JPH0792568B2 - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPH0792568B2 JPH0792568B2 JP63136408A JP13640888A JPH0792568B2 JP H0792568 B2 JPH0792568 B2 JP H0792568B2 JP 63136408 A JP63136408 A JP 63136408A JP 13640888 A JP13640888 A JP 13640888A JP H0792568 B2 JPH0792568 B2 JP H0792568B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polymer
- alignment
- crystal display
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、液晶表示素子に関するものである。TECHNICAL FIELD The present invention relates to a liquid crystal display device.
特に、液晶を配向制御する配向膜の改良に関する。In particular, it relates to improvement of an alignment film that controls the alignment of liquid crystals.
従来の技術 液晶を用いた表示素子は、 1)消費電力が少ないこと 2)駆動電圧が小さいこと 3)小型・軽量化ができること などの利点を持ち、電卓、時計を始め様々な用途に用い
られている。しかし、ネマチック液晶を用いた表示素子
の場合、電気光学的応答は遅く、高速応答を必要とする
分野、例えばテレビ表示装置、光シャッター装置などへ
の応用は制限されてきた。2. Description of the Related Art Display devices using liquid crystals have the advantages of 1) low power consumption, 2) low driving voltage, and 3) miniaturization and weight reduction, and are used in various applications such as calculators and watches. ing. However, in the case of a display device using a nematic liquid crystal, the electro-optical response is slow, and its application to fields requiring high-speed response, such as a television display device and an optical shutter device, has been limited.
最近、強誘電性液晶を電気光学装置として応用しようと
研究が活発に行われているが、この強誘電性液晶を従来
から液晶表示素子に用いられているネマチック液晶と比
較すると、 1)高速電界応答性を有している 2)電界が印加されていない状態でも表示状態を保持す
るメモリ効果を示す可能性がある などの、優れた特性を有している。この強誘電性液晶を
用いて表示素子を作成すれば、TFT不要の単純マトリク
ス駆動方式が行なえ、かつ大型画面、高精細表示が実現
可能である。そして、その実現に向けて強誘電性液晶材
料の開発や駆動方法の開発が、さかんに行われている。Recently, researches have been actively conducted to apply the ferroelectric liquid crystal as an electro-optical device. Compared with the nematic liquid crystal which has been conventionally used for a liquid crystal display element, the ferroelectric liquid crystal has: 1) a high-speed electric field It has excellent responsiveness. 2) It has excellent characteristics such as the possibility of showing the memory effect of maintaining the display state even when no electric field is applied. If a display element is created using this ferroelectric liquid crystal, a simple matrix drive method that does not require TFT can be performed, and a large screen and high definition display can be realized. In order to realize this, development of ferroelectric liquid crystal materials and development of driving methods have been vigorously carried out.
この強誘電性液晶の応用にあたり、解決すべき課題とし
て、新しい液晶材料や駆動方法の開発も挙げられるが、
表示素子を作成する上で最も重要な技術の一つに液晶の
均一配向技術が挙げられる。Development of new liquid crystal materials and driving methods can be cited as problems to be solved in applying this ferroelectric liquid crystal.
One of the most important techniques for producing a display element is a technique for uniformly aligning liquid crystals.
強誘電性液晶はネマチック液晶と異なり層構造をもって
いるため、ネマチック液晶に比べて均一配向を得ること
が困難である。そのため、種々の配向方法が提案されて
いる。特に、現在実用化が活発に検討されている強誘電
性カイラルスメクチックC(以下、SmC*と略記する)
液晶表示素子についてそのセル厚が数μm以下の場合に
ついて提案されている配向方法の例として、シェアリン
グ法、温度勾配法、SiO等の斜方蒸着法、ラビング法等
が挙げられる。Since the ferroelectric liquid crystal has a layer structure unlike the nematic liquid crystal, it is difficult to obtain uniform alignment as compared with the nematic liquid crystal. Therefore, various alignment methods have been proposed. In particular, the ferroelectric chiral smectic C (hereinafter, abbreviated as SmC * ), which is currently being actively investigated for practical use.
Examples of the alignment method proposed for a liquid crystal display device having a cell thickness of several μm or less include a sharing method, a temperature gradient method, an oblique vapor deposition method of SiO or the like, and a rubbing method.
強誘電性液晶には、温度を下げると等方性液体相(I
相)から直接SmC*相に相転移するものもあるが、この
ようなものは一般に均一配向が非常に困難である。そし
て、ほとんどのものは高温側でコレステリック相(Ch
相)またはスメクチックA相(SmA相)を経由してSmC*
相に転移する。特にCh相を経由するもののうち、Ch相の
らせんピッチがパネルのセル厚に比べて充分長い場合に
配向性が良いといわれている。Ferroelectric liquid crystal has an isotropic liquid phase (I
There is also a phase transition directly from the (phase) to the SmC * phase, but such a material is generally very difficult to be uniformly aligned. And most of them are cholesteric phase (Ch
Phase) or via smectic A phase (SmA phase) SmC *
Transition to phase. Among those passing through the Ch phase, it is said that the orientation is good especially when the helical pitch of the Ch phase is sufficiently longer than the cell thickness of the panel.
上記の配向方法のうち、シェアリング法と温度勾配法に
ついては、実験室レベルで数mm角程度以下の面積の均一
配向を得るためには有効であるが、これらの方法では一
般に表示素子に必要な、より大面積の均一配向を得るこ
とは非常に難しいと考えられている。Among the above-mentioned orientation methods, the sharing method and the temperature gradient method are effective for obtaining uniform orientation in an area of several mm square or less at a laboratory level, but these methods are generally required for display elements. However, it is considered very difficult to obtain a uniform orientation in a larger area.
斜方蒸着法は、蒸着角を80゜以上に大きくすることで均
一配向が得られることが報告されているが、大きなプレ
チルト角を有するため、電界と自発分極の方向のずれが
大きく、電界応答速度が遅くなる問題点を持っている。
また、蒸着装置を必要とするため製造コストも高くな
る。It has been reported that the orthorhombic vapor deposition method can obtain uniform alignment by increasing the vapor deposition angle to 80 ° or more, but since it has a large pretilt angle, the deviation between the direction of the electric field and the spontaneous polarization is large, and the electric field response is large. It has the problem of slowing down.
Further, since a vapor deposition device is required, the manufacturing cost will be high.
これらの配向処理方法に対して、ラビング法は基板表面
に形成した有機高分子の配向膜を布などで一定方向にこ
することによって配向処理を行うことができ、斜方蒸着
法のような高価な蒸着装置を必要とせず、また、大面積
の配向処理も容易である。ラビングによる液晶配向のメ
カニズムは完全に解明されてはいないが、配向膜表面に
ラビングによってせん断応力を加えることによって、表
面付近のポリマー鎖の配向が起こり、液晶分子がポリマ
ー鎖の配向に従って、配向すると考えられている。この
ときのプレチルト角は、0゜〜数゜であり自発分極は電
界とほぼ平行方向に向き、速い電界応答性が期待され
る。従って、ラビング法によって配向処理を行えば、最
も容易に、しかも安価に高速応答性の強誘電性液晶表示
素子を製造することができる。実際、配向膜の種類を変
化させたり、ラビング処理を両方の基板で同方向、反対
方向に、また、片側のみ行なうことにより、良好な配向
が得られたとの報告も数多くなされている。In contrast to these alignment treatment methods, the rubbing method can perform the alignment treatment by rubbing the organic polymer alignment film formed on the surface of the substrate in a certain direction with a cloth, which is expensive as in the oblique vapor deposition method. It does not require a special vapor deposition device, and can easily perform a large area alignment treatment. Although the mechanism of liquid crystal alignment by rubbing has not been completely clarified, by applying shear stress to the surface of the alignment film by rubbing, alignment of polymer chains near the surface occurs, and liquid crystal molecules are aligned according to the alignment of polymer chains. It is considered. At this time, the pretilt angle is 0 ° to several °, and the spontaneous polarization is oriented in a direction substantially parallel to the electric field, and a fast electric field response is expected. Therefore, if the alignment treatment is performed by the rubbing method, the fast-response ferroelectric liquid crystal display element can be manufactured most easily and inexpensively. In fact, there are many reports that good alignment was obtained by changing the type of alignment film or performing rubbing treatment on both substrates in the same direction, opposite directions, or on only one side.
発明が解決しようとする課題 しかし、ラビング法にも次のような問題点がある。ラビ
ング法により配向処理を行った素子では、一般に完全な
メモリ効果が得られない。即ち、電圧をOFFにすると電
圧ON時に比べて液晶パネルの光透過率の増加または減少
が起こる。このことは強誘電性液晶分子の配列が電圧無
印加時には電圧印加時とは異なる状態に変化してしまう
ことに起因している。従って双安定なメモリ状態を保持
することが極めて難しい。However, the rubbing method also has the following problems. An element that has been subjected to an alignment treatment by the rubbing method generally cannot obtain a perfect memory effect. That is, when the voltage is turned off, the light transmittance of the liquid crystal panel is increased or decreased compared to when the voltage is turned on. This is because the arrangement of the ferroelectric liquid crystal molecules changes to a state different from that when a voltage is applied when no voltage is applied. Therefore, it is extremely difficult to maintain a bistable memory state.
ラビング法により配向処理を行った素子において配向の
欠陥が発生したり、充分なメモリ効果が得られない最大
の原因は、SmC*液晶相において配向膜がラビングと平
行方向に液晶配向方位規制力を依然として持つためであ
ると考えられる。The biggest cause of the occurrence of alignment defects in the device subjected to the alignment treatment by the rubbing method and the inability to obtain a sufficient memory effect is that the alignment film in the SmC * liquid crystal phase exerts the liquid crystal alignment direction regulating force in the direction parallel to the rubbing It is thought to be because they still have it.
SmA相またはCh相からSmC*相に相転移が起こる場合、液
晶分子あるいは層がチルト角θに対応する角度だけ傾こ
うとする。即ち、ラビングによってラビングと平行方向
に規定されていた方位からθだけずれて傾く。ところ
が、この時点において、ラビングと平行方向に液晶配向
方位規制力が存在すれば、配向膜界面近くの分子は束縛
をうけて本来のチルト角θだけ傾くことができず傾き角
が小さくなる。従って、界面付近に歪が発生し、配向欠
陥が発生しやすい。また、電圧無印加時には界面付近の
分子がラビングに束縛された方向に戻るため、それがパ
ネルの光透過率変化となって現れ、双安定なメモリ効果
が得られない。When the phase transition from the SmA phase or Ch phase to the SmC * phase occurs, the liquid crystal molecules or layers tend to tilt by an angle corresponding to the tilt angle θ. That is, the rubbing causes the tilt to deviate by θ from the azimuth defined in the direction parallel to the rubbing. However, at this point, if the liquid crystal alignment azimuth regulating force is present in the direction parallel to the rubbing, the molecules near the interface of the alignment film are restricted and cannot be tilted by the original tilt angle θ, and the tilt angle becomes small. Therefore, distortion is likely to occur near the interface, and alignment defects are likely to occur. In addition, when no voltage is applied, molecules near the interface return to the direction bound by rubbing, which appears as a change in light transmittance of the panel, and a bistable memory effect cannot be obtained.
課題を解決するための手段 表面を一軸配向処理した一対の基板と液晶とからなる液
晶表示素子において、前記表面を一軸配向処理した一対
の基板が、一軸配向処理方向に対し平行方向に液晶配向
方位規制力を持つ高分子と、一軸配向処理方向に対し直
交方向に液晶配向方位規制力を持つ高分子との少なくと
も各々1種以上の高分子からなる高分子混合体あるい
は、それらの高分子の単量体からなる高分子共重合体よ
り形成された配向膜を用いる。Means for Solving the Problems In a liquid crystal display element consisting of a pair of substrates whose surfaces are uniaxially oriented and a liquid crystal, a pair of substrates whose surfaces are uniaxially oriented are aligned in a direction parallel to the uniaxial orientation direction. A polymer mixture composed of at least one polymer having a regulation force and a polymer having a liquid crystal orientation azimuth regulation force in a direction orthogonal to the uniaxial orientation treatment direction, or a polymer mixture thereof. An alignment film formed of a high molecular weight copolymer composed of a polymer is used.
作用 上記の構成によれば、配向膜は、液晶に対して、ラビン
グと平行方向の液晶配向方位規制力は小さくなる。その
ため、例えば液晶として強誘電性液晶を用いると、強誘
電性液晶は配向膜界面近くでも本来のチルト角とほぼ同
じ角度傾くことが可能である。従って界面の歪の発生が
なく、SmC*相において均一配向が得られる。また、電
圧無印加時においてもラビング方向からある角度だけ傾
いた方向が安定な状態であるので双安定となり、完全な
メモリ効果が得られる。Action According to the above configuration, the alignment film has a smaller liquid crystal alignment orientation regulating force in the direction parallel to the rubbing with respect to the liquid crystal. Therefore, for example, when the ferroelectric liquid crystal is used as the liquid crystal, the ferroelectric liquid crystal can be tilted at almost the same angle as the original tilt angle even near the interface of the alignment film. Therefore, no interface strain is generated and uniform alignment is obtained in the SmC * phase. Further, even when no voltage is applied, the direction inclined from the rubbing direction by a certain angle is a stable state, so that it becomes bistable and a complete memory effect can be obtained.
実施例 本発明による液晶表示素子における配向膜は、少なくと
も2種類以上の高分子より形成される。Example The alignment film in the liquid crystal display device according to the present invention is formed of at least two kinds of polymers.
1つは、一軸配向処理方向に対し平行方向に液晶配向方
位規制力を持つ高分子で、例えばラビング処理などを施
すとそのラビング方向に対し平行方向に液晶を配向させ
る高分子である(第1図(a))。One is a polymer having a liquid crystal alignment direction regulating force in a direction parallel to the uniaxial alignment treatment direction, for example, a polymer that aligns liquid crystal in a direction parallel to the rubbing direction when rubbing treatment is performed (first Figure (a)).
もう1つは、一軸配向処理方向に対し直交方向に液晶配
向方位規制力を持つ高分子で、例えばラビング処理など
を施すとそのラビング方向に対し直交方向に液晶を配向
させる高分子である(第1図(b))。The other is a polymer having a liquid crystal alignment direction regulating force in a direction orthogonal to the uniaxial alignment treatment direction, for example, a polymer that aligns liquid crystal in a direction orthogonal to the rubbing direction when rubbing treatment is performed ( Figure 1 (b)).
本発明における液晶表示素子の場合、このような方向に
液晶を配向させる高分子を各々1種類以上ずつ組合せ高
分子混合体を得るか、あるいは、それらの高分子の単量
体を反応させることにより高分子共重合体を作成する。
これらの高分子混合体、高分子共重合体は、各々の高分
子が持つ特性を失うことなしに高分子としての機能を持
ち、配向膜として用いることができる。そのため、各々
の混合あるいは共重合の割合によって、液晶の配向方向
を一軸配向処理方向より任意の角度傾いた方向に設定で
きる(第2図)。In the case of the liquid crystal display device of the present invention, one or more kinds of polymers for orienting the liquid crystal in such a direction are combined to obtain a polymer mixture, or a monomer of those polymers is reacted. Create a high molecular weight copolymer.
These polymer mixtures and polymer copolymers have a function as a polymer without losing the properties of each polymer and can be used as an alignment film. Therefore, the alignment direction of the liquid crystal can be set to a direction inclined by an arbitrary angle from the uniaxial alignment treatment direction depending on the mixing or copolymerization ratio (FIG. 2).
以上の理由から本発明の液晶表示素子の配向膜を用いる
と、液晶に対して、ラビングと平行方向の液晶配向方位
規制力は小さくなる。そのため、例えば液晶として強誘
電性液晶を用いると、強誘電性液晶は配向膜界面近くで
も本来のチルト角とほぼ同じ角度傾くことが可能であ
る。従って界面の歪の発生がなく、SmC*相において均
一配向が得られる。また、電圧無印加時においてもラビ
ング方向からある角度だけ傾いた方向が安定な状態であ
るので双安定となり、完全なメモリ効果が得られる。For the above reasons, when the alignment film of the liquid crystal display device of the present invention is used, the liquid crystal alignment direction regulating force in the direction parallel to the rubbing is reduced with respect to the liquid crystal. Therefore, for example, when the ferroelectric liquid crystal is used as the liquid crystal, the ferroelectric liquid crystal can be tilted at almost the same angle as the original tilt angle even near the interface of the alignment film. Therefore, no interface strain is generated and uniform alignment is obtained in the SmC * phase. Further, even when no voltage is applied, the direction inclined from the rubbing direction by a certain angle is a stable state, so that it becomes bistable and a complete memory effect can be obtained.
一軸配向処理方向に対し直交方向に液晶配向方位規制力
を持つ高分子としては、側鎖に環構造を有する高分子が
考えられ、その側鎖に、シクロペンタン環、シクロヘキ
サン環、ベンゼン環、ナフタレン環、フラン環、オキソ
ラン環、ジオキソラン環、チオフェン環、ピロール環、
ピラン環、オキサン環、ジオキサン環、ピリジン環、ピ
ペリジン環、ピリミジン環、ピラジン環などを含む高分
子が挙げられる。代表的なものとして、ポリスチレン、
ポリフェニルアセチレン、ポリビニルピリジン、ポリビ
ニルピリミジン及びそれらの誘導体が挙げられる。As a polymer having a liquid crystal orientation control force in a direction orthogonal to the uniaxial alignment treatment direction, a polymer having a ring structure in its side chain is considered, and its side chain has a cyclopentane ring, a cyclohexane ring, a benzene ring, or naphthalene. Ring, furan ring, oxolane ring, dioxolane ring, thiophene ring, pyrrole ring,
Examples of the polymer include a pyran ring, an oxane ring, a dioxane ring, a pyridine ring, a piperidine ring, a pyrimidine ring, and a pyrazine ring. As a typical one, polystyrene,
Examples thereof include polyphenylacetylene, polyvinyl pyridine, polyvinyl pyrimidine and their derivatives.
一軸配向処理方向に対し平行方向に液晶配向方位規制力
を持つ高分子としては、側鎖には環構造を有していない
高分子が考えられ、ポリイミド、ポリビニルアルコー
ル、ポリ酢酸ビニル、ポリメチルメタクリレートなどが
ある。As a polymer having a liquid crystal alignment azimuth control force in a direction parallel to the uniaxial alignment treatment direction, a polymer having no ring structure in its side chain is considered, such as polyimide, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate. and so on.
高分子の誘電性あるいは粘弾性の測定を、広い温度並び
に周波数の範囲にわたって行うと、各高分子物質に対し
て二種類あるいはそれ以上の吸収が見い出されており、
これらの吸収は、便宜上高温の吸収からα,β,……な
どと呼ばれている。When measuring the dielectric or viscoelastic properties of a polymer over a wide temperature and frequency range, two or more types of absorption have been found for each polymer substance,
For the sake of convenience, these absorptions are referred to as α, β, etc. because of their high temperature absorption.
α吸収(高温側)は、主鎖セグメントのミクロブラウン
運動によるものであるということが、種々の測定結果よ
り明らかにされている。これは、一般にガラス転移と呼
ばれる特性に相当する。β吸収は、側鎖全体のミクロブ
ラウン運動によるものであるが、主鎖の局所的な動きを
伴うものと考えられる。高分子のこれらの吸収温度と液
晶の相転移温度とを限定することによりさらに良好な液
晶表示素子を得ることも可能である。It has been clarified from various measurement results that the α absorption (high temperature side) is due to the micro Brownian motion of the main chain segment. This corresponds to a property generally called glass transition. β absorption is due to micro Brownian motion of the entire side chain, but is considered to be accompanied by local movement of the main chain. It is also possible to obtain a better liquid crystal display device by limiting the absorption temperature of the polymer and the phase transition temperature of the liquid crystal.
実施例1 第3図に本発明における強誘電性液晶表示素子の構造を
示す。この構造を有する素子を次のように作成した。ま
ず、ITO電極2,8を有するガラス基板1,9上に、一軸配向
処理方向に対し直交方向に液晶配向方位規制力を持つ高
分子として、ポリフェニルアセチレン、一軸配向処理方
向に対し平行方向に液晶配向方位規制力を持つ高分子と
して、ポリメチルメタクリレートをそれらの混合重量比
が40:60になるように調製し、これを乾燥後の配向膜3,4
の膜厚が1000Aとなるように、スピンコート法により塗
布し、150℃で1時間乾燥した。Example 1 FIG. 3 shows the structure of a ferroelectric liquid crystal display device according to the present invention. A device having this structure was prepared as follows. First, on glass substrates 1 and 9 having ITO electrodes 2 and 8, polyphenylacetylene as a polymer having a liquid crystal orientation azimuth regulating force in a direction orthogonal to the uniaxial orientation treatment direction, and As a polymer with a liquid crystal orientation control force, polymethylmethacrylate was prepared so that their mixing weight ratio was 40:60, and this was dried to obtain an alignment film 3,4.
Was coated by spin coating so that the film thickness was 1000 A, and dried at 150 ° C. for 1 hour.
次に、このガラス基板上の配向膜を布でラビングし、そ
の後、このラビングした方向が互いに逆平行になるよう
に、2.0μmのビースペーサ6を介して貼合わせ、注入
口となる箇所を除いたその周辺をシール樹脂5で封止し
た。次に液晶7として、本実施例では、降温過程で次の
ような相転移変化する強誘電性液晶を素子内に減圧下、
I相の温度領域で注入した。Then, the alignment film on the glass substrate is rubbed with a cloth, and then the rubbing directions are antiparallel to each other, and the substrates are bonded via a 2.0 μm bee spacer 6, and a portion to be an injection port is removed. The periphery of the head was sealed with the sealing resin 5. Next, as the liquid crystal 7, in this embodiment, a ferroelectric liquid crystal that undergoes the following phase transition change in the temperature decreasing process is put under reduced pressure in the device,
Injection was performed in the temperature region of phase I.
I相→Ch相→SA相→SmC*相 この素子を室温まで徐冷したのち(約−0.5℃/分)、
注入口を封止した。I-phase → Ch-phase → SA-phase → SmC * phase After gradually cooling this element to room temperature (approximately −0.5 ° C / min),
The inlet was sealed.
この素子を顕微鏡観察したところ、均一配向が得られて
いることがわかった。この素子のチルト角の測定も行っ
た。チルト角はラビング処理を行った方向と液晶分子長
軸方向のなす角である。ポーラライザ側とアナライザ側
の偏光板を互いに直交するように設置し、液晶分子長軸
方向と偏光板の偏光軸の傾斜度をチルト角とした。この
ときのチルト角は20゜であった。Microscopic observation of this device revealed that uniform alignment was obtained. The tilt angle of this device was also measured. The tilt angle is an angle formed between the rubbing direction and the liquid crystal molecule long axis direction. Polarizer-side and analyzer-side polarizing plates were installed so as to be orthogonal to each other, and the tilt angle was the tilt angle between the liquid crystal molecule major axis direction and the polarizing axis of the polarizing plate. The tilt angle at this time was 20 °.
さらにこの素子について、第4図に示すような極性反転
電圧波形(パルス電圧)をかけ、その光透過率変化を測
定することによってそれらの応答時間ならびにコントラ
スト、メモリ効果についても測定した。測定は、パルス
電圧及びパルス時間を、ON(2ms,+10V)→OFF(18ms)
→ON(2ms,−10V)→OFF(18ms)に設定し検討した。こ
のとき偏光板の角度は、2枚の偏光板のうち1枚はその
偏光軸が液晶分子長軸方向と一致するように、もう1枚
の偏光板はこれと偏光軸が直交するように設置した。電
圧反転時に透過率が90%変化するのに要する時間が応答
時間である。コントラストは、+10Vと−10Vのパルス電
圧を印加し終えてからそれぞれ14ms後の透過光強度の比
で表した。Further, a polarity reversal voltage waveform (pulse voltage) as shown in FIG. 4 was applied to this device, and its response time, contrast, and memory effect were also measured by measuring the change in light transmittance. For measurement, turn on the pulse voltage and pulse time from ON (2ms, + 10V) to OFF (18ms)
→ Set ON (2ms, -10V) → OFF (18ms) and examined. At this time, the angle of the polarizing plate is set so that one of the two polarizing plates has its polarization axis aligned with the major axis direction of the liquid crystal molecule, and the other polarizing plate has its polarization axis orthogonal to this. did. The response time is the time required for the transmittance to change 90% during voltage reversal. The contrast is represented by the ratio of the transmitted light intensities 14 ms after the application of the pulse voltages of +10 V and -10 V is completed.
この素子において、応答速度200μs、コントラスト30:
1が得られ、充分なメモリ性を示した。This device has a response speed of 200 μs and a contrast of 30:
1 was obtained, indicating a sufficient memory property.
実施例2 一軸配向処理方向に対し直交方向に液晶配向方位規制力
を持つ高分子として、ポリ(α−メチルポリスチレ
ン)、一軸配向処理方向に対し平行方向に液晶配向方位
規制力を持つ高分子として、ポリ酢酸ビニルをそれらの
混合重量比が40:60になるように調製し、これを乾燥後
の配向膜3,4の膜厚が1000Aとなるように、スピンコート
法により塗布し、150℃で1時間乾燥した。実施例1と
同様に強誘電性液晶表示素子を作成した。Example 2 As a polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction, poly (α-methyl polystyrene), a polymer having a liquid crystal alignment azimuth regulating force in a direction parallel to the uniaxial alignment treatment direction , Polyvinyl acetate was prepared so that the mixing weight ratio thereof was 40:60, and was applied by spin coating so that the thickness of the alignment films 3 and 4 after drying would be 1000 A, and the temperature was 150 ° C. And dried for 1 hour. A ferroelectric liquid crystal display device was prepared in the same manner as in Example 1.
この素子のチルト角、応答速度、コントラストを同様に
測定した。チルト角は22゜、応答速度は230μs、コン
トラストは25:1であり、均一配向、充分なメモリ性が得
られた。The tilt angle, response speed, and contrast of this device were measured in the same manner. The tilt angle was 22 °, the response speed was 230 μs, and the contrast was 25: 1, and uniform alignment and sufficient memory performance were obtained.
実施例3 一軸配向処理方向に対し直交方向に液晶配向方位規制力
を持つ高分子として、ポリ(α−メチルスチレン)、一
軸配向処理方向に対し平行方向に液晶配向方位規制力を
持つ高分子として、ポリメチルメタクリレートをそれら
の混合重量比が30:70になるように調製した。これを乾
燥後の配向膜3,4の膜厚が1000Aとなるように、スピンコ
ート法により塗布し、150℃で1時間乾燥した(このと
き用いた高分子混合体のα吸収温度は145℃、β吸収温
度は70℃)。Example 3 As a polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction, poly (α-methylstyrene), a polymer having a liquid crystal alignment azimuth regulating force in a direction parallel to the uniaxial alignment treatment direction , Polymethylmethacrylate was prepared such that their mixing weight ratio was 30:70. This was applied by spin coating so that the film thickness of the alignment films 3 and 4 after drying was 1000 A, and dried at 150 ° C. for 1 hour (the α absorption temperature of the polymer mixture used at this time was 145 ° C. , Β absorption temperature is 70 ° C).
実施例1と同様に液晶表示素子を作成し、本実施例では
液晶として、降温過程で次のような温度で相転移変化す
る強誘電性液晶を素子内に減圧下、90℃のCh相の温度領
域で注入した。A liquid crystal display device was prepared in the same manner as in Example 1. In this example, as a liquid crystal, a ferroelectric liquid crystal that undergoes a phase transition change at the following temperature during the temperature lowering process was used in the device under reduced pressure to generate a phase of 90 ° C. Injection was performed in the temperature range.
この素子のチルト角、応答速度、コントラストを同様に
測定した。チルト角は22゜、応答速度は170μs、コン
トラストは50:1であり、均一配向、充分なメモリ性が得
られた。実施例3では、実施例1、2に比べ、コントラ
ストが非常に大きな値を示した。これは、液晶の相転移
温度と、配向膜として用いられる高分子のα、β吸収温
度との間に次のような関係が成り立っているためである
と考えられる。 The tilt angle, response speed, and contrast of this device were measured in the same manner. The tilt angle was 22 °, the response speed was 170 μs, and the contrast was 50: 1, and uniform alignment and sufficient memory performance were obtained. In Example 3, the contrast showed a very large value as compared with Examples 1 and 2. It is considered that this is because the following relationship is established between the phase transition temperature of the liquid crystal and the α and β absorption temperatures of the polymer used as the alignment film.
(配向膜のα吸収温度)>(液晶の注入温度)>(配向
膜のβ吸収温度)>(SmC*相より高温側の相からSmC*
相に転移する温度) 配向膜の温度がβ吸収温度以上かつα吸収温度以下で
は、高分子の主鎖セグメントは、ほとんど動いておら
ず、また側鎖全体はミクロブラウン運動をしている。そ
のため、この温度で液晶を注入すれば、液晶は主鎖の配
列方向を認識して配向する。このときの主鎖の配列方向
は、ラビング方向と平行で、液晶はラビング方向と平行
方向に配向する(第5図(a))。(Alpha absorption temperature of the alignment layer)> (injection temperature of the liquid crystal)> (beta absorption temperature of the alignment layer)> (SmC * SmC from the hot side of the phase phase *
Temperature at which phase transitions) When the temperature of the alignment film is equal to or higher than β absorption temperature and equal to or lower than α absorption temperature, the main chain segment of the polymer hardly moves, and the entire side chain performs micro Brownian motion. Therefore, if the liquid crystal is injected at this temperature, the liquid crystal is oriented by recognizing the alignment direction of the main chain. At this time, the alignment direction of the main chains is parallel to the rubbing direction, and the liquid crystal is aligned parallel to the rubbing direction (FIG. 5 (a)).
その後液晶をSmC*相まで冷却し、配向膜の温度がβ吸
収温度以下になると、側鎖のミクロブラウン運動は小さ
くなる、あるいはゼロになる。このとき、配向膜を形成
する高分子中に側鎖に環構造を有する高分子が含まれて
いる場合、液晶はその側鎖の配列状態を認識し、その方
向に配向する。つまり、配向膜がこの温度領域にあると
きには、液晶はラビング方向に対して第5図(b)に示
すような角度に配列する。この角度は、強誘電性液晶の
チルト角と同じ角度であればさらに好ましい。After that, when the liquid crystal is cooled to the SmC * phase and the temperature of the alignment film becomes equal to or lower than the β absorption temperature, the micro Brownian motion of the side chain becomes small or becomes zero. At this time, when the polymer forming the alignment film contains a polymer having a ring structure in the side chain, the liquid crystal recognizes the alignment state of the side chain and aligns in that direction. That is, when the alignment film is in this temperature range, the liquid crystal is aligned at an angle as shown in FIG. 5 (b) with respect to the rubbing direction. It is more preferable that this angle be the same as the tilt angle of the ferroelectric liquid crystal.
比較例 ポリメタクリレート単独の高分子を使い、実施例1と同
様に強誘電性液晶表示素子を作成した。Comparative Example A ferroelectric liquid crystal display device was prepared in the same manner as in Example 1 using a polymer of polymethacrylate alone.
この素子のチルト角、応答速度、コントラストを同様に
測定した。チルト角は3゜、応答速度は260μs、コン
トラストは5:1であり、かなりのジグザグ欠陥が発生
し、メモリ性は得られなかった。The tilt angle, response speed, and contrast of this device were measured in the same manner. The tilt angle was 3 °, the response speed was 260 μs, and the contrast was 5: 1. A considerable zigzag defect occurred, and the memory property was not obtained.
実施例1、2、3では、一軸配向処理方向に対し平行方
向に液晶配向方位規制力を持つ高分子と、一軸配向処理
方向に対し直交方向に液晶配向方位規制力を持つ高分子
とからなる高分子混合体により配向膜溶液を調製した
が、それぞれの高分子の単量体を適当な割合混ぜ、合成
した共重合体を用いて配向膜としてもよいことは言うま
でもない。In Examples 1, 2 and 3, a polymer having a liquid crystal orientation azimuth regulating force in a direction parallel to the uniaxial orientation treatment direction and a polymer having a liquid crystal orientation azimuth regulating force in a direction orthogonal to the uniaxial orientation treatment direction were used. Although the alignment film solution was prepared from the polymer mixture, it goes without saying that the alignment film may be formed by using a copolymer prepared by mixing the monomers of the respective polymers in an appropriate ratio.
また、液晶の相転移については、I−Ch−SmA−SmC*の
ものでもよいが、I相とSmC*相の間にCh相やSmA相が存
在してもしなくてもよい(I−SmC*,I−Ch−SmC*,I−
SmA−SmC*etc)。Regarding the phase transition of liquid crystal, I-Ch-SmA-SmC * may be used, but Ch phase or SmA phase may or may not exist between the I phase and the SmC * phase (I-SmC *). * , I-Ch-SmC * , I-
SmA-SmC * etc).
発明の効果 本発明の液晶表示素子により、配向膜界面近くの液晶は
本来のチルト角とほぼ同じ角度傾くことが可能である。
従って界面の歪の発生がなく、SmC*相において均一配
向が得られる。また電圧無印加時においてもラビング方
向からある角度だけ傾いた方向が安定な状態であるので
双安定となり、完全なメモリ効果が得られる。EFFECTS OF THE INVENTION With the liquid crystal display device of the present invention, the liquid crystal near the interface of the alignment film can be tilted at substantially the same angle as the original tilt angle.
Therefore, no interface strain is generated and uniform alignment is obtained in the SmC * phase. Further, even when no voltage is applied, the direction inclined from the rubbing direction by a certain angle is a stable state, so that it becomes bistable and a complete memory effect can be obtained.
第1図(a),(b)は、それぞれ一軸配向処理方向に
対して平行方向、垂直方向に液晶配向方位規制力を持つ
高分子による配向膜を用い、液晶を配向させたときの液
晶分子の配向状態を示す図、第2図は、本発明の液晶表
示素子における配向膜を用いて液晶を配向させたときの
液晶分子の配向状態を示す図、第3図は本発明の一実施
例における液晶表示素子の構成を表す断面図、第4図
は、実施例及び比較例における液晶表示素子に印加した
極性反転電圧を示す波形図、第5図(a),(b)は、
実施例3における強誘電性液晶を配向させたときの液晶
分子の配向状態を示す図である。 1,9……ガラス基板、2,8……ITO電極、3,4……配向膜、
5……シール樹脂、6……ビーズスペーサ、7……液晶FIGS. 1 (a) and 1 (b) show liquid crystal molecules when a liquid crystal is aligned by using an alignment film made of a polymer having a liquid crystal alignment azimuth regulating force in a direction parallel and a direction perpendicular to a uniaxial alignment treatment direction, respectively. FIG. 2 shows the alignment state of liquid crystal molecules when the liquid crystal is aligned using the alignment film in the liquid crystal display element of the present invention, and FIG. 3 shows one embodiment of the present invention. 4 is a cross-sectional view showing the configuration of the liquid crystal display element in FIG. 4, FIG. 4 is a waveform diagram showing a polarity reversal voltage applied to the liquid crystal display elements in Examples and Comparative Examples, and FIGS. 5 (a) and 5 (b) are
FIG. 8 is a diagram showing an alignment state of liquid crystal molecules when a ferroelectric liquid crystal in Example 3 is aligned. 1,9 …… Glass substrate, 2,8 …… ITO electrode, 3,4 …… Alignment film,
5 ... Seal resin, 6 ... Bead spacer, 7 ... Liquid crystal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 成広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松尾 嘉浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−68721(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Narihiro Sato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshihiro Matsuo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-58-68721 (JP, A)
Claims (7)
とからなる液晶表示素子において、前記表面を一軸配向
処理した一対の基板が、一軸配向処理方向に対し平行方
向に液晶配向方位規制力を有するポリイミド、ポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリレート、ポ
リメタクリレートからなる群の内少なくとも1種の高分
子と、一軸配向処理方向に対し直交方向に液晶配向方位
規制力を持つ高分子との少なくとも各々1種以上の高分
子からなる高分子混合体あるいは、それらの単量体から
なる高分子共重合体より形成された配向膜を有すること
を特徴とする液晶表示素子。1. A liquid crystal display device comprising a pair of substrates whose surfaces are uniaxially oriented and a liquid crystal, wherein the pair of substrates whose surfaces are uniaxially oriented are aligned in a direction parallel to the direction of the uniaxial orientation. At least one polymer selected from the group consisting of polyimide, polyvinyl alcohol, polyvinyl acetate, polyacrylate, and polymethacrylate, and a polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction. A liquid crystal display device comprising an alignment film formed of a polymer mixture composed of one or more kinds of polymers or a polymer copolymer composed of monomers thereof.
向方位規制力を持つ高分子が、側鎖に環構造を有する特
許請求の範囲第1項記載の液晶表示素子。2. The liquid crystal display device according to claim 1, wherein the polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction has a ring structure in a side chain.
複素環、縮合環を有する特許請求の範囲第2項記載の液
晶表示素子。3. An aromatic ring, an aliphatic ring, as a side chain ring structure,
The liquid crystal display device according to claim 2, having a heterocycle or a condensed ring.
膜になされ、かつそれがラビング法によるものである特
許請求の範囲第1項記載の液晶表示素子。4. The liquid crystal display device according to claim 1, wherein the uniaxial alignment treatment is performed on the alignment film provided on the substrate, and the alignment film is formed by a rubbing method.
向方位規制力を持つ高分子と、一軸配向処理方向に対し
直交方向に液晶配向方位規制力を持つ高分子との少なく
とも各々1種以上の高分子からなる高分子混合体あるい
は、それらの高分子の単量体からなる高分子共重合体に
おけるα吸収温度(ガラス転移温度)が液晶の注入温度
よりも高いことを特徴とする特許請求の範囲第1項記載
の液晶表示素子。5. A polymer having a liquid crystal alignment azimuth regulating force in a direction parallel to the uniaxial alignment treatment direction and a polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction. Claims characterized in that the α absorption temperature (glass transition temperature) in the polymer mixture consisting of the above polymers or the polymer copolymer consisting of monomers of these polymers is higher than the injection temperature of the liquid crystal. 2. A liquid crystal display device according to item 1.
第1項記載の液晶表示素子。6. The liquid crystal display device according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal.
向方位規制力を持つ高分子と、一軸配向処理方向に対し
直交方向に液晶配向方位規制力を持つ高分子との少なく
とも各々1種以上の高分子からなる高分子混合体あるい
は、それらの高分子の単量体からなる高分子共重合体に
おけるβ吸収温度(側鎖がミクロブラウン運動する温
度)が液晶の注入温度よりも低く、かつ、カイラルスメ
クチックC相より高温側の相からカイラルスメクチック
C相に転移する温度よりも高いことを特徴とする特許請
求の範囲第6項記載の液晶表示素子。7. A polymer having a liquid crystal alignment azimuth regulating force in a direction parallel to the uniaxial alignment treatment direction and a polymer having a liquid crystal alignment azimuth regulating force in a direction orthogonal to the uniaxial alignment treatment direction. The β absorption temperature (the temperature at which the side chain undergoes Micro Brownian motion) in the polymer mixture consisting of the above polymers or in the polymer copolymer consisting of the monomers of these polymers is lower than the injection temperature of the liquid crystal, and 7. The liquid crystal display device according to claim 6, wherein the liquid crystal display device has a temperature higher than a temperature at which a phase higher than the chiral smectic C phase transitions to the chiral smectic C phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136408A JPH0792568B2 (en) | 1988-06-02 | 1988-06-02 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63136408A JPH0792568B2 (en) | 1988-06-02 | 1988-06-02 | Liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01304424A JPH01304424A (en) | 1989-12-08 |
JPH0792568B2 true JPH0792568B2 (en) | 1995-10-09 |
Family
ID=15174464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63136408A Expired - Lifetime JPH0792568B2 (en) | 1988-06-02 | 1988-06-02 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0792568B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008197259A (en) * | 2007-02-09 | 2008-08-28 | Chisso Corp | Liquid crystal aligning agent containing polyamic acid or polyimide having naphthalene ring in side chain |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9001643A (en) * | 1990-07-19 | 1992-02-17 | Philips Nv | METHOD FOR APPLYING AN ORIENTATION LAYER IN A LIQUID CRYSTALLINE IMAGE DISPLAY CELL. |
JPH0815705A (en) * | 1994-06-28 | 1996-01-19 | Hoechst Japan Ltd | Liquid crystal display element |
JP2780942B2 (en) * | 1994-12-28 | 1998-07-30 | スタンレー電気株式会社 | Liquid crystal display device and method of manufacturing the same |
JPH08254702A (en) * | 1995-03-15 | 1996-10-01 | Hoechst Ind Kk | Liquid crystal display element |
JPH08254704A (en) * | 1995-03-15 | 1996-10-01 | Hoechst Ind Kk | Liquid crystal oriented film and liquid crystal display element |
JP5390465B2 (en) * | 2010-04-27 | 2014-01-15 | 日東電工株式会社 | Optical laminate and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5868721A (en) * | 1981-10-21 | 1983-04-23 | Hitachi Ltd | liquid crystal display element |
-
1988
- 1988-06-02 JP JP63136408A patent/JPH0792568B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008197259A (en) * | 2007-02-09 | 2008-08-28 | Chisso Corp | Liquid crystal aligning agent containing polyamic acid or polyimide having naphthalene ring in side chain |
Also Published As
Publication number | Publication date |
---|---|
JPH01304424A (en) | 1989-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5530566A (en) | Polymer dispersed ferroelectric smectic liquid crystal formed by inducing a force during phase separation | |
KR100216160B1 (en) | LCD Display | |
KR101073781B1 (en) | Liquid crystal display device | |
JPH0792568B2 (en) | Liquid crystal display element | |
WO2005071476A1 (en) | Liquid crystal display device | |
JP2647828B2 (en) | Liquid crystal device manufacturing method | |
KR940008531B1 (en) | Light modulation element | |
EP0645662B1 (en) | A liquid crystal display device | |
EP0665279A1 (en) | Polymer dispersed ferroelectric smectic liquid crystal | |
JP2592957B2 (en) | Liquid crystal element | |
JP2523802B2 (en) | Liquid crystal display element | |
JPH0210323A (en) | Ferroelectric liquid crystal display element | |
JPH04243228A (en) | Liquid crystal element | |
JP3757365B2 (en) | Ferroelectric smectic liquid crystal dispersed in polymer | |
JPH09297306A (en) | Liquid crystal display device and method of manufacturing the same | |
JPH01137237A (en) | Ferroelectric liquid crystal display element | |
Komitov | Electrically commanded surfaces: A new liquid‐crystal‐display concept | |
JP3180171B2 (en) | Ferroelectric liquid crystal device | |
JP2845236B2 (en) | Manufacturing method of liquid crystal electro-optical element | |
JP2889656B2 (en) | Liquid crystal display device | |
JPH05297374A (en) | Liquid crystal display element and its display method | |
JPH0261615A (en) | Liquid crystal display element | |
JPH0540266A (en) | Liquid crystal element | |
JPH06273711A (en) | Liquid crystal element | |
JPH01178587A (en) | liquid crystal composition |