 (en) * 2000-12-29 2006-12-01 주식회사 엘지이아이 Air supply unit of fuel cell
WO2007049691A1 (en) * 2005-10-27 2007-05-03 Toyota Jidosha Kabushki Kaisha Fuel cell system
JP2008547187A (en) * 2005-07-01 2008-12-25 カール・フロイデンベルク・カーゲー Filter unit for fuel cell
US7871730B2 (en) 2005-06-24 2011-01-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack having a filter mechanism
US8015808B2 (en) 2001-01-09 2011-09-13 G4 Insights Inc. Power plant with energy recovery from fuel storage
US8541637B2 (en) 2009-03-05 2013-09-24 G4 Insights Inc. Process and system for thermochemical conversion of biomass
US9394171B2 (en) 2009-11-18 2016-07-19 G4 Insights Inc. Method and system for biomass hydrogasification
US10653995B2 (en) 2009-11-18 2020-05-19 G4 Insights Inc. Sorption enhanced methanation of biomass

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383676B1 (en) 1999-03-01 2002-05-07 Sanyo Electric Co., Ltd. Polymer electrolyte fuel cell device
US7101419B2 (en) * 2000-09-12 2006-09-05 Donaldson Company, Inc. Air filter assembly for low temperature catalytic processes
US7758674B2 (en) 2000-09-12 2010-07-20 Donaldson Company, Inc. Air filter assembly for low temperature catalytic processes
JP2007317667A (en) * 2000-09-12 2007-12-06 Donaldson Co Inc Air filter assembly for low temperature catalyst process
US6866950B2 (en) 2000-12-08 2005-03-15 Questair Technologies Inc. Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
KR100652611B1 (en) * 2000-12-29 2006-12-01 주식회사 엘지이아이 Air supply unit of fuel cell
US8015808B2 (en) 2001-01-09 2011-09-13 G4 Insights Inc. Power plant with energy recovery from fuel storage
WO2003085768A1 (en) * 2002-04-05 2003-10-16 Bridgestone Corporation Fluid cleaner and fuel cell power generator facility
JP2004327429A (en) * 2003-04-11 2004-11-18 Matsushita Electric Ind Co Ltd Fuel cell and air purifier for fuel cell
WO2005055356A1 (en) * 2003-12-03 2005-06-16 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2006032078A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Fuel cell generator
JP2006032159A (en) * 2004-07-16 2006-02-02 Honda Motor Co Ltd Gas purification unit for fuel cell
JP4624021B2 (en) * 2004-07-16 2011-02-02 本田技研工業株式会社 Gas purification unit for fuel cells
JP2006059673A (en) * 2004-08-20 2006-03-02 Victor Co Of Japan Ltd Fuel cell drive device
JP4534661B2 (en) * 2004-08-20 2010-09-01 日本ビクター株式会社 Fuel cell drive device
US7871730B2 (en) 2005-06-24 2011-01-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack having a filter mechanism
JP2008547187A (en) * 2005-07-01 2008-12-25 カール・フロイデンベルク・カーゲー Filter unit for fuel cell
US7939208B2 (en) 2005-10-27 2011-05-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2007049691A1 (en) * 2005-10-27 2007-05-03 Toyota Jidosha Kabushki Kaisha Fuel cell system
US8541637B2 (en) 2009-03-05 2013-09-24 G4 Insights Inc. Process and system for thermochemical conversion of biomass
US9394171B2 (en) 2009-11-18 2016-07-19 G4 Insights Inc. Method and system for biomass hydrogasification
US10190066B2 (en) 2009-11-18 2019-01-29 G4 Insights Inc. Method and system for biomass hydrogasification
US10653995B2 (en) 2009-11-18 2020-05-19 G4 Insights Inc. Sorption enhanced methanation of biomass

Similar Documents

Publication Publication Date Title
JPH0794200A (en) Reactive air supply device for fuel cell power generation system
JP3878549B2 (en) Fuel cell and fuel cell system containing non-aqueous electrolyte
EP1469544A1 (en) Method of operating a fuel cell, air purifying apparatus and fuel cell
CA2763526C (en) Methods of operating fuel cell stacks and systems
JP3850721B2 (en) Control method of polymer electrolyte fuel cell
JPH11345624A (en) Method for operating fuel cell
JP2005093115A (en) Fuel cell power generating device and its operating method
JP3644667B2 (en) Fuel cell power generator
JPH08138703A (en) Fuel cell generator
CN100376054C (en) Method of operating fuel cell and power supply system
CN101752577B (en) Method for purifying cathode reaction gas in inner part of proton exchange membrane fuel cell
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
JP2008257891A (en) Fuel cell system
JP2005044621A (en) Fuel cell power generation device and its operation method
US3337369A (en) Non-porous diffusion membrane fuel cell
JP2001146407A (en) Apparatus for purifying carbon monoxide, method for operating the same and method for stopping the same
JPH05114414A (en) Fuel cell power generation system
CN216698450U (en) Impurity purification device of hydrogen for fuel cell
US20020134663A1 (en) Method and device for removing carbon monoxide from a gas stream
CN101212055A (en) Method for eliminating adverse effect of impurities in environmental air to PEMFC performance
US20120251907A1 (en) Method for managing a fuel cell during sulfur compound pollution, and power supply device
CN100433437C (en) Method for recovering performance of poisoned proton exchange membrane fuel cell
JP2000021431A (en) How to shut down fuel cell reforming equipment
JP2001216990A (en) Method of operating polymer electrolyte fuel cell power generator and apparatus thereof
JP2007193952A (en) Fuel cell