[go: up one dir, main page]

JPH0792329B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus

Info

Publication number
JPH0792329B2
JPH0792329B2 JP62278634A JP27863487A JPH0792329B2 JP H0792329 B2 JPH0792329 B2 JP H0792329B2 JP 62278634 A JP62278634 A JP 62278634A JP 27863487 A JP27863487 A JP 27863487A JP H0792329 B2 JPH0792329 B2 JP H0792329B2
Authority
JP
Japan
Prior art keywords
tower
column
pressure
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62278634A
Other languages
Japanese (ja)
Other versions
JPH01121678A (en
Inventor
▲高▼司 辰巳
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP62278634A priority Critical patent/JPH0792329B2/en
Publication of JPH01121678A publication Critical patent/JPH01121678A/en
Publication of JPH0792329B2 publication Critical patent/JPH0792329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気を圧縮,精製,冷却し、低温で液化分離
する空気液化分離方法及びその装置に関し、特に低純度
酸素を製造する空気液化分離方法及びその装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an air liquefaction separation method and apparatus for compressing, purifying and cooling air, and liquefying and separating at low temperature, and particularly to air liquefaction for producing low-purity oxygen. The present invention relates to a separation method and its device.

〔従来の技術〕[Conventional technology]

第7図は、従来の代表的な低純度酸素製造装置の系統図
を示すもので、フィルタ1により除塵された原料空気A
は、原料空気圧縮機2で圧縮され、予熱器3及びアフタ
ークーラ4で冷却され、フロン冷却装置5でさらに冷却
された後に吸着器6に入り、水分と炭酸ガスを除去さ
れ、主熱交換器7で低温ガスにより露点付近まで冷却さ
れて下部塔8の下部に導入される。
FIG. 7 is a system diagram of a conventional typical low-purity oxygen production apparatus, in which the raw material air A removed by the filter 1 is used.
Is compressed by the raw material air compressor 2, cooled by the preheater 3 and the aftercooler 4, further cooled by the fluorocarbon cooling device 5, and then enters the adsorber 6, where water and carbon dioxide are removed, and the main heat exchanger It is cooled to the vicinity of the dew point by the low temperature gas at 7 and introduced into the lower part of the lower tower 8.

原料空気Aは、下部塔8で精留され、塔頂の中圧窒素ガ
スGNと塔底の酸素富化の液化空気LAとに分離される。こ
の液化空気LAは、液化空気過冷器10で過冷され、弁11で
膨張して上部塔12の中段に導入されて塔頂の高純度窒素
ガスHGN,塔中部の低純度窒素ガスWN及び塔底の低純度液
化酸素LOに分離される。
The raw material air A is rectified in the lower tower 8 and separated into a medium pressure nitrogen gas GN at the top of the tower and an oxygen-enriched liquefied air LA at the bottom of the tower. The liquefied air LA is supercooled by the liquefied air subcooler 10, expanded by the valve 11 and introduced into the middle stage of the upper tower 12 to obtain high-purity nitrogen gas HGN at the top of the tower, low-purity nitrogen gas WN in the middle of the tower, and It is separated into low-purity liquefied oxygen LO at the bottom of the column.

一方下部塔8の塔頂の中圧窒素ガスGNの一部は、上部塔
12の底部に配設された主凝縮蒸発器13に導入され、上記
低純度液化酸素LOと熱交換して液化し、液化窒素LNとな
る。この液化窒素LNの一部は、下部塔8の塔頂へ戻され
て還流液となり、残部は、液化窒素過冷器14で過冷にさ
れた後に弁15で膨張して上部塔12の頂部に還流液として
導入される。
On the other hand, part of the medium pressure nitrogen gas GN at the top of the lower tower 8 is
It is introduced into the main condenser evaporator 13 arranged at the bottom of 12, and heat-exchanges with the above-mentioned low-purity liquefied oxygen LO to be liquefied to become liquefied nitrogen LN. A part of the liquefied nitrogen LN is returned to the top of the lower tower 8 to become a reflux liquid, and the rest is supercooled by the liquefied nitrogen subcooler 14 and then expanded by a valve 15 to be a top part of the upper tower 12. Is introduced as a reflux liquid.

前記低純度液化酸素LOは、上記中圧窒素ガスGNと熱交換
を行い、気化して低純度酸素ガスGOとなり一部が上部塔
から取出され、残部が上部塔12の上昇ガスとなる。また
低純度液化酸素LOの一部は上部塔12底部より導出され、
サーモサイフォンリボイラ16及び循環吸着器17を通って
上部塔12の塔底に戻るルートで循環されており、その一
部が炭化水素の蓄積を防ぐために、いわゆる保安液酸SO
として抜き出されている。
The low-purity liquefied oxygen LO exchanges heat with the medium-pressure nitrogen gas GN and is vaporized to become the low-purity oxygen gas GO, a part of which is taken out from the upper tower, and the rest is the rising gas of the upper tower 12. Also, part of the low-purity liquefied oxygen LO is derived from the bottom of the upper tower 12,
It is circulated in a route that returns to the bottom of the upper tower 12 through the thermosiphon reboiler 16 and the circulation adsorber 17, and a part of it is circulated so-called safe liquid acid SO to prevent the accumulation of hydrocarbons.
Has been extracted as.

前記下部塔8頂部から抜き出された中圧窒素ガスGNの残
部は、その一部が主熱交換器7で所定温度まで加熱され
た後、膨張タービン18で大気圧程度に膨張し、寒冷を発
生して再び主熱交換器7に導入されて原料空気Aを冷却
し、常温まで加熱されて大気へ放出される。残部の中圧
窒素ガスGNは、中圧のまま主熱交換器7で加熱されて外
部に取り出され、製品中圧窒素ガスMGNとなる。
The rest of the medium-pressure nitrogen gas GN withdrawn from the top of the lower tower 8 is partially heated in the main heat exchanger 7 to a predetermined temperature, and then expanded in the expansion turbine 18 to about atmospheric pressure to cool it. The generated air is introduced into the main heat exchanger 7 again to cool the raw material air A, heated to room temperature and discharged to the atmosphere. The rest of the medium pressure nitrogen gas GN is heated by the main heat exchanger 7 while being kept at the medium pressure and is taken out to the outside to become the product medium pressure nitrogen gas MGN.

また上部塔12から抜き出された高純度窒素ガスHGN及び
低純度窒素ガスWNは、液化窒素過冷器14,液化空気過冷
器10及び主熱交換器7で常温まで加温され、高純度窒素
ガスHGNは、製品として採取され、低純度窒素ガスWNの
一部は、弁19から大気へ放出される。低純度窒素ガスWN
の残部は、予熱器3及び電気ヒータ20により吸着器6の
再生に必要な温度(100〜150℃程度)にまで加熱されて
吸着器6に送られる。また吸着器6の冷却工程時には、
低純度窒素ガスを弁21から吸着器6に導入し、吸着器6
を冷却する。
The high-purity nitrogen gas HGN and the low-purity nitrogen gas WN extracted from the upper tower 12 are heated to room temperature in the liquefied nitrogen subcooler 14, the liquefied air subcooler 10 and the main heat exchanger 7 to obtain high purity. The nitrogen gas HGN is collected as a product, and a part of the low-purity nitrogen gas WN is released from the valve 19 to the atmosphere. Low-purity nitrogen gas WN
The remaining part of is heated to a temperature (about 100 to 150 ° C.) necessary for regenerating the adsorber 6 by the preheater 3 and the electric heater 20 and sent to the adsorber 6. Also, during the cooling process of the adsorber 6,
The low-purity nitrogen gas was introduced into the adsorber 6 through the valve 21, and the adsorber 6
To cool.

そして上部塔12塔底から抜き出された低純度酸素ガスGO
は、主熱交換器7で常温まで加温され、液化酸素蒸発器
22で加温されて常温とされた前記保安液酸SOと混合され
て酸素圧縮器23で圧縮され、製品低純度酸素ガスPOとし
て需要者設備に送出される。
Then, the low-purity oxygen gas GO extracted from the bottom of the upper tower 12
Is heated to room temperature in the main heat exchanger 7, and is a liquefied oxygen evaporator.
It is mixed with the safe liquid acid SO heated to 22 and brought to room temperature, compressed in the oxygen compressor 23, and delivered to the customer equipment as product low-purity oxygen gas PO.

第8図は、上記系統に主凝縮蒸発器13とは別に副凝縮蒸
発器24を配設した例を示すもので、上部塔12の塔底から
低純度液化酸素LOを導出して弁25で膨張させた後に副凝
縮蒸発器24に導入し、下部塔8頂部の中圧窒素ガスGNと
熱交換させて気化させ、製品低純度酸素ガスPOを得てい
る。
FIG. 8 shows an example in which a sub-condensing evaporator 24 is provided in the system above in addition to the main condensing evaporator 13. Low-purity liquefied oxygen LO is led out from the bottom of the upper tower 12 and a valve 25 is used. After being expanded, it is introduced into the sub-condensing evaporator 24, and is heat-exchanged with the medium pressure nitrogen gas GN at the top of the lower tower 8 to be vaporized to obtain the product low-purity oxygen gas PO.

このように上部塔12塔底から低純度液化酸素LOを抜き取
り、副凝縮蒸発器24に導入し、ここで気化させること
で、上部塔12塔底の低純度液化酸素LOの組成を製品低純
度酸素ガスPOと同じ組成とすることができる。このと
き、副凝縮蒸発器24の液化酸素の純度は、製品低純度酸
素ガスPOの純度より高くなるので、副凝縮器蒸発24内の
圧力を下げることにより、この液化酸素の蒸発温度を主
凝縮器13の液化酸素の蒸発温度と同じにすることができ
る。これにより主凝縮蒸発器13および副凝縮蒸発器24内
の低純度液化酸素LOの沸点を下げることができ、下部塔
8塔頂から主凝縮蒸発器13および副凝縮蒸発器24に導入
する中圧窒素ガスGNの温度を下げることができる。従っ
て、下部塔8の圧力、即ち原料空気Aの圧縮圧力を下げ
て動力原単位を低減させている。
In this way, the low-purity liquefied oxygen LO is extracted from the bottom of the upper tower 12 and introduced into the sub-condensation evaporator 24, where it is vaporized, so that the composition of the low-purity liquefied oxygen LO at the bottom of the upper tower 12 is the product of low purity. It can have the same composition as the oxygen gas PO. At this time, the purity of the liquefied oxygen in the sub-condensation evaporator 24 becomes higher than the purity of the product low-purity oxygen gas PO, so the evaporation temperature of the liquefied oxygen is mainly condensed by lowering the pressure in the sub-condenser evaporation 24. It can be the same as the evaporation temperature of the liquefied oxygen in the vessel 13. As a result, the boiling point of the low-purity liquefied oxygen LO in the main condensation evaporator 13 and the sub-condensation evaporator 24 can be lowered, and the intermediate pressure introduced from the top of the lower tower 8 to the main condensation evaporator 13 and the sub-condensation evaporator 24 can be reduced. The temperature of nitrogen gas GN can be lowered. Therefore, the pressure of the lower tower 8, that is, the compression pressure of the raw material air A is lowered to reduce the power consumption.

例えば、製品低純度酸素ガスPOを1.45ata,90%O2とした
場合、前記第7図に示した方法では、上部塔12塔底の低
純度液化酸素LOの組成は、約95.7%O2(沸点−180.2
℃)であり、第8図に示す方法では、約90.0%O2(沸点
−181.5℃)となる。このように低純度液化酸素LOの沸
点が1.3℃低下するので、下部塔12からの中圧窒素ガスG
Nの温度も1.3℃下げることができる。即ち、中圧窒素ガ
スGNの露点を下げることができるのでその圧力、即ち原
料空気Aの圧縮圧を約0.5kg/cm2A下げることができる。
この方法によれば第7図の方法に比して純度90%の酸素
を製造する場合で約4%の動力低減となる(第3図参
照)。
For example, when the product low-purity oxygen gas PO is 1.45ata, 90% O 2 , the composition of the low-purity liquefied oxygen LO at the bottom of the upper tower 12 is about 95.7% O 2 in the method shown in FIG. (Boiling point -180.2
° C.) and is, in the method shown in FIG. 8, is about 90.0% O 2 (boiling point -181.5 ℃). In this way, the boiling point of low-purity liquefied oxygen LO drops by 1.3 ° C, so the medium pressure nitrogen gas G from the lower column 12
The temperature of N can also be reduced by 1.3 ° C. That is, since the dew point of the medium pressure nitrogen gas GN can be lowered, its pressure, that is, the compression pressure of the raw material air A can be lowered by about 0.5 kg / cm 2 A.
According to this method, in the case of producing oxygen with a purity of 90%, the power consumption is reduced by about 4% as compared with the method of FIG. 7 (see FIG. 3).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上述のものでは、製品低純度酸素ガス,上
部塔上昇ガス及び上部塔に還流液として導入する液化窒
素の生成を、製品低純度酸素ガスと平衡な低純度液化酸
素、または製品低純度酸素ガスと同濃度の低純度液化酸
素と、下部塔頂部の中圧窒素ガスとの間の熱交換だけに
依っているため、高い原料空気圧力が必要となる。また
上部塔の精留において、第9図に示すように特に酸素濃
度の高い領域(図の左下部分)では操作線OLと平衡線GL
がかなり離れており、上部塔でかなり大きな有効エネル
ギの損失を生じている。この損失は、空気分離装置全体
の有効エネルギ損失の大きな割合を占めている。
However, in the above-mentioned one, the product low-purity oxygen gas, the upper tower rising gas, and the production of liquefied nitrogen introduced into the upper tower as a reflux liquid are used as low-purity liquefied oxygen in equilibrium with the product low-purity oxygen gas or product low-purity oxygen gas. Since it depends only on the heat exchange between the low-purity liquefied oxygen having the same concentration as the above and the medium pressure nitrogen gas at the top of the lower column, a high feed air pressure is required. In the rectification of the upper column, as shown in Fig. 9, the operating line OL and the equilibrium line GL are observed especially in the region where the oxygen concentration is high (lower left part of the diagram).
Are far apart, causing a significant loss of useful energy in the upper tower. This loss accounts for a large proportion of the effective energy loss of the entire air separation device.

また第8図に示す方法による動力費の低減効果は、第7
図に示す方法に比べて製品酸素ガスが90%O2の場合で約
4%、95%O2の場合で約1%である。尚、この方法で
は、製品低純度酸素ガスが上部塔より低い圧力の副凝縮
蒸発器から採取されるため、前記第7図の方法に比べて
酸素圧縮機の負荷を増大させている(上記動力費は、こ
の分を含めた比較値である)。
Moreover, the effect of reducing the power cost by the method shown in FIG.
Compared to the method shown in the figure, it is about 4% when the product oxygen gas is 90% O 2 , and about 1% when the product oxygen gas is 95% O 2 . In this method, since the product low-purity oxygen gas is collected from the sub-condensing evaporator having a lower pressure than the upper tower, the load of the oxygen compressor is increased as compared with the method shown in FIG. The cost is a comparative value including this amount).

そこで本発明は、これらの問題点を改善し、消費動力を
大幅に低減することができる空気液化分離方法及びその
装置を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air liquefaction separation method and an apparatus therefor capable of improving these problems and significantly reducing power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、まず空気液化分
離方法として、原料空気を圧縮,精製,冷却して下部塔
と上部塔からなる複精留塔に導入し、液化分離する空気
液化分離方法において、前記下部塔を高圧下部塔と中圧
下部塔とに分割するとともに、前記上部塔を中圧下部塔
より低圧の第一及び第二上部塔とに分割し、高圧及び中
圧の原料空気を異なった2系統の供給系統により供給
し、それぞれ前記高圧下部塔と中圧下部塔とに導入して
精留分離し、両下部塔底部に分離した酸素富化の液体空
気を導出し膨張させた後に、前記第二上部塔の中間部に
供給してさらに精留し、該第二上部塔の底部に分離した
塔底液を前記第一上部塔の塔頂部に還流液として供給し
て精留し、該第一上部塔の底部から製品酸素を採取する
とともに、前記高圧下部塔の塔頂部に分離した窒素ガス
を前記第一上部塔の塔底液と熱交換を行う主凝縮蒸発器
の温流体とし、また前記中圧下部塔の塔頂部に分離した
窒素ガスを前記第二上部塔の塔底液と熱交換を行う中間
凝縮蒸発器の温流体とし、さらに前記第一上部塔の塔頂
部に分離した酸素富化ガスを前記第二上部塔の塔下部に
上昇ガスとして導入することを特徴とし、またその装置
として、前記下部塔を高圧下部塔と中圧下部塔とに分割
するとともに前記上部塔を中圧下部塔より低圧の第一及
び第二上部塔とに分割し、前記両下部塔底部と前記第二
上部塔の中間部とを膨張弁を介して接続し、該第二上部
塔の底部と前記第一上部塔の頂部とを接続し、該第一上
部塔の底部に製品酸素採取管を接続し、第一上部塔の頂
部と第二上部塔の下部とを接続し、また高圧下部塔の塔
頂部のガスと第一上部塔の塔底部の液とを熱交換させる
主凝縮蒸発器を配設し、さらに中圧下部塔の塔頂部のガ
スと第二上部塔の塔底部の液とを熱交換させる中間凝縮
蒸発器を配設するとともに、前記高圧下部塔に原料空気
を供給する高圧空気供給系統と、前記中圧下部塔に原料
空気を供給する中圧空気供給系統とを備えたことを特徴
とするものである。
In order to achieve the above object, the present invention firstly provides, as an air liquefaction separation method, an air liquefaction separation method in which raw material air is compressed, purified, and cooled, and then introduced into a double rectification column consisting of a lower tower and an upper tower, and liquefied In the method, the lower column is divided into a high-pressure lower column and a medium-pressure lower column, and the upper column is divided into a lower pressure first and second upper columns than the medium-pressure lower column, and high-pressure and medium-pressure raw materials. Air is supplied by two different supply systems, introduced into the high-pressure lower column and the medium-pressure lower column, respectively, for rectification separation, and the separated oxygen-enriched liquid air is extracted and expanded at the bottoms of both lower columns. After that, it is fed to the middle portion of the second upper column for further rectification, and the bottom liquid separated at the bottom of the second upper column is fed to the top of the first upper column as a reflux liquid. After rectifying and collecting product oxygen from the bottom of the first upper column, The nitrogen gas separated at the top of the partial column is used as the warm fluid of the main condenser evaporator which performs heat exchange with the bottom liquid of the first upper column, and the separated nitrogen gas at the top of the intermediate pressure lower column is As a warm fluid of the intermediate condenser evaporator that performs heat exchange with the bottom liquid of the second upper column, the oxygen-enriched gas separated at the top of the first upper column rises to the lower part of the second upper column. As the apparatus, the lower column is divided into a high-pressure lower column and an intermediate-pressure lower column, and the upper column is divided into a lower pressure first and second upper column than an intermediate-pressure lower column. Splitting, the bottoms of both lower towers and the middle part of the second upper tower are connected via an expansion valve, the bottom of the second upper tower and the top of the first upper tower are connected, and the first Connect the product oxygen sampling tube to the bottom of the upper tower, connect the top of the first upper tower and the bottom of the second upper tower, A main condenser evaporator for heat exchange between the gas at the top of the high-pressure lower column and the liquid at the bottom of the first upper column is provided, and the gas at the top of the medium-pressure lower column and the bottom of the second upper column are further arranged. A high pressure air supply system for supplying raw material air to the high pressure lower column, and an intermediate pressure air supply system for supplying raw material air to the medium pressure lower column. It is characterized by having.

〔作 用〕[Work]

上記のごとく構成することにより、精留分離された気体
あるいは液体の組成に応じて各塔内を最適な圧力や温度
にでき、原料空気を高圧空気供給系統と中圧空気供給系
統とに分割して供給することで、装置全体での原料空気
の圧縮圧を下げることができ、動力原単位の低減を図る
ことができる。
By configuring as described above, the pressure and temperature inside each tower can be optimized according to the composition of the rectified and separated gas or liquid, and the raw material air is divided into a high pressure air supply system and an intermediate pressure air supply system. By supplying as a whole, the compression pressure of the raw material air in the entire apparatus can be lowered, and the power consumption rate can be reduced.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。尚、前記従来
例と同一要素のものには、同符号あるいは同符号にa,b
を付して示し詳細な説明を省略する。また、以下の説明
において、各気液の組成や圧力、あるいは動力費の比較
等は、上部塔の圧力を1.4〜1.5ataとした場合を示すも
ので、上部塔の圧力をこれ以上の圧力、例えば2ata程度
とした場合でも同様に良好な結果を得ることができる。
Hereinafter, the present invention will be described with reference to the drawings. It should be noted that the same elements as those in the conventional example have the same reference numerals or the same reference numerals a, b.
Will be attached and will not be described in detail. Further, in the following description, the composition and pressure of each gas-liquid, or the comparison of power costs, etc. shows the case where the pressure of the upper tower is 1.4 ~ 1.5ata, the pressure of the upper tower is more than this, For example, even when it is set to about 2ata, similarly good results can be obtained.

まず第1図は、本発明の第1実施例を示すものであっ
て、下部塔は、高圧下部塔30aと中圧下部塔30bとに分割
されており、上部塔は、第一及び第二上部塔31a,31bと
に分割されている。
First, FIG. 1 shows a first embodiment of the present invention, in which the lower tower is divided into a high-pressure lower tower 30a and an intermediate-pressure lower tower 30b, and the upper towers are first and second It is divided into upper towers 31a and 31b.

前記両下部塔30a,30b底部と前記第二上部塔31bの中間部
とは、膨張弁32a,32bを介して接続されており、両下部
塔30a,30b底部に精留分離される酸素富化の液化空気LA
を第二上部塔31bに導入している。
The bottoms of the both lower towers 30a, 30b and the intermediate portion of the second upper tower 31b are connected via expansion valves 32a, 32b, and oxygen enrichment is rectified and separated into the bottoms of the both lower towers 30a, 30b. Liquefied air LA
Is introduced into the second upper tower 31b.

第二上部塔31bの底部は、前記第一上部塔31aの頂部に弁
33を備えた導管34により接続されており、第二上部塔31
b底部に精留分離される低純度液化酸素LObが第一上部塔
31aに還流液として導入されている。
The bottom of the second upper tower 31b has a valve at the top of the first upper tower 31a.
Connected by conduit 34 with 33, second upper tower 31
b Low-purity liquefied oxygen LOb that is rectified and separated at the bottom is the first upper column
It is introduced into 31a as a reflux liquid.

第一上部塔31aの底部には、製品酸素採取管35が接続さ
れ、製品低純度酸素ガスPOが採取されている。また第一
上部塔31aの頂部は、前記導管34とは別の導管36により
第二上部塔31bの下部と接続されており、第一上部塔31a
頂部に精留分離される低純度酸素ガスGOを第二上部塔31
bの上昇ガスとして導入している。
A product oxygen sampling pipe 35 is connected to the bottom of the first upper tower 31a to collect the product low-purity oxygen gas PO. Further, the top of the first upper tower 31a is connected to the lower portion of the second upper tower 31b by a conduit 36 different from the conduit 34, and the first upper tower 31a.
Low-purity oxygen gas GO, which is rectified and separated at the top, is passed through the second upper column 31
Introduced as rising gas of b.

さらに第一上部塔31aの底部には、前記高圧下部塔30a塔
頂部の窒素ガスGNaと第一上部塔31a底部の低純度液化酸
素LOaとを熱交換させる主凝縮蒸発器37が配設されてお
り、また第二上部塔31bの底部には、中圧下部塔30b頂部
の窒素ガスGNbと第二上部塔31b底部の低純度液化酸素LO
bとを熱交換させる中間凝縮蒸発器38が配設されてい
る。
Furthermore, at the bottom of the first upper column 31a, a main condensing evaporator 37 for heat exchange between the nitrogen gas GNa at the top of the high-pressure lower column 30a and the low-purity liquefied oxygen LOa at the bottom of the first upper column 31a is provided. In addition, at the bottom of the second upper column 31b, nitrogen gas GNb at the top of the medium pressure lower column 30b and low-purity liquefied oxygen LO at the bottom of the second upper column 31b.
An intermediate condenser evaporator 38 for heat exchange with b is provided.

そして原料空気供給系統は、前記高圧下部塔30aに原料
空気Aaを供給する高圧空気供給系統39と、前記中圧下部
塔30bに原料空気Abを供給する中圧空気供給系統40とで
構成されている。
The raw material air supply system is composed of a high pressure air supply system 39 for supplying the raw material air Aa to the high pressure lower tower 30a and an intermediate pressure air supply system 40 for supplying the raw material air Ab to the medium pressure lower tower 30b. There is.

以下、本実施例装置を気流の流れに従って説明する。The apparatus of this embodiment will be described below according to the flow of air flow.

まず原料空気Aa,Abは、高圧空気供給系統39,中圧空気供
給系統40ともに、フィルタ1a,1bにより除塵され、原料
空気圧縮機2a,2bでそれぞれ所定の圧力に圧縮され、予
熱器3(高圧空気供給系統のみ)及びアフタークーラ4
a,4bで冷却され、フロン冷却装置5a,5bでさらに冷却さ
れた後、吸着器6a,6bに入り、水分と炭酸ガスを除去さ
れ、主熱交換器7a,7bで低温ガスにより露点付近まで冷
却される。
First, the raw material air Aa, Ab is dust-removed by the filters 1a, 1b in both the high-pressure air supply system 39 and the medium-pressure air supply system 40, compressed by the raw air compressors 2a, 2b to predetermined pressures, respectively, and the preheater 3 ( High pressure air supply system only) and after cooler 4
After being cooled by a, 4b and further cooled by CFC cooling devices 5a, 5b, they enter the adsorbers 6a, 6b to remove water and carbon dioxide gas, and the main heat exchangers 7a, 7b are brought to near the dew point by low temperature gas. To be cooled.

そして高圧空気供給系統39の原料空気Aaは、高圧下部塔
30aの底部に導入され、中圧空気供給系統40の原料空気A
bは、中圧下部塔30bの底部に導入される。
The raw material air Aa of the high pressure air supply system 39 is the high pressure lower tower.
Introduced at the bottom of 30a, raw air A of medium pressure air supply system 40
b is introduced at the bottom of the medium pressure lower column 30b.

原料空気Aa,Abは、両下部塔30a,30b内で精留され、塔頂
部の高圧及び中圧窒素ガスGNa,GNbと塔底部の酸素富化
の液化空気LA,LAとなる。この液化空気LAは、それぞれ
液化空気過冷器10a,10bで過冷され、膨張弁32a,32bで膨
張して第二上部塔31bの中段に導入されて精留され、塔
頂の高純度窒素ガスHGN,塔中部の低純度窒素ガスWN及び
塔底の低純度液化酸素LObに分離する。この低純度液化
酸素LObは、酸素濃度が60〜85%で、かつ第一上部塔31a
塔底液の酸素濃度より低い濃度であり、一部が中間凝縮
蒸発器38で前記中圧の窒素ガスGNbと熱交換を行い気化
し、低純度酸素ガスとなって第二上部塔31bの上昇ガス
となる。
The raw material air Aa, Ab is rectified in both lower columns 30a, 30b, and becomes high pressure and medium pressure nitrogen gas GNa, GNb at the top of the column and oxygen enriched liquefied air LA, LA at the bottom of the column. The liquefied air LA is subcooled by the liquefied air subcoolers 10a and 10b, respectively, expanded by the expansion valves 32a and 32b, introduced into the middle stage of the second upper column 31b and rectified, and high-purity nitrogen at the top of the column. Gas HGN, low-purity nitrogen gas WN in the middle of the tower, and low-purity liquefied oxygen LOb at the bottom of the tower are separated. This low-purity liquefied oxygen LOb has an oxygen concentration of 60 to 85% and has a first upper column 31a.
The concentration is lower than the oxygen concentration of the bottom liquid, and a part of it undergoes heat exchange with the intermediate pressure nitrogen gas GNb in the intermediate condenser evaporator 38 to be vaporized to become low-purity oxygen gas and rise in the second upper column 31b. It becomes gas.

残部の酸素濃度60〜85%の低純度過酸素LObは、前記導
管34により導出されて第一上部塔31の塔頂部に還流液と
して導入され、精留されて酸素濃度32〜65%の酸素富化
ガスGOと酸素の濃度92〜99%の低純度液化酸素LOaとに
分離する。この低純度液化酸素LOaは、第一上部塔31a内
で精留されることにより、前記第二上部塔31b塔底の低
純度化酸素LObより酸素濃度が高くなっている。
The remaining low-purity peroxygen LOb having an oxygen concentration of 60 to 85% is introduced by the conduit 34 and introduced into the top of the first upper column 31 as a reflux liquid, and rectified to produce oxygen having an oxygen concentration of 32 to 65%. Separated into enriched gas GO and low-purity liquefied oxygen LOa having an oxygen concentration of 92 to 99%. This low-purity liquefied oxygen LOa has a higher oxygen concentration than the low-purified oxygen LOb at the bottom of the second upper column 31b by being rectified in the first upper column 31a.

そして第一上部塔31a底部の低純度液化酸素LOaは、主凝
縮蒸発器37で前記高圧の窒素ガスGNaと熱交換を行い、
気化して平衡組成である80〜98%の低純度酸素ガスとな
り、一部が製品低純度酸素ガスPOとして製品酸素採取管
35から取出され、残部が第一上部塔31aの上昇ガスとな
る。また低純度液化酸素LOaの一部は、前記従来例と同
様にサーモサイフォンリボイラ16により循環吸着器17を
通して循環されており、その一部が保安液酸SOとして抜
き出されている。
And the low-purity liquefied oxygen LOa at the bottom of the first upper column 31a performs heat exchange with the high-pressure nitrogen gas GNa in the main condenser evaporator 37,
Evaporated into 80-98% low-purity oxygen gas, which is an equilibrium composition, and part of it is used as product low-purity oxygen gas PO.
It is taken out from 35, and the rest becomes the rising gas of the first upper tower 31a. Further, a part of the low-purity liquefied oxygen LOa is circulated through the circulation adsorber 17 by the thermosiphon reboiler 16 as in the conventional example, and a part thereof is extracted as a safe liquid acid SO.

また第一上部塔31a頂部の酸素富化ガスGOは、塔頂部か
ら前記導管36により導出されて第二上部塔31bの下部に
導入され、第二上部塔31bの上昇ガスとなる。
Further, the oxygen-enriched gas GO at the top of the first upper tower 31a is led from the tower top by the conduit 36 and introduced into the lower part of the second upper tower 31b, and becomes the rising gas of the second upper tower 31b.

そして第一上部塔31a下部から抜き出された製品低純度
酸素ガスPOは、分岐してそれぞれ主熱交換器7a,7bで常
温まで加温された後に再び合流し、さらに液化酸素蒸発
器22で加温されて常温とされた前記保安液酸SOと合流し
て酸素圧縮機23で圧縮され、需要者設備に送出される。
And the product low-purity oxygen gas PO extracted from the lower part of the first upper tower 31a is branched and warmed to room temperature in the main heat exchangers 7a and 7b, respectively, and then joined again, and further in the liquefied oxygen evaporator 22. The safe liquid acid SO, which has been warmed to normal temperature, joins and is compressed by the oxygen compressor 23 and sent to the customer facility.

一方前記高圧下部塔30aの塔頂に分離した高圧の窒素ガ
スGNaの一部は、第一上部塔31aに配設された主凝縮蒸発
器37に導入され、前記低純度液化酸素LOaと熱交換して
液化し、凝縮液化して液化窒素LNaとなる。この液化窒
素LNaは、一部が高圧下部塔30aの塔頂部に戻されて還流
液となり、残部が膨張弁41で膨張した後に中圧下部塔30
bの頂部に導入され、中圧下部塔30bの還流液となる。
On the other hand, a part of the high-pressure nitrogen gas GNa separated at the top of the high-pressure lower column 30a is introduced into the main condenser evaporator 37 arranged in the first upper column 31a, and exchanges heat with the low-purity liquefied oxygen LOa. To liquefy and condense into liquefied nitrogen to become liquefied nitrogen LNa. This liquefied nitrogen LNa is partially returned to the top of the high-pressure lower column 30a to become a reflux liquid, and the rest is expanded by the expansion valve 41 and then the intermediate-pressure lower column 30a.
It is introduced at the top of b and becomes the reflux liquid for the intermediate pressure lower column 30b.

また中圧下部塔30bの塔頂の中圧の窒素ガスGNbの一部
は、第二上部塔31bに配設された中間凝縮蒸発器38に導
入され、前記低純度液化酸素LObと熱交換して液化し、
液化窒素LNbとなり、一部が中圧下部塔30bの還流液とな
り、残部が液化窒素過冷器14で過冷にされた後に膨張弁
15で膨張して第二上部塔31bの頂部に導入され、第二上
部塔31bの還流液となる。
Further, part of the medium pressure nitrogen gas GNb at the top of the medium pressure lower column 30b is introduced into the intermediate condenser evaporator 38 arranged in the second upper column 31b, and exchanges heat with the low-purity liquefied oxygen LOb. Liquefy,
It becomes liquefied nitrogen LNb, part of it becomes the reflux liquid of the intermediate pressure lower column 30b, and the rest is supercooled by the liquefied nitrogen subcooler 14 and then the expansion valve
It expands at 15 and is introduced at the top of the second upper tower 31b, and becomes the reflux liquid for the second upper tower 31b.

中圧窒素ガスGNbの残部は、その一部が主熱交換器7a,7b
で所定温度まで加熱された後に合流して、膨張タービン
18で大気圧程度に膨張し、寒冷を発生して再び主熱交換
器7bに導入され、中圧の原料空気Abを冷却し、常温まで
加熱されて大気へ放出される。残部の中圧窒素ガスGNb
は、中圧のまま主熱交換器7bで加温されて中圧窒素ガス
MGNとして取出される。
A part of the rest of the medium pressure nitrogen gas GNb is the main heat exchangers 7a, 7b.
After being heated to a predetermined temperature in the
At 18 it expands to about atmospheric pressure, produces cold, is again introduced into the main heat exchanger 7b, cools the medium pressure raw material air Ab, is heated to room temperature and is released to the atmosphere. Remaining medium pressure nitrogen gas GNb
Is heated in the main heat exchanger 7b at medium pressure and is heated to medium pressure nitrogen gas.
It is taken out as MGN.

また第二上部塔31b塔頂の高純度窒素ガスHGNと塔中部の
低純度窒素ガスWNは、それぞれ第二上部塔31bから導出
されて液化窒素過冷器14,液化空気過冷器10a,10bを通っ
た後に、高純度窒素ガスHGNは、主熱交換器7aで原料空
気Aaと熱交換を行い常温となり採取される。
Further, the high-purity nitrogen gas HGN at the top of the second upper tower 31b and the low-purity nitrogen gas WN at the middle of the tower are respectively discharged from the second upper tower 31b and are liquefied nitrogen supercooler 14, liquefied air subcooler 10a, 10b. After passing through the high-purity nitrogen gas HGN, the main heat exchanger 7a exchanges heat with the raw material air Aa to reach room temperature and is collected.

また低純度窒素ガスWNは、主熱交換器7bで原料空気Abと
熱交換を行い常温となり、その一部が弁19から大気へ放
出される。残部は、予熱器3及び電気ヒータ20により吸
着器6a,6bの再生に必要な温度にまで加熱されて両系統3
9,40のそれぞれの吸着器6a,6bに送られる。また吸着器6
a,6bの冷却工程時には、この低純度窒素ガスWNを弁21a,
21bから吸着器6a,6bに導入し、吸着器6a,6bを冷却す
る。
Further, the low-purity nitrogen gas WN exchanges heat with the raw material air Ab in the main heat exchanger 7b to reach room temperature, and part of it is released from the valve 19 to the atmosphere. The remaining part is heated to a temperature necessary for regenerating the adsorbers 6a and 6b by the preheater 3 and the electric heater 20, and both systems 3
It is sent to the respective adsorbers 6a and 6b of 9,40. Also adsorber 6
During the cooling process of a and 6b, the low-purity nitrogen gas WN is supplied to the valve 21a,
It is introduced from 21b into the adsorbers 6a and 6b, and the adsorbers 6a and 6b are cooled.

このように空気液化分離装置を形成し、各気液の流れを
上述のごとくとすることにより、精留分離された気体あ
るいは液体の組成に応じて各塔内を最適な圧力や温度に
できる。
By thus forming the air liquefaction / separation device and setting the flow of each gas / liquid as described above, it is possible to set the optimum pressure and temperature in each column according to the composition of the gas or liquid that has been rectified and separated.

例えば、製品低純度酸素ガスPOの組成を80〜98%O2とし
た場合、第一上部塔31aの下部から導出する製品低純度
酸素ガスPOがこの組成となるので、第一上部塔31a底部
の液化酸素LOaの組成は、92〜99%O2となる。この時、
第二上部塔31bから第一上部塔31aの還流液として導入す
る液化酸素LObの組成は、第一上部塔31aの精留作用によ
り第一上部塔31a底部の液化酸素LOaの組成より低くてよ
く、60〜85%O2程度でよいことになる。
For example, when the composition of the product low-purity oxygen gas PO is 80 to 98% O 2 , since the product low-purity oxygen gas PO derived from the lower part of the first upper tower 31a has this composition, the bottom of the first upper tower 31a The composition of the liquefied oxygen LOa is 92 to 99% O 2 . At this time,
The composition of the liquefied oxygen LOb introduced as the reflux liquid of the first upper tower 31a from the second upper tower 31b may be lower than the composition of the liquefied oxygen LOa at the bottom of the first upper tower 31a due to the rectification action of the first upper tower 31a. , 60 to 85% O 2 is good enough.

これにより、第二上部塔31bの底部に配設された中間凝
縮蒸発器38での液化酸素LObの沸点が、第一上部塔31aの
底部に配設された主凝縮蒸発器37での液化酸素LOaの沸
点に比べて低くなるので、中間凝縮蒸発器38に温流体と
して導入する窒素ガスGNbの露点を低くすることができ
る。
As a result, the boiling point of the liquefied oxygen LOb in the intermediate condenser / evaporator 38 provided at the bottom of the second upper column 31b is liquefied oxygen in the main condenser / evaporator 37 provided at the bottom of the first upper column 31a. Since the boiling point of LOa is lower than the boiling point of LOa, the dew point of nitrogen gas GNb introduced into the intermediate condensation evaporator 38 as a warm fluid can be lowered.

即ち、窒素ガスGNbの圧力を下げることが可能となり、
これに合わせて下部塔を高圧(5Kg/cm2A〜6Kg/cm2A)の
高圧下部塔30aとこれより低圧(0.8〜2.5Kg/CM2A低い圧
力、3.2Kg/cm2A〜4.8Kg/cm2A)の中圧下部塔30bとに分
割し、原料空気を高圧空気供給系統39と中圧空気供給系
統40に分割して供給する(高圧空気:全原料空気量の36
〜55%、中圧空気:同64〜45%)ことで、装置全体での
原料空気の圧縮圧を下げることができ、動力原単位の低
減を図ることができる。
That is, it becomes possible to reduce the pressure of the nitrogen gas GNb,
In accordance with this, the lower tower is a high-pressure (5 Kg / cm 2 A to 6 Kg / cm 2 A) high-pressure lower tower 30 a and a lower pressure (0.8 to 2.5 Kg / CM 2 A lower pressure, 3.2 Kg / cm 2 A to 4.8). (Kg / cm 2 A) medium pressure lower tower 30b, and the raw material air is divided into a high pressure air supply system 39 and a medium pressure air supply system 40 (high pressure air: 36
~ 55%, medium pressure air: the same 64-64%), the compression pressure of the raw material air in the entire device can be reduced, and the power consumption rate can be reduced.

次表に上記装置における原料空気の量(割合)とその圧
力の例を示す。比較として前記第7図及び第8図の従来
例装置における原料空気の圧力を示す。
The following table shows examples of the amount (rate) of raw material air and its pressure in the above device. For comparison, the pressure of the raw material air in the conventional apparatus shown in FIGS. 7 and 8 is shown.

上表に示すごとく、この例の要件下では全原料空気中の
53〜63%を従来の原料空気圧縮圧より0.9〜1.8Kg/cm2ab
s低い中圧とすることができ、全体としての空気圧縮量
を10%程度低減させることが可能となる。
As shown in the table above, under the requirements of this example,
53-63% is 0.9-1.8Kg / cm 2 ab from conventional raw material air compression pressure
s A low intermediate pressure can be achieved, and the overall air compression amount can be reduced by about 10%.

尚、上記高圧下部塔および中圧下部塔の圧力範囲は上記
範囲に限らず、得られる動力原単位の上限としてさらに
高い値を許容する場合にはさらに広い範囲に設定でき
る。それに伴って第一上部塔,第二上部塔とも、さらに
広い圧力範囲に設定することができる。
The pressure ranges of the high-pressure lower column and the intermediate-pressure lower column are not limited to the above ranges, and can be set to a wider range when a higher value of the obtained power consumption unit is allowed. Accordingly, both the first upper column and the second upper column can be set to a wider pressure range.

また第2図(本発明方法における上部塔のマッケーブ・
シール線図)に示すように、中間凝縮蒸発器38を設ける
ことにより、第一上部塔31a部分の操作線OLaが平衡線GL
に接近するため、第一上部塔31aと第二上部塔31bを合せ
た上部塔としての有効エネルギーの損失を低減でき、装
置全体の精留分離効率を向上させることができる。
Fig. 2 (Maccab of the upper tower in the method of the present invention.
As shown in the seal diagram), by providing the intermediate condenser / evaporator 38, the operation line OLa of the first upper column 31a part becomes the equilibrium line GL.
Since the first upper column 31a and the second upper column 31b are combined, effective energy loss as an upper column can be reduced, and the rectification separation efficiency of the entire apparatus can be improved.

さらに、製品低純度酸素ガスPOを第一上部塔31aの圧力
で導出・採取することができるので、酸素圧縮機23の負
荷を増大させることがない。
Furthermore, since the product low-purity oxygen gas PO can be derived and collected at the pressure of the first upper column 31a, the load on the oxygen compressor 23 is not increased.

第3図は、本例における動力原単位の低減効果を、前記
第7図の装置で95%O2を採取する場合を100として示す
もので、第8図の装置も参考として同時に示す。尚、い
ずれも原料空気は吸着器による精製であって、中圧窒素
ガス(MGN)を採取しない場合である。また酸素圧縮機
の動力も考慮に入れている。
FIG. 3 shows the power consumption reduction effect in this example as 100 when 95% O 2 is sampled by the apparatus of FIG. 7, and the apparatus of FIG. 8 is also shown as a reference. In all cases, the raw material air was purified by an adsorber, and medium pressure nitrogen gas (MGN) was not collected. The power of the oxygen compressor is also taken into consideration.

図から明らかなように、本発明の方法及び装置は、従来
の方法及び装置に比べて動力原単位を10%近く低減する
ことができる。そのため運転コストが大幅に低減でき、
原料空気系統を2系統とするための設備費を上回るコス
ト低減が図れる。
As is clear from the figure, the method and apparatus of the present invention can reduce power consumption by nearly 10% as compared with the conventional method and apparatus. Therefore, the operating cost can be reduced significantly,
It is possible to achieve cost reduction that exceeds the equipment cost for having two raw air systems.

また本例における装置では、第一上部塔からの低純度酸
素ガスと同時に、中圧下部塔からの中圧窒素ガス及び第
二上部塔からの高純度窒素ガスを採取しているが、中圧
下部塔からの窒素ガス(製品)が不要のときは採取する
必要がなく、第二上部塔からの高純度窒素ガスの採取を
しない時は、第二上部塔塔頂部から低純度窒素ガスのみ
を導出すればよい。尚、上部中圧下部塔からの窒素ガス
を採取しない場合は、その分第二上部塔に導入される液
化窒素量が増加し、該塔の還流液が増えた分精留板の必
要段数が減り、塔底の圧力が低くなり原料空気圧力をさ
らに低くすることが出来る。
Further, in the device in this example, at the same time as the low-purity oxygen gas from the first upper column, the medium-pressure nitrogen gas from the medium-pressure lower column and the high-purity nitrogen gas from the second upper column are collected. When nitrogen gas (product) from the lower tower is not needed, it is not necessary to collect it. When not collecting high-purity nitrogen gas from the second upper tower, only low-purity nitrogen gas is collected from the top of the second upper tower. You can derive it. Incidentally, when nitrogen gas is not collected from the upper middle pressure lower column, the amount of liquefied nitrogen introduced into the second upper column is increased correspondingly, and the required number of stages of the rectification plate is increased due to the increased reflux liquid of the column. As a result, the pressure at the bottom of the tower becomes lower, and the pressure of the raw material air can be further lowered.

第4図は、前記第1図に示した系統に動力回収系統を設
けたものである。この動力回収系統42は、中圧の窒素ガ
スMGNを予熱器3に導入して加温した後にタービン43に
導入し、窒素ガスMGNの圧力を動力として回収し、圧縮
機やポンプ等の動力源として利用するものである。
FIG. 4 is a system in which a power recovery system is provided in the system shown in FIG. This power recovery system 42 introduces medium-pressure nitrogen gas MGN into the preheater 3 to heat it and then introduces it into the turbine 43, recovers the pressure of the nitrogen gas MGN as power, and supplies it to a power source such as a compressor or a pump. Is used as.

第5図は、前記第1図に示した系統中の中圧下部塔30b
から導出する中圧窒素ガスGNを第二上部塔31bの中間凝
縮蒸発器38に導入するのみとし、中圧下部塔30bの下段
から空気Acを導出して主熱交換器7a,7bで昇温させた後
に膨張タービン18に導入し、膨張,冷却した空気Acを第
二上部塔31bの中段に導入したものである。
FIG. 5 is a middle pressure lower tower 30b in the system shown in FIG.
The medium pressure nitrogen gas GN derived from the above is only introduced into the intermediate condenser evaporator 38 of the second upper column 31b, and the air Ac is derived from the lower stage of the intermediate pressure lower column 30b to raise the temperature in the main heat exchangers 7a, 7b. After being allowed to flow, the air Ac, which has been introduced into the expansion turbine 18 and expanded and cooled, is introduced into the middle stage of the second upper tower 31b.

また第6図は、原料空気の供給系統に、冷却水Ca,Cbを
用いた水洗冷却塔44a,44bとリバーシング(可逆式)熱
交換器45a,45bを用いた例を示すもので、さらに高圧及
び中圧両下部塔30a,30bの底部に、該底部の空気Aa,Abを
液化させる液化器46a,46bをそれぞれ接続しており、ま
た中圧下部塔30bの底部には、リボイラー47を備えた循
環回路48を設けている。
Further, FIG. 6 shows an example in which the water washing cooling towers 44a and 44b using cooling water Ca and Cb and the reversing (reversible) heat exchangers 45a and 45b are used in the feed air supply system. At the bottoms of both the high-pressure and intermediate-pressure lower columns 30a, 30b, liquefiers 46a, 46b for liquefying the air Aa, Ab at the bottoms are respectively connected, and at the bottom of the intermediate-pressure lower column 30b, a reboiler 47 is provided. A circulating circuit 48 provided is provided.

原料空気Aa,Abは、圧縮された後に水洗冷却塔44a,44bで
予冷され、切替弁49a,49bで流路を切切替えられてリバ
ーシング熱交換器45a,45bでそれぞれ冷却され、逆止弁5
0a,50bを通って両下部塔30a,30bに導入される。両下部
塔30a,30bと第一及び第二上部塔31a,31bでは、前記実施
例と同様に精留分離及び気液の授受が行われ、製品低純
度酸素ガスPOが採取される。
The raw material air Aa, Ab is compressed and then pre-cooled in the washing and cooling towers 44a, 44b, the switching valves 49a, 49b are used to switch and switch the flow paths, and the reversing heat exchangers 45a, 45b are cooled respectively, and a check valve. Five
It is introduced into both lower towers 30a and 30b through 0a and 50b. In the lower towers 30a, 30b and the first and second upper towers 31a, 31b, rectification separation and gas-liquid exchange are performed as in the above-described embodiment, and the product low-purity oxygen gas PO is collected.

一方第二上部塔31bの頂部の窒素ガスWGNは、液化窒素過
冷器14を経て分岐し、両者とも空気過冷器10a,10bを通
った後、一方が、高圧空気供給系統39aのリバーシング
熱交換器45aに導入され、原料空気Aaを冷却するととも
にリバーシング熱交換器45aの再生を行い、他の一方の
窒素ガスWGNは、中圧空気供給系統40aのリバーシング熱
交換器45bに導入される。
On the other hand, the nitrogen gas WGN at the top of the second upper tower 31b is branched through the liquefied nitrogen subcooler 14, both of which have passed through the air subcoolers 10a and 10b, and then one of them is reversing the high pressure air supply system 39a. It is introduced into the heat exchanger 45a, cools the raw material air Aa and regenerates the reversing heat exchanger 45a, and the other one of the nitrogen gas WGN is introduced into the reversing heat exchanger 45b of the medium pressure air supply system 40a. To be done.

また中圧下部塔30bから導出された中圧窒素ガスGNbの一
部は、3方向に分岐した後、2系統がそれぞれリバーシ
ング熱交換器45a,45bで昇温される。そして再び低温の
ままの中圧窒素ガスGNbと合流し、膨張タービン18で膨
張して寒冷を発生し、前記第二上部塔31bからの窒素ガ
スWGNの一部と合流して中圧空気供給系統40aのリバーシ
ング熱交換器45bに導入され、原料空気Abを冷却すると
ともにリバーシング熱交換器45bの再生を行う。両リバ
ーシング熱交換器45a,45bを出たガスは、合流した後に
弁51を経て放出される。
Further, a part of the medium-pressure nitrogen gas GNb derived from the medium-pressure lower column 30b is branched in three directions, and then the two systems are heated by the reversing heat exchangers 45a and 45b, respectively. Then, it merges with the medium-pressure nitrogen gas GNb while still at low temperature, expands in the expansion turbine 18 to generate cold, and merges with a part of the nitrogen gas WGN from the second upper tower 31b to form a medium-pressure air supply system. It is introduced into the reversing heat exchanger 45b of 40a to cool the raw material air Ab and regenerate the reversing heat exchanger 45b. The gas discharged from both reversing heat exchangers 45a and 45b merges and then is discharged through a valve 51.

本発明は、このように各種の系統により実施することが
でき、いずれの系統においても従来の同種の系統に比べ
て大幅な運転コストの低減を図ることがきる。
As described above, the present invention can be implemented by various systems, and in any system, the operating cost can be significantly reduced as compared with the conventional system of the same type.

尚、各塔の気液の組成や圧力及び温度は、製品として採
取される低純度酸素ガスの組成や圧力等により適宜設定
することができ、さらに従来から用いられている各種制
御機器等を付加して動力原単位を向上させることができ
る。
The gas-liquid composition, pressure and temperature of each tower can be appropriately set by the composition and pressure of the low-purity oxygen gas sampled as a product, and various conventional control equipment and the like can be added. It is possible to improve the power consumption rate.

また各塔を、完全に分離独立させることなく1基の精留
塔の内部を仕切って上下に連設させてもよい。特に上部
塔は、第一上部塔と第二上部塔の内部圧力が同程度であ
るので、一般的に形成して中間部に中間凝縮蒸発器を配
設しても同等の作用を得ることができる。
In addition, each of the towers may be vertically separated by partitioning the inside of one rectification tower without being completely separated and independent. Especially in the upper column, since the internal pressures of the first upper column and the second upper column are about the same, even if they are generally formed and an intermediate condenser / evaporator is arranged in the middle part, the same action can be obtained. it can.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、下部塔を高圧下部塔と
中圧下部塔とに分割するとともに、上部塔を第一及び第
二上部塔に分割し、高圧下部塔と第一上部塔との間に主
凝縮蒸発器を、中圧下部塔と第二上部塔との間に中間凝
縮蒸発器をそれぞれ配設し、前記高圧下部塔に原料空気
を供給する高圧空気供給系統と、前記中圧下部塔に原料
空気を供給する中圧空気供給系統とを備えて、各部に適
正な圧力,温度,組成の気液を供給したから、従来の空
気液化分離方法及びその装置に比べて大幅な動力原単位
の低減を図ることができ、低コストの製品ガスを供給す
ることができる。
As described above, the present invention divides the lower tower into a high-pressure lower tower and an intermediate-pressure lower tower, and divides the upper tower into first and second upper towers, and a high-pressure lower tower and a first upper tower. Between the middle pressure lower column and the second upper column, and a high-pressure air supply system for supplying raw air to the high-pressure lower column, Since an intermediate pressure air supply system for supplying raw material air to the lower pressure column was provided to supply gas and liquid of appropriate pressure, temperature, and composition to each part, it was significantly larger than the conventional air liquefaction separation method and its apparatus. It is possible to reduce the power consumption and to supply low-cost product gas.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す系統図、第2図は本発
明の上部塔におけるマッケーブ・シール線図、第3図は
動力原単位の低減効果を示す説明図、第4図乃至第6図
は、それぞれ本発明の他の実施例を示す系統図、第7図
及び第8図はそれぞれ従来例を示す系統図、第9図は従
来の上部塔におけるマッケーブ・シール線図である。 2a,2b……原料空気圧縮機、6a,6b……吸着器、7a,7b…
…主熱交換器、18……膨張タービン、30a……高圧下部
塔、30b……中圧下部塔、31a……第一上部塔、31b……
第二上部塔、32a,32b……膨張弁、34……導管、35……
製品酸素採取管、36……導管、37……主凝縮蒸発器、38
……中間凝縮蒸発器、39……高圧空気供給系統、40……
中圧空気供給系統、41……膨張弁、Aa,Ab……原料空
気、GNa,GNb……中圧窒素ガス、GO……低純度酸素ガ
ス、HGN……高純度窒素ガス、LA……液化空気、LNa,LNb
……液化窒素、LOa,LOb……低純度液化酸素、MGN……製
品中圧窒素ガス、PO……製品低純度酸素ガス、WN……低
純度窒素ガス
FIG. 1 is a system diagram showing one embodiment of the present invention, FIG. 2 is a McCabe seal diagram in the upper tower of the present invention, FIG. 3 is an explanatory diagram showing the effect of reducing power consumption, and FIGS. FIG. 6 is a system diagram showing another embodiment of the present invention, FIGS. 7 and 8 are system diagrams showing conventional examples, and FIG. 9 is a McCabe seal diagram in a conventional upper tower. . 2a, 2b ... Raw air compressor, 6a, 6b ... Adsorber, 7a, 7b ...
… Main heat exchanger, 18 …… Expansion turbine, 30a …… High pressure lower tower, 30b …… Medium pressure lower tower, 31a …… First upper tower, 31b ……
2nd upper tower, 32a, 32b …… expansion valve, 34 …… conduit, 35 ……
Product oxygen sampling tube, 36 ... Conduit, 37 ... Main condenser evaporator, 38
...... Intermediate condenser evaporator, 39 ...... High pressure air supply system, 40 ......
Medium pressure air supply system, 41 …… Expansion valve, Aa, Ab …… Material air, GNa, GNb …… Medium pressure nitrogen gas, GO …… Low purity oxygen gas, HGN …… High purity nitrogen gas, LA …… Liquefaction Air, LNa, LNb
...... Liquefied nitrogen, LOa, LOb …… Low-purity liquefied oxygen, MGN …… Product medium-pressure nitrogen gas, PO …… Product low-purity oxygen gas, WN …… Low-purity nitrogen gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料空気を圧縮,精製,冷却して下部塔と
上部塔からなる複精留塔に導入し、液化分離する空気液
化分離方法において、前記下部塔を高圧下部塔と中圧下
部塔とに分割するとともに、前記上部塔を中圧下部塔よ
り低圧の第一及び第二上部塔とに分割し、高圧及び中圧
の原料空気を異なった2系統の供給系統により供給し、
それぞれ前記高圧下部塔と中圧下部塔とに導入して精留
分離し、両下部塔底部に分離した酸素富化の液体空気を
導出し膨張させた後に、前記第二上部塔の中間部に供給
してさらに精留し、該第二上部塔の底部に分離した塔底
液を前記第一上部塔の当頂部に還流液として供給して精
留し、該第一上部塔の底部から製品酸素を採取するとと
もに、前記高圧下部塔の塔頂部に分離した窒素ガスを前
記第一上部塔の塔底液と熱交換を行う主凝縮蒸発器の温
流体とし、また前記中圧下部塔の塔頂部に分離した窒素
ガスを前記第二上部塔の塔底液と熱交換を行う中間凝縮
蒸発器の温流体とし、さらに前記第一上部塔の塔頂部に
分離した酸素富化ガスを前記第二上部塔の塔下部に上昇
ガスとして導入することを特徴とする空気液化分離方
法。
1. An air liquefaction separation method in which raw material air is compressed, purified, cooled and introduced into a double rectification column composed of a lower tower and an upper tower, and liquefied and separated, wherein the lower tower is a high pressure lower tower and an intermediate pressure lower tower. And the upper tower is divided into a low pressure first and second upper tower from a medium pressure lower tower, and high pressure and medium pressure raw material air are supplied by two different supply systems,
Introduced into the high-pressure lower column and the medium-pressure lower column respectively for rectification separation, after the oxygen-enriched liquid air separated at the bottoms of both lower columns is expanded and expanded, then in the middle part of the second upper column. It is supplied and further rectified, and the bottom liquid separated at the bottom of the second upper column is supplied to the top of the first upper column as a reflux liquid to be rectified and the product is obtained from the bottom of the first upper column. While collecting oxygen, the nitrogen gas separated at the top of the high-pressure lower column is used as the warm fluid of the main condenser evaporator for heat exchange with the bottom liquid of the first upper column, and the column of the medium-pressure lower column is also used. The nitrogen gas separated at the top is used as a warm fluid of an intermediate condenser evaporator which performs heat exchange with the bottom liquid of the second upper column, and the oxygen-enriched gas separated at the top of the first upper column is the second gas. An air liquefaction separation method, characterized in that the gas is introduced as a rising gas into the lower part of the upper tower.
【請求項2】原料空気を圧縮,精製,冷却して下部塔と
上部塔からなる複精留塔に導入し、液化分離する空気液
化分離装置において、前記下部塔を高圧下部塔と中圧下
部塔とに分割するとともに前記上部塔を中圧下部塔より
低圧の第一及び第二上部塔とに分割し、前記両下部塔底
部と前記第二上部塔の中間部とを膨張弁を介して接続
し、該第二上部塔の底部と前記第一上部塔の頂部とを接
続し、該第一上部塔の底部に製品酸素採取管を接続し、
第一上部塔の頂部と第二上部塔の下部とを接続し、また
高圧下部塔の塔頂部のガスと第一上部塔の塔底部の液と
を熱交換させる主凝縮蒸発器を配設し、さらに中圧下部
塔の塔頂部のガスと第二上部塔の塔底部の液とを熱交換
させる中間凝縮蒸発器を配設するとともに、前記高圧下
部塔に原料空気を供給する高圧空気供給系統と、前記中
圧下部塔に原料空気を供給する中圧空気供給系統とを備
えたことを特徴とする空気液化分離装置。
2. An air liquefaction separation apparatus for compressing, purifying and cooling raw material air and introducing the air into a double rectification column consisting of a lower tower and an upper tower, and liquefying and separating the lower tower, wherein the lower tower is a high pressure lower tower and an intermediate pressure lower tower. And the upper tower is divided into first and second upper towers of lower pressure than the middle-pressure lower tower, and the bottoms of both lower towers and the intermediate portion of the second upper tower through an expansion valve. Connecting, connecting the bottom of the second upper tower and the top of the first upper tower, connecting the product oxygen collection tube to the bottom of the first upper tower,
A top condenser of the first upper column and a bottom of the second upper column are connected, and a main condenser evaporator for heat-exchanging the gas at the top of the high-pressure lower column and the liquid at the bottom of the first upper column is provided. A high pressure air supply system for further providing an intermediate condenser evaporator for heat exchange between the gas at the top of the medium pressure lower column and the liquid at the bottom of the second upper column, and supplying raw material air to the high pressure lower column And an intermediate pressure air supply system for supplying raw material air to the intermediate pressure lower column.
JP62278634A 1987-11-04 1987-11-04 Air liquefaction separation method and apparatus Expired - Fee Related JPH0792329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278634A JPH0792329B2 (en) 1987-11-04 1987-11-04 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278634A JPH0792329B2 (en) 1987-11-04 1987-11-04 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH01121678A JPH01121678A (en) 1989-05-15
JPH0792329B2 true JPH0792329B2 (en) 1995-10-09

Family

ID=17600007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278634A Expired - Fee Related JPH0792329B2 (en) 1987-11-04 1987-11-04 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JPH0792329B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005708B2 (en) * 2009-01-06 2012-08-22 大陽日酸株式会社 Air separation method and apparatus
JP6431828B2 (en) * 2015-08-05 2018-11-28 大陽日酸株式会社 Air liquefaction separation method and apparatus

Also Published As

Publication number Publication date
JPH01121678A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
US5157926A (en) Process for refrigerating, corresponding refrigerating cycle and their application to the distillation of air
JPH0447234B2 (en)
AU630837B1 (en) Elevated pressure air separation cycles with liquid production
JP6351895B1 (en) Nitrogen production method and nitrogen production apparatus
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
EP3719427A1 (en) Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
JPH0611258A (en) Cryogenic rectification system with argon heat pump
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPH0792329B2 (en) Air liquefaction separation method and apparatus
JPH07151459A (en) Method and equipment for preparing at least one gas from airunder pressure
JP4230094B2 (en) Nitrogen production method and apparatus
JP3738213B2 (en) Nitrogen production method and apparatus
JP2004205076A (en) Air liquefying and separating device and its method
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP4577977B2 (en) Air liquefaction separation method and apparatus
JPH0792326B2 (en) Air liquefaction separation method
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
US5701764A (en) Process to produce moderate purity oxygen using a double column plus an auxiliary low pressure column
JP2000258054A (en) Method and apparatus for manufacturing low purity oxygen
JPH0792332B2 (en) Low-purity oxygen production method
JP2917033B2 (en) Air liquefaction separation method and apparatus
JPS6138391B2 (en)
JP3563557B2 (en) Air separation method and air separation equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350