[go: up one dir, main page]

JPH0792449A - Gradation method for anti-ferroelectric liquid crystal display - Google Patents

Gradation method for anti-ferroelectric liquid crystal display

Info

Publication number
JPH0792449A
JPH0792449A JP25901193A JP25901193A JPH0792449A JP H0792449 A JPH0792449 A JP H0792449A JP 25901193 A JP25901193 A JP 25901193A JP 25901193 A JP25901193 A JP 25901193A JP H0792449 A JPH0792449 A JP H0792449A
Authority
JP
Japan
Prior art keywords
liquid crystal
selection period
voltage
display
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25901193A
Other languages
Japanese (ja)
Other versions
JP3247518B2 (en
Inventor
Masaya Kondo
近藤  真哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP25901193A priority Critical patent/JP3247518B2/en
Publication of JPH0792449A publication Critical patent/JPH0792449A/en
Application granted granted Critical
Publication of JP3247518B2 publication Critical patent/JP3247518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To provide an excellent gradation display by modulating a driving voltage waveform and applying an auxiliary pulse for gradation according to the gradation display data after a select pulse. CONSTITUTION:For controlling a response time from a ferroelectric liquid crystal state to an anti-ferrorelectric liquid crystal state, the voltage value of the select pulse of a scanning side voltage waveform is fixed so that the voltage value of the select pulse in a selection pariod is changed, and the voltage value of a signal side voltage waveform is changed according to the respective gradation display data. In such a case, the changes in composite voltage waveforms and corresponding transmission light quantity when the voltage values of the select pulses of composite waveforms applied in respective selection periods are set at 49V in figure A, 43V in figure B, 39V in figure C and 36V in figure D are shown. In such a manner, by changing the absolute value of the select pulse voltage in the selection period, the transmission light quantity in a non-selection period is controlled. Further, by changing the voltage value of the auxiliary pulse for gradation in the selection period also, the transmission light quantity in the non-selection period is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反強誘電性液晶を液晶
層とする、マトリックス状の画素を有する液晶表示パネ
ルや液晶光シャッターアレイ等の反強誘電性液晶パネル
の駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving an antiferroelectric liquid crystal panel such as a liquid crystal display panel having a matrix of pixels and a liquid crystal optical shutter array having an antiferroelectric liquid crystal as a liquid crystal layer. is there.

【0002】[0002]

【従来の技術】反強誘電性液晶を用いた液晶パネルは、
日本電装(株)及び昭和シェル石油(株)らの特開平2
−173724号公報で広視野角を有すること、高速応
答が可能なこと、マルチプレックス特性が良好なこと等
が報告されて以来、精力的に研究がなされている。
2. Description of the Related Art A liquid crystal panel using an antiferroelectric liquid crystal is
JP-A-2 of Nippon Denso Co., Ltd. and Showa Shell Sekiyu Co., Ltd.
Since the publication of 173724 discloses that it has a wide viewing angle, that it can respond at high speed, and that it has good multiplex characteristics, it has been actively researched.

【0003】図3は反強誘電性液晶をディスプレイとし
て用いる場合の液晶ディスプレイのパネルの構成図であ
る。クロスニコルに合わせた偏光板21a,bの間に、
どちらかの偏光板の偏光軸と無電界時に於ける分子の長
軸方向が平行になるように液晶セル22を置き、電圧無
印加時に黒が、電圧印加時には白が表示できるようにし
ている。このようなセル構成に於いて、液晶セルに電圧
を印加したとき、それに対する透過率変化をグラフにプ
ロットすると図4のようなループを描くことが出来、電
圧を印加し、増加させていく場合に透過率が変化し始め
る電圧値をV1、透過率の変化が飽和する電圧値をV
2、逆に電圧値を減少させていく場合に透過率が減少し
始める電圧値をV5とする。また前記電圧値と逆極性の
電圧を印加し、その絶対値を増加させた場合に透過率が
変化し始める電圧値をV3、透過率変化が飽和する電圧
値をV4、逆に電圧の絶対値を減少させた場合に透過率
が変化し始める電圧値をV6とする。この図4は、液晶
分子にあるパルス波を印加した場合に、このパルス幅と
電圧値の積の値が閾値以上の値をとる場合に第2の安定
状態(強誘電性液晶状態)が選択され、また印加電圧の
極性の違いによって第3の安定状態(強誘電性液晶状
態)が選択され、この第2および第3の安定状態から、
前記パルス幅と電圧値の積の値の絶対値があるしきい値
より低い場合には第1の安定状態(反強誘電性液晶状
態)が選択されることを示している。
FIG. 3 is a block diagram of a liquid crystal display panel when an antiferroelectric liquid crystal is used as a display. Between the polarizing plates 21a and 21b that are matched to crossed Nicols,
The liquid crystal cell 22 is placed so that the polarization axis of either of the polarizing plates and the long axis direction of the molecules in the absence of an electric field are parallel to each other so that black can be displayed when no voltage is applied and white can be displayed when a voltage is applied. In such a cell configuration, when a voltage is applied to the liquid crystal cell, a change in transmittance is plotted in a graph, and a loop as shown in FIG. 4 can be drawn. When a voltage is applied and increased. The voltage value at which the transmittance starts to change is V1, and the voltage value at which the transmittance change is saturated is V1.
2. Conversely, the voltage value at which the transmittance starts to decrease when the voltage value is decreased is V5. Further, when a voltage having a polarity opposite to that of the voltage value is applied and the absolute value is increased, the voltage value at which the transmittance starts changing is V3, the voltage value at which the transmittance change is saturated is V4, and conversely the absolute value of the voltage. Let V6 be the voltage value at which the transmittance starts to change when is decreased. In FIG. 4, when a pulse wave is applied to the liquid crystal molecules, the second stable state (ferroelectric liquid crystal state) is selected when the product of the pulse width and the voltage value is a threshold value or more. The third stable state (ferroelectric liquid crystal state) is selected depending on the polarity of the applied voltage. From the second and third stable states,
This indicates that the first stable state (antiferroelectric liquid crystal state) is selected when the absolute value of the product of the pulse width and the voltage value is lower than a certain threshold value.

【0004】反強誘電性液晶パネルの従来の駆動方法の
一例を図5に示す。図5に示したように、選択期間で第
1あるいは、第2もしくは第3の安定状態を選択し、そ
の状態を次の選択期間までの非選択期間で保持させてい
た。つまり選択期間で選択した透過光量をその後の非選
択期間では保持させることにより表示を行っていた。
FIG. 5 shows an example of a conventional driving method for an antiferroelectric liquid crystal panel. As shown in FIG. 5, the first stable state, the second stable state, or the third stable state is selected in the selection period, and the state is held in the non-selection period until the next selection period. In other words, the amount of transmitted light selected in the selection period is held in the subsequent non-selection period for display.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこのよう
な方法で表示を行った場合には、透過光量が多いか(白
表示)、少ないか(黒表示)の2通りしかなく、中間で
保持する事が出来なかった。そのため、表示としては白
表示か黒表示しか出来ず、階調表示を行うことは出来な
かった。そこで本発明では白表示と黒表示の2通り以上
の階調表示を行うための駆動方法を提供することを目的
としている。
However, when the display is performed by such a method, there are only two kinds of the transmitted light amount, that is, the large amount of transmitted light (white display) or the small amount of transmitted light (black display), and hold the light in the middle. I couldn't. Therefore, only white display or black display can be performed as display, and gradation display cannot be performed. Therefore, an object of the present invention is to provide a driving method for performing gray scale display of two or more kinds of white display and black display.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、 (1)対向面にそれぞれ複数の走査電極と信号電極を有
する1対の基板間に反強誘電性液晶を挟持し、マトリッ
クス状に液晶画素を有する反強誘電性液晶セルを、互い
の偏光軸が直交するような2枚の偏光板に、前記反強誘
電性液晶分子の平均的長軸方向が前記偏光板のいずれか
の偏光軸とほぼ同一方向になるように挟んだ構成をした
反強誘電性液晶ディスプレイで、前記反強誘電性液晶の
強誘電性液晶状態から反強誘電性液晶状態への応答時間
を、制御することにより、図5における非選択期間での
透過光量の変化を制御する。
In order to achieve the above object, according to the present invention, (1) an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposite surfaces. , An antiferroelectric liquid crystal cell having liquid crystal pixels in a matrix is formed on two polarizing plates whose polarization axes are orthogonal to each other, and the average long axis direction of the antiferroelectric liquid crystal molecules is the polarizing plate. In an antiferroelectric liquid crystal display having a configuration in which it is sandwiched so that it is almost in the same direction as either polarization axis, the response time from the ferroelectric liquid crystal state of the antiferroelectric liquid crystal to the antiferroelectric liquid crystal state is shown. , By controlling the change of the amount of transmitted light in the non-selected period in FIG.

【0007】(2)前記反強誘電性液晶ディスプレイの
駆動電圧波形は少なくとも2つの走査期間からなり、お
互いの走査期間の波形は0Vに対して対称であり各走査
期間は少なくとも選択期間と非選択期間の2つの期間が
存在する。この前記選択期間内に印加される駆動電圧波
形を変調することによって、前記反強誘電性液晶の応答
時間を制御することより前記非選択期間の透過光量の変
化を制御する。
(2) The driving voltage waveform of the anti-ferroelectric liquid crystal display is composed of at least two scanning periods, the waveforms of the respective scanning periods are symmetrical with respect to 0 V, and each scanning period is at least a selection period and a non-selection period. There are two periods of time. By modulating the drive voltage waveform applied during the selection period, the response time of the antiferroelectric liquid crystal is controlled to control the change in the amount of transmitted light during the non-selection period.

【0008】(3)前記選択期間には強誘電性液晶状態
にセットするセレクトパルスと、階調表示データに応じ
た階調用補助パルスが存在し、前記階調用補助パルスに
よって前記反強誘電性液晶の応答時間を制御することに
より前記非選択期間の透過光量の変化を制御する。
(3) In the selection period, there are a select pulse for setting a ferroelectric liquid crystal state and a gradation auxiliary pulse according to gradation display data, and the anti-ferroelectric liquid crystal is generated by the gradation auxiliary pulse. The change in the amount of transmitted light during the non-selection period is controlled by controlling the response time of.

【0009】[0009]

【作用】反強誘電性液晶における強誘電性液晶状態は反
強誘電性液晶状態に比べて不安定であり、液晶分子は常
に強誘電性液晶状態から反強誘電性液晶状態へ戻ろうと
している。また液晶セル内に印加される電圧波形によっ
て液晶セル内にはこの戻りと逆の力が働き、この互いの
力のバランスにより強誘電性液晶状態から反強誘電性液
晶状態へのスイッチングの状態が決まる。このため液晶
セルに印加される電圧波形を変調することにより強誘電
性液晶状態から反強誘電性液晶状態へ早く変化したり、
またはゆっくりと変化したりといったような、強誘電性
液晶状態から反強誘電性液晶状態への変化に必要な時間
(応答時間)を制御することが出来る。またセレクトパ
ルスと逆極性のパルス電圧を印加した場合には、セレク
トパルスによってスイッチングした強誘電性液晶状態か
ら反強誘電性液晶状態へ戻すための力が印加電圧によっ
て与えられるため、この逆極性の印加電圧の大きさによ
っても強誘電性液晶状態から反強誘電性液晶状態への応
答時間を制御することが出来る。この反強誘電性液晶を
ディスプレイとして用いた場合には、応答時間を制御す
ることにより、このディスプレイの透過光量の制御をす
ることが出来る。この現象を実駆動に応用すると、図1
に示したように、非選択期間における強誘電性液晶状態
から反強誘電性液晶状態への応答時間を制御することに
より、非選択期間での透過光量を変化させることが出来
る。この変化を肉眼で観察した場合には、この非選択期
間の透過光量の変化は時間的に早いために透過光量の変
化とは識別出来ず、この非選択期間の全透過光量の値に
よって明暗の量として識別することとなり階調表示が行
える。
[Function] The ferroelectric liquid crystal state in the antiferroelectric liquid crystal is more unstable than that in the antiferroelectric liquid crystal state, and the liquid crystal molecules are always trying to return from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state. . Also, due to the voltage waveform applied to the liquid crystal cell, a force opposite to this return acts in the liquid crystal cell, and the balance of these forces causes the switching state from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state. Decided. Therefore, by modulating the voltage waveform applied to the liquid crystal cell, the ferroelectric liquid crystal state is quickly changed to the antiferroelectric liquid crystal state,
Alternatively, it is possible to control the time (response time) required for changing from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state, such as changing slowly. Further, when a pulse voltage having a polarity opposite to that of the select pulse is applied, a force for returning from the ferroelectric liquid crystal state switched by the select pulse to the antiferroelectric liquid crystal state is given by the applied voltage. The response time from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state can be controlled also by the magnitude of the applied voltage. When this antiferroelectric liquid crystal is used as a display, the amount of light transmitted through this display can be controlled by controlling the response time. Applying this phenomenon to actual driving,
As described above, by controlling the response time from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state in the non-selection period, the transmitted light amount in the non-selection period can be changed. When this change is observed with the naked eye, the change in the amount of transmitted light in this non-selection period is too fast to distinguish it from the change in the amount of transmitted light. It can be identified as a quantity and can be displayed in gradation.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図5は本実施例に用いた液晶パネルのセル
構成図である。本実施例で用いた液晶パネルは約2μの
厚さの反強誘電性液晶層56を持つ一対のガラス基板5
3a、53bから構成されている。ガラス基板の対向面
には電極54a、54bが形成されており、その上に高
分子配向膜55a、55bが塗布され、ラビング処理が
なされている。さらに1方のガラス基板の外側に偏光板
の偏光軸とラビング軸とが平行になるように第1の偏光
板51aが設置されており、他方のガラス基板の外側に
は第1の偏光板51aと偏光軸が90°異なるようにし
て第2の偏光板51bが設置されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 5 is a cell configuration diagram of the liquid crystal panel used in this example. The liquid crystal panel used in this embodiment has a pair of glass substrates 5 each having an antiferroelectric liquid crystal layer 56 having a thickness of about 2μ.
It is composed of 3a and 53b. Electrodes 54a and 54b are formed on the opposite surface of the glass substrate, and polymer alignment films 55a and 55b are applied thereon and subjected to rubbing treatment. Further, a first polarizing plate 51a is installed outside one glass substrate so that the polarization axis of the polarizing plate and the rubbing axis are parallel to each other, and the first polarizing plate 51a is installed outside the other glass substrate. The second polarizing plate 51b is installed so that the polarization axes thereof are different by 90 °.

【0011】(実施例1)図1は本発明の実施例1の駆
動電圧波形とそれに応じた透過光量の変化を表した図で
ある。本発明の実施例1に用いた駆動電圧波形は選択期
間が4位相からなり、パルス幅は100μsに設定し、
非選択期間の時間は約7.5msであり、1フレームは
2つの走査期間から構成した。強誘電性液晶状態から反
強誘電性液晶状態への応答時間を制御するために、選択
期間でのセレクトパルスの電圧値が変化するように、走
査側電圧波形のセレクトパルスの電圧値は一定にし、信
号側電圧波形の電圧値をそれぞれの階調表示データに応
じて変化させた。図1の(A)、(B),(C),
(D)はそれぞれ選択期間に印加される合成波形のセレ
クトパルスの電圧の絶対値を、(A)は49V、(B)
は43V、(C)は39V、(D)は36Vに設定した
ときのそれぞれの駆動電圧波形とそれに応じた透過光量
の変化を示した図である。図1に示したように、選択期
間中のセレクトパルスの電圧の絶対値を変えることで、
非選択期間中の透過光量を制御することが出来た。各セ
レクトパルス電圧のときの全透過光量は、(A)の非選
択期間の全透過光量を100%とすると、(B)は約8
8%(C)は約75%(D)は約43%となった。
(Embodiment 1) FIG. 1 is a diagram showing a drive voltage waveform of Embodiment 1 of the present invention and a change in the amount of transmitted light corresponding to the drive voltage waveform. The drive voltage waveform used in the first embodiment of the present invention has a selection period of four phases and a pulse width of 100 μs.
The time of the non-selection period is about 7.5 ms, and one frame is composed of two scanning periods. In order to control the response time from the ferroelectric liquid crystal state to the anti-ferroelectric liquid crystal state, the voltage value of the select pulse of the scanning side voltage waveform is kept constant so that the voltage value of the select pulse changes during the selection period. The voltage value of the signal side voltage waveform was changed according to each gradation display data. 1 (A), (B), (C),
(D) is the absolute value of the voltage of the select pulse of the composite waveform applied in the selection period, (A) is 49V, (B)
FIG. 4 is a diagram showing respective drive voltage waveforms when 43 V is set to 43 V, (C) is set to 39 V, and (D) is set to 36 V, and changes in the amount of transmitted light corresponding thereto. As shown in FIG. 1, by changing the absolute value of the voltage of the select pulse during the selection period,
It was possible to control the amount of transmitted light during the non-selected period. When the total transmitted light amount at each select pulse voltage is 100% of the total transmitted light amount in the non-selected period of (A), (B) is about 8
About 8% (C) was about 75% (D) was about 43%.

【0012】非選択期間の時間は約7.5msと短時間
のために、この透過光量の変化は視覚では識別すること
が出来ず、この非選択期間内の全透過光量の値によっ
て、明暗の量として識別され、階調表示を行うことが出
来た。
Since the time of the non-selection period is as short as about 7.5 ms, the change in the transmitted light amount cannot be visually discerned, and the value of the total transmitted light amount in the non-selection period causes a change in brightness. It was identified as a quantity, and gradation display could be performed.

【0013】セレクトパルスの電圧の絶対値を変化させ
る代わりに、セレクトパルスのパルス幅を変化させるこ
とによっても、同様の結果が得られる。
Similar results can be obtained by changing the pulse width of the select pulse instead of changing the absolute value of the voltage of the select pulse.

【0014】(実施例2)図2は選択期間に階調用補助
パルスが存在する本発明の実施例2を表した図である。
本発明の実施例2に用いた駆動電圧波形は選択期間が3
位相からなり、パルス幅は100μsに設定し、1フレ
ームは2つの走査期間から構成し、選択期間の2位相目
に印加されるセレクトパルスは35Vに設定した。選択
期間の3位相目は階調表示を行うための階調用補助パル
スである。本発明の実施例2では、選択期間の2位相目
で1度強誘電性液晶状態にセットし、階調表示データに
応じて階調用補助パルスの電圧を変化させることによ
り、強誘電性液晶状態から反強誘電性液晶状態への応答
時間を制御し、これにより、非選択期間での透過光量の
制御を行い階調表示を実現した。図2の(A),
(B),(C),(D)は階調用補助パルスの電圧の絶
対値を、(A)は0V、(B)は12V、(C)は21
V、(D)は26Vにしたときの、それぞれの駆動電圧
波形とそれに応じた透過光量の変化を示した図であり、
(E)は(C)の駆動電圧波形の選択期間付近の拡大図
である。図2に示したように、選択期間中の階調用補助
パルスの電圧値を変えることで、非選択期間中の透過光
量を制御することが出来た。各階調用補助パルスの電圧
値のときの全透過光量は、(A)の非選択期間の全透過
光量を100%とすると、(B)は約62%(C)は約
45%(D)は約21%となり、実施例1と同様に階調
表示を行うことが出来た。
(Embodiment 2) FIG. 2 is a diagram showing Embodiment 2 of the present invention in which an auxiliary pulse for gradation exists in the selection period.
The drive voltage waveform used in the second embodiment of the present invention has a selection period of 3
Phases, the pulse width was set to 100 μs, one frame was composed of two scanning periods, and the select pulse applied in the second phase of the selection period was set to 35V. The third phase of the selection period is a gradation auxiliary pulse for performing gradation display. In the second embodiment of the present invention, the ferroelectric liquid crystal state is set once in the second phase of the selection period, and the voltage of the grayscale auxiliary pulse is changed according to the grayscale display data. To control the response time to the antiferroelectric liquid crystal state, thereby realizing the gradation display by controlling the amount of transmitted light in the non-selected period. 2A,
(B), (C), (D) are absolute values of the voltage of the gradation auxiliary pulse, (A) is 0 V, (B) is 12 V, and (C) is 21.
V and (D) are diagrams showing respective drive voltage waveforms and a change in the amount of transmitted light corresponding thereto when the voltage is set to 26V,
(E) is an enlarged view in the vicinity of a selection period of the drive voltage waveform of (C). As shown in FIG. 2, it was possible to control the amount of transmitted light during the non-selection period by changing the voltage value of the gradation auxiliary pulse during the selection period. When the total transmitted light amount at the voltage value of each gradation auxiliary pulse is 100% of the total transmitted light amount in the non-selection period of (A), (B) is about 62% (C) is about 45% (D). It was about 21%, and gradation display could be performed as in Example 1.

【0015】[0015]

【発明の効果】以上の実施例で述べたように、駆動電圧
波形を変調したり、セレクトパルスの後に階調表示デー
タに応じた階調用の補助パルスを印加することにより、
強誘電性液晶状態から反強誘電性液晶状態への応答時間
を制御し、非選択期間での透過率の変化を制御すること
が出来、良好な階調表示を行うことが出来る様になっ
た。
As described in the above embodiments, by modulating the drive voltage waveform or applying the auxiliary pulse for gradation according to the gradation display data after the select pulse,
The response time from the ferroelectric liquid crystal state to the antiferroelectric liquid crystal state can be controlled, and the change in the transmittance during the non-selection period can be controlled, and good gradation display can be performed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で用いた駆動電圧波形とそれ
に対応する透過光量を示した図である。
FIG. 1 is a diagram showing a drive voltage waveform used in a first embodiment of the present invention and a corresponding amount of transmitted light.

【図2】本発明の実施例2で用いた駆動電圧波形とそれ
に対応する透過光量を示した図である。
FIG. 2 is a diagram showing a drive voltage waveform used in Example 2 of the present invention and a corresponding amount of transmitted light.

【図3】本発明で用いた反強誘電性液晶パネルと偏光板
のパネル構成図である。
FIG. 3 is a panel configuration diagram of an antiferroelectric liquid crystal panel and a polarizing plate used in the present invention.

【図4】反強誘電性液晶パネルのヒステリシスカーブを
表す図である。
FIG. 4 is a diagram showing a hysteresis curve of an antiferroelectric liquid crystal panel.

【図5】従来の駆動方法を示す図である。FIG. 5 is a diagram showing a conventional driving method.

【図6】本発明で用いた反強誘電性液晶パネルのセル構
成図である。
FIG. 6 is a cell configuration diagram of an antiferroelectric liquid crystal panel used in the present invention.

【符号の説明】[Explanation of symbols]

21a,21b 偏光板 22 液晶セル 51a,51b 偏光板 52a,52b シール材 53a,53b ガラス基板 54a,54b 電極 55a,55b 高分子配向膜 56 反強誘電性液晶 21a, 21b Polarizing plate 22 Liquid crystal cell 51a, 51b Polarizing plate 52a, 52b Sealing material 53a, 53b Glass substrate 54a, 54b Electrode 55a, 55b Polymer alignment film 56 Antiferroelectric liquid crystal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年12月21日[Submission date] December 21, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】図3は反強誘電性液晶をディスプレイとし
て用いる場合の液晶ディスプレイのパネルの構成図であ
る。クロスニコルに合わせた偏光板21a,bの間に、
どちらかの偏光板の偏光軸と無電界時に於ける分子の
均的な長軸方向が平行になるように液晶セル22を置
き、電圧無印加時に黒が、電圧印加時には白が表示でき
るようにしている。このようなセル構成に於いて、液晶
セルに電圧を印加したとき、それに対する透過率変化を
グラフにプロットすると図4のようなループを描くこと
が出来、電圧を印加し、増加させていく場合に透過率が
変化し始める電圧値をV1、透過率の変化が飽和する電
圧値をV2、逆に電圧値を減少させていく場合に透過率
が減少し始める電圧値をV5とする。また前記電圧値と
逆極性の電圧を印加し、その絶対値を増加させた場合に
透過率が変化し始める電圧値をV3、透過率変化が飽和
する電圧値をV4、逆に電圧の絶対値を減少させた場合
に透過率が変化し始める電圧値をV6とする。この図4
は、液晶分子にあるパルス波を印加した場合に、電圧値
が使用する反強誘電性液晶により固有のある電圧以上
で、かつ、そのパルス幅と電圧値の積の値が閾値以上の
値をとる場合に第2の安定状態(強誘電性液晶状態)が
選択され、また印加電圧の極性の違いによって第3の安
定状態(強誘電性液晶状態)が選択され、この第2およ
び第3の安定状態から、前記パルス幅と電圧値の積の値
の絶対値があるしきい値より低い場合には第1の安定状
態(反強誘電性液晶状態)が選択されることを示してい
る。
FIG. 3 is a block diagram of a liquid crystal display panel when an antiferroelectric liquid crystal is used as a display. Between the polarizing plates 21a and 21b that are matched to crossed Nicols,
The polarization axis of either polarizing plate and the flatness of the molecule in the absence of an electric field
The liquid crystal cell 22 is placed so that the major axis directions are parallel to each other so that black can be displayed when no voltage is applied and white can be displayed when a voltage is applied. In such a cell configuration, when a voltage is applied to the liquid crystal cell, a change in transmittance is plotted in a graph, and a loop as shown in FIG. 4 can be drawn. When a voltage is applied and increased. Let V1 be the voltage value at which the transmittance starts to change, V2 be the voltage value at which the transmittance change saturates, and V5 be the voltage value at which the transmittance starts decreasing when the voltage value is decreasing. Further, when a voltage having a polarity opposite to that of the voltage value is applied and the absolute value is increased, the voltage value at which the transmittance starts changing is V3, the voltage value at which the transmittance change is saturated is V4, and conversely the absolute value of the voltage. Let V6 be the voltage value at which the transmittance starts to change when is decreased. This Figure 4
Is the voltage value when a pulse wave is applied to the liquid crystal molecules.
Above a certain voltage that is specific to the antiferroelectric liquid crystal used by
In addition, the second stable state (ferroelectric liquid crystal state) is selected when the product value of the pulse width and the voltage value is a threshold value or more, and the third stable state is selected depending on the polarity of the applied voltage. A stable state (ferroelectric liquid crystal state) is selected, and if the absolute value of the product of the pulse width and the voltage value is lower than a certain threshold value from the second and third stable states, the first state is selected. It shows that the stable state (antiferroelectric liquid crystal state) is selected.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】反強誘電性液晶パネルの従来の駆動方法の
一例を図5に示す。図5においては、1フレームは2つ
の走査期間から構成されており、各走査期間は選択期間
と非選択期間よりなっており、走査側電圧波形、信号側
電圧波形とともに、両者の差である合成電圧波形が示さ
れており、さらに、その波形に応じた透過光量の変化が
示されている。ここで、この1フレーム中の2つの走査
期間の波形は、焼き付き防止および液晶組成物の劣化防
止のために、0Vに対して対称とし、交流化を図ってい
る。この駆動方法では選択期間が2位相からなり、パル
ス幅は100μs、非選択期間の時間は約7.5msに
設定されている。各選択期間において、走査側電圧波形
に一定の波高値を持ったパルスが与えられており、信号
側電圧波形により、合成電圧波形の波高値が決定され、
第1あるいは、第2もしくは第3の安定状態を選択し、
その状態を次の選択期間までの非選択期間で保持させて
いた。つまり選択期間で選択した透過光量をその後の非
選択期間では保持させることにより表示を行っていた。
FIG. 5 shows an example of a conventional driving method for an antiferroelectric liquid crystal panel. In Fig. 5, one frame is two
Scanning period, each scanning period is a selection period.
And non-selection period, scanning side voltage waveform, signal side
Along with the voltage waveform, the combined voltage waveform that is the difference between the two is shown.
In addition, the change in the amount of transmitted light according to the waveform is
It is shown. Here, two scans in this one frame
The waveform of the period is to prevent burn-in and deterioration of the liquid crystal composition.
In order to stop it, it is symmetrical with respect to 0V, and it is trying to make alternating current.
It In this driving method, the selection period consists of two phases,
Width is 100 μs, and the time of non-selection period is about 7.5 ms
It is set. Scan side voltage waveform in each selection period
A pulse with a constant crest value is given to the signal
The side voltage waveform determines the peak value of the combined voltage waveform,
Select the first or second or third stable state,
The state was kept in the non-selection period until the next selection period. In other words, the amount of transmitted light selected in the selection period is held in the subsequent non-selection period for display.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする課題】しかしながらこのよう
な方法で表示を行った場合には、透過光量が多いか(白
表示)、少ないか(黒表示)の2通りしかなく、中間で
保持する事が出来なかった。そのため、表示としては白
表示か黒表示しか出来ず、階調表示を行うことは出来な
かった。よって階調表示を行う方法としては複数の画素
単位を一まとめとし、面積で階調を表示する面積階調が
なされていた。しかし、この方法では複数の画素単位を
一つの画素とみなすため、駆動用のコントローラが複雑
化してしまい、また、像の分解能が極端に悪くなり、表
示できる階調数も一まとめにする画素単位数に制約を受
ける。一方、SmC* 相を用いた強誘電性液晶ディスプ
レイについては、特開平4−34417公報の様に、パ
ルス幅を変調することにより、階調表示を行う試みもな
されているが、これはただ一つの安定状態を持つSmC
* 相を示す強誘電性液晶の駆動方法についてであり、S
mCA *相を示す本発明の反強誘電性液晶ディスプレイの
駆動方法とは、パネル構造、材料、駆動波形とも異なっ
ている。そこで本発明では、反強誘電性液晶ディスプレ
イにおいて、表示分解能が良く、また駆動用のコントロ
ーラを複雑にすること無く、白表示と黒表示の2通り以
上の階調表示を行うための駆動方法を提供することを目
的としている。
However, when the display is performed by such a method, there are only two kinds of the transmitted light amount, that is, the large amount of transmitted light (white display) or the small amount of transmitted light (black display), and hold the light in the middle. I couldn't. Therefore, only white display or black display can be performed as display, and gradation display cannot be performed. Therefore, as a method of gradation display,
The unit gradation is displayed as a unit and the gradation is displayed by area.
It was done. However, with this method
Since it is considered as one pixel, the driving controller is complicated
And the image resolution becomes extremely poor,
The number of gradations that can be displayed is also limited.
Kick On the other hand, a ferroelectric liquid crystal display using the SmC * phase
As for the ray, as described in JP-A-4-34417,
There is no attempt to display gradation by modulating the pulse width.
However, this is a SmC that has only one stable state.
* It is about the driving method of the ferroelectric liquid crystal showing the phase,
shows the mC A * phase antiferroelectric liquid crystal display of the present invention
The driving method is different from the panel structure, material, and driving waveform.
ing. Therefore, in the present invention, the antiferroelectric liquid crystal display is
B, the display resolution is good and the drive controller is
It is an object of the present invention to provide a driving method for performing gradation display of two or more kinds of white display and black display without complicating the error.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、 (1)対向面にそれぞれ複数の走査電極と信号電極を有
する1対の基板間に反強誘電性液晶を挟持し、マトリッ
クス状に液晶画素を有する反強誘電性液晶セルを、互い
の偏光軸が直するような2枚の偏光板に、前記反強誘
電性液晶分子の平均的長軸方向が前記偏光板のいずれか
の偏光軸とほぼ同一方向になるように挟んだ構成をした
反強誘電性液晶ディスプレイで、前記反強誘電性液晶の
強誘電性液晶状態から反強誘電性液晶状態への応答時間
を、制御することにより、図5において一定であった
選択期間での透過光量の変化を制御する。
In order to achieve the above object, according to the present invention, (1) an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposite surfaces. the antiferroelectric liquid crystal cell having a liquid crystal pixel in a matrix, the two polarizing plates such as mutual polarization axes are Cartesian, average long axis direction of the antiferroelectric liquid crystal molecules is the polarizer And a response time from the ferroelectric liquid crystal state of the antiferroelectric liquid crystal to the antiferroelectric liquid crystal state. Is controlled to control the change in the amount of transmitted light in the non-selection period which is constant in FIG .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図は本実施例に用いた液晶パネルのセル
構成図である。本実施例で用いた液晶パネルは約2μの
厚さの反強誘電性液晶層56を持つ一対のガラス基板5
3a、53bから構成されている。ガラス基板の対向面
には電極54a、54bが形成されており、その上に高
分子配向膜55a、55bが塗布され、ラビング処理が
なされている。さらに1方のガラス基板の外側に偏光板
の偏光軸とラビング軸とが平行になるように第1の偏光
板51aが設置されており、他方のガラス基板の外側に
は第1の偏光板51aと偏光軸が90°異なるようにし
て第2の偏光板51bが設置されている。また、本実施
例においては、図4に示したV2の値が約30Vの反強
誘電性液晶を用いた。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 6 is a cell configuration diagram of the liquid crystal panel used in this example. The liquid crystal panel used in this embodiment has a pair of glass substrates 5 each having an antiferroelectric liquid crystal layer 56 having a thickness of about 2μ.
It is composed of 3a and 53b. Electrodes 54a and 54b are formed on the opposite surface of the glass substrate, and polymer alignment films 55a and 55b are applied thereon and subjected to rubbing treatment. Further, a first polarizing plate 51a is installed outside one glass substrate so that the polarization axis of the polarizing plate and the rubbing axis are parallel to each other, and the first polarizing plate 51a is installed outside the other glass substrate. The second polarizing plate 51b is installed so that the polarization axes thereof are different by 90 °. In addition, this implementation
In the example, the value of V2 shown in FIG.
Dielectric liquid crystal was used.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】(実施例1)図1は本発明の実施例1の駆
動電圧波形とそれに応じた透過光量の変化を表した図で
ある。本発明の実施例1に用いた駆動電圧波形は1フレ
ームを2つの走査期間から構成し、各走査期間は選択期
間と非選択期間よりなっており、この1フレーム中の2
つの走査期間の波形は、0Vに対して対称となってい
る。本実施例の駆動方法では選択期間が4位相からな
り、パルス幅は100μs、非選択期間の時間は約7.
5msに設定されている。強誘電性液晶状態から反強誘
電性液晶状態への応答時間を制御するために、選択期間
でのセレクトパルスの電圧値が変化するように、走査側
電圧波形のセレクトパルスの電圧値は一定にし、信号側
電圧波形の電圧値をそれぞれの階調表示データに応じて
変化させた。図1の(A)、(B)、(C)、(D)は
それぞれ選択期間に印加される合成波形のセレクトパル
スの電圧の絶対値を、(A)は49V、(B)は43
V、(C)は39V、(D)は36Vに設定したときの
それぞれの合成電圧波形とそれに応じた透過光量の変化
を示した図である。図1に示したように、選択期間中の
セレクトパルスの電圧の絶対値を変えることで、非選択
期間中の透過光量を制御することが出来た。各セレクト
パルス電圧のときの全透過光量は、(A)の非選択期間
の全透過光量を100%とすると、(B)は約88%
(C)は約75%(D)は約43%となった。
(Embodiment 1) FIG. 1 is a diagram showing a drive voltage waveform of Embodiment 1 of the present invention and a change in the amount of transmitted light corresponding to the drive voltage waveform. The driving voltage waveform used in the first embodiment of the present invention is one frame.
The system consists of two scanning periods, each scanning period being a selection period.
It consists of a period and a non-selection period, and 2 in this 1 frame
The waveforms in one scanning period are symmetrical with respect to 0V.
It In the driving method of the present embodiment, the selection period does not consist of 4 phases.
The pulse width is 100 μs, and the non-selection period is about 7.
It is set to 5 ms. In order to control the response time from the ferroelectric liquid crystal state to the anti-ferroelectric liquid crystal state, the voltage value of the select pulse of the scanning side voltage waveform is kept constant so that the voltage value of the select pulse changes during the selection period. The voltage value of the signal side voltage waveform was changed according to each gradation display data. 1, (A), (B), (C), and (D) are absolute values of the select pulse voltage of the composite waveform applied in the selection period, (A) is 49 V, and (B) is 43.
FIG. 9 is a diagram showing respective combined voltage waveforms when V, (C) are set to 39 V, and (D) is set to 36 V, and changes in the amount of transmitted light corresponding thereto. As shown in FIG. 1, it was possible to control the amount of transmitted light during the non-selection period by changing the absolute value of the voltage of the select pulse during the selection period. The total transmitted light amount at each select pulse voltage is about 88% in (B) when the total transmitted light amount in the non-selected period of (A) is 100%.
(C) was about 75% and (D) was about 43%.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】(実施例2)図2は選択期間に階調用補助
パルスが存在する本発明の実施例2を表した図である。
本発明の実施例2に用いた駆動電圧波形は1フレームを
2つの走査期間から構成し、各走査期間は選択期間と非
選択期間よりなっており、この1フレーム中の2つの走
査期間の波形は、0Vに対して対称となっている。本実
施例の駆動方法では選択期間が3位相からなり、パルス
幅は100μs、非選択期間の時間は約7.5msに設
定されている。本実施例においては選択期間の2位相目
に印加される合成波形のセレクトパルスは35Vに設定
した。選択期間の3位相目は階調表示を行うための階調
用補助パルスである。本発明の実施例2では、選択期間
の2位相目で1度強誘電性液晶状態にセットし、階調表
示データに応じて階調用補助パルスの電圧を変化させる
ことにより、強誘電性液晶状態から反強誘電性液晶状態
への応答時間を制御し、これにより、非選択期間での透
過光量の制御を行い階調表示を実現した。図2の
(A)、(B)、(C)、(D)は階調用補助パルスの
合成電圧の絶対値を、(A)は0V、(B)は12V、
(C)は21V、(D)は26Vにしたときの、それぞ
れの駆動合成電圧波形とそれに応じた透過光量の変化を
示した図であり、(E)は(C)の駆動電圧波形の選択
期間付近の拡大図である。図2に示したように、選択期
間中の階調用補助パルスの電圧値を変えることで、非選
択期間中の透過光量を制御することが出来た。各階調用
補助パルスの電圧値のときの全透過光量は、(A)の非
選択期間の全透過光量を100%とすると、(B)は約
62%(C)は約45%(D)は約21%となり、実施
例1と同様に階調表示を行うことが出来た。
(Embodiment 2) FIG. 2 is a diagram showing Embodiment 2 of the present invention in which an auxiliary pulse for gradation exists in the selection period.
The drive voltage waveform used in the second embodiment of the present invention is one frame.
It consists of two scanning periods, each scanning period includes a selection period and a non-selection period.
It consists of a selection period, and two runs in this one frame
The waveform of the check period is symmetrical with respect to 0V. Real
In the driving method of the embodiment, the selection period consists of three phases, and the pulse
The width is 100 μs, and the time of the non-selection period is set to about 7.5 ms.
It is fixed. In this embodiment, the select pulse of the composite waveform applied in the second phase of the selection period is set to 35V. The third phase of the selection period is a gradation auxiliary pulse for performing gradation display. In the second embodiment of the present invention, the ferroelectric liquid crystal state is set once in the second phase of the selection period, and the voltage of the grayscale auxiliary pulse is changed according to the grayscale display data. To control the response time to the antiferroelectric liquid crystal state, thereby realizing the gradation display by controlling the amount of transmitted light in the non-selected period. 2A, 2B, 2C, and 2D are gradation auxiliary pulses.
The absolute value of the combined voltage is 0V for (A), 12V for (B),
(C) is a diagram showing respective drive composite voltage waveforms and changes in the amount of transmitted light when 21V and (D) are set to 26V, and (E) is a selection of the drive voltage waveform of (C). It is an enlarged view near the period. As shown in FIG. 2, it was possible to control the amount of transmitted light during the non-selection period by changing the voltage value of the gradation auxiliary pulse during the selection period. When the total transmitted light amount at the voltage value of each gradation auxiliary pulse is 100% of the total transmitted light amount in the non-selection period of (A), (B) is about 62% (C) is about 45% (D). It was about 21%, and gradation display could be performed as in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向面にそれぞれ複数の走査電極と信号
電極を有する1対の基板間に反強誘電性液晶を挟持し、
マトリックス状に液晶画素を有する反強誘電性液晶セル
を、互いの偏光軸が直行するような2枚の偏光板に前記
反強誘電性液晶分子の平均的長軸方向が前記偏光板のい
ずれかの偏光軸とほぼ同一方向になるように挟んだ構成
をした反強誘電性液晶ディスプレイの階調表示方法に於
いて、前記反強誘電性液晶の強誘電性液晶状態から反強
誘電性液晶状態への変化の応答時間を制御することによ
り、階調表示を行うことを特徴とした反強誘電性液晶デ
ィスプレイの表示方法。
1. An antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposite surfaces,
An antiferroelectric liquid crystal cell having liquid crystal pixels in a matrix is formed by two polarizing plates whose polarization axes are orthogonal to each other, and the average long axis direction of the antiferroelectric liquid crystal molecules is one of the polarizing plates. In a gray scale display method of an antiferroelectric liquid crystal display having a configuration in which the antiferroelectric liquid crystal display is sandwiched so as to be in substantially the same direction as the polarization axis of the antiferroelectric liquid crystal. A method of displaying an anti-ferroelectric liquid crystal display, which is characterized in that gradation display is performed by controlling the response time of the change to the.
【請求項2】 前記反強誘電性液晶ディスプレイの駆動
電圧波形は少なくとも2つの走査期間からなり、お互い
の走査期間の波形は0Vに対して対称であり、各走査期
間は少なくとも選択期間と非選択期間の2つの期間から
構成され、前記選択期間内に印加される駆動電圧波形を
変調することにより前記反強誘電性液晶の応答時間を制
御することを特徴とした請求項1記載の反強誘電性液晶
ディスプレイの表示方法。
2. The driving voltage waveform of the anti-ferroelectric liquid crystal display is composed of at least two scanning periods, the waveforms of the scanning periods are symmetrical with respect to 0 V, and each scanning period is at least a selection period and a non-selection period. 2. The anti-ferroelectric device according to claim 1, wherein the anti-ferroelectric liquid crystal device is constituted by two periods, and the response time of the anti-ferroelectric liquid crystal is controlled by modulating a drive voltage waveform applied during the selection period. Display method for liquid crystal display.
【請求項3】 前記選択期間は少なくとも強誘電性液晶
状態にセットするセレクトパルスと、階調表示データに
応じた階調用補助パルスから構成され、前記階調用補助
パルスによって前記反強誘電性液晶の応答時間を制御す
ることにより階調表示を行うことを特徴とした請求項1
記載の反強誘電性液晶ディスプレイの表示方法。
3. The selection period is composed of at least a select pulse for setting to a ferroelectric liquid crystal state and a gradation auxiliary pulse according to gradation display data. The gradation display is performed by controlling the response time.
A method for displaying the antiferroelectric liquid crystal display described.
JP25901193A 1993-09-24 1993-09-24 Antiferroelectric liquid crystal panel Expired - Fee Related JP3247518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25901193A JP3247518B2 (en) 1993-09-24 1993-09-24 Antiferroelectric liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25901193A JP3247518B2 (en) 1993-09-24 1993-09-24 Antiferroelectric liquid crystal panel

Publications (2)

Publication Number Publication Date
JPH0792449A true JPH0792449A (en) 1995-04-07
JP3247518B2 JP3247518B2 (en) 2002-01-15

Family

ID=17328115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25901193A Expired - Fee Related JP3247518B2 (en) 1993-09-24 1993-09-24 Antiferroelectric liquid crystal panel

Country Status (1)

Country Link
JP (1) JP3247518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973659A (en) * 1995-06-07 1999-10-26 Citizen Watch Co., Ltd. Method of driving antiferroelectric liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973659A (en) * 1995-06-07 1999-10-26 Citizen Watch Co., Ltd. Method of driving antiferroelectric liquid crystal display
US6329970B2 (en) 1995-06-07 2001-12-11 Citizen Watch Co., Ltd. Method of driving antiferroelectric liquid crystal display

Also Published As

Publication number Publication date
JP3247518B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US7532183B2 (en) Liquid crystal display device and its drive method
JP3603904B2 (en) Driving method and apparatus for antiferroelectric liquid crystal display element
US20050225545A1 (en) Liquid crystal display apparatus and method of driving the same
US7830344B2 (en) Display panel including liquid crystal material having spontaneous polarization
JP2954429B2 (en) Active matrix drive
KR100545751B1 (en) LCD display
US5777593A (en) Driving method and system for antiferroelectric liquid-crystal display device
JPH0854605A (en) Driving method for anti-ferroelectric liquid crystal display
US5973659A (en) Method of driving antiferroelectric liquid crystal display
JPH07104245A (en) Method for driving active matrix substrate
JP3247518B2 (en) Antiferroelectric liquid crystal panel
JPH10268265A (en) Liquid crystal display device
JP2766947B2 (en) Display device
JP3787846B2 (en) Antiferroelectric liquid crystal device
JPH06202082A (en) Driving method for antiferroelectric liquid crystal display
JPH028814A (en) Liquid crystal device
KR100695302B1 (en) Driving Method of LCD
JP3258110B2 (en) Driving method of antiferroelectric liquid crystal panel
JP3513920B2 (en) Liquid crystal display device and driving method thereof
JPH11231286A (en) Driving method for antiferroelectric liquid crystal display element
JPH07311373A (en) Antiferroelectric liquid crystal element and its driving method
JP2002099263A (en) Method for driving anti-ferroelectric liquid crystal panel
JPH0648333B2 (en) Driving method of liquid crystal matrix display panel
JPH0743676A (en) Liquid crystal display device
JPH05249438A (en) Liquid crystal drive

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101102

LAPS Cancellation because of no payment of annual fees