[go: up one dir, main page]

JPH07918Y2 - Sample atomizer for plasma excitation - Google Patents

Sample atomizer for plasma excitation

Info

Publication number
JPH07918Y2
JPH07918Y2 JP1988043668U JP4366888U JPH07918Y2 JP H07918 Y2 JPH07918 Y2 JP H07918Y2 JP 1988043668 U JP1988043668 U JP 1988043668U JP 4366888 U JP4366888 U JP 4366888U JP H07918 Y2 JPH07918 Y2 JP H07918Y2
Authority
JP
Japan
Prior art keywords
sample
atomization
plasma
furnace
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988043668U
Other languages
Japanese (ja)
Other versions
JPH01146147U (en
Inventor
京子 藤本
輝雄 岡野
泰治 松村
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1988043668U priority Critical patent/JPH07918Y2/en
Publication of JPH01146147U publication Critical patent/JPH01146147U/ja
Application granted granted Critical
Publication of JPH07918Y2 publication Critical patent/JPH07918Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は、プラズマ励起用試料原子化炉に係り、特に、
少量の固体あるいは溶液試料をプラズマ分析法により直
接分析する際に用いるのに好適な、試料の効率的な励起
が可能なプラズマ励起用試料原子化炉に関するものであ
る。
The present invention relates to a sample atomization furnace for plasma excitation, and in particular,
The present invention relates to a sample atomization furnace for plasma excitation, which is suitable for directly analyzing a small amount of a solid or solution sample by a plasma analysis method and is capable of efficiently exciting a sample.

【従来の技術】[Prior art]

プラズマを励起源として試料を励起する分析法として
は、MHz程度の高周波による電磁誘導を利用する高周波
誘導結合プラズマ(Inductively Coupled Plasma、IC
P)、マイクロ波を利用するマイクロ波誘導プラズマ(M
IP)、放電電源に直流を用いる直流プラズマ(DCP)等
があり、中でもICPを励起源とする発光分光分析法は、
高感度、高精度の分析法として、鉄鋼、環境計測等、広
い分野で実用化されている。 しかしながら、プラズマ中に導入して分析できる試料
は、溶液、気体あるいはエアロゾルに限られ、又、絶対
量の少ない(約5cm3以下)試料の分析も、通常の装置
では困難とされている。 そこで、固体や微少量溶液等の分析方法として、試料を
黒鉛炉中に入れ、直接プラズマ中に挿入する方法が報告
されている(E.D.Salin、G.Horlick:Anal.Chem.Vol.5
1、P.13(1979年)等)。又、生体、環境試料等への適
用例も見られる(M.Abdullah、K.Fuwa,H.Haraguchi:Spe
ctrochim.Acta、Vol.39B、P.1129(1984年)等)。 しかしながら、これらの測定に用いられた原子化炉は、
容量5〜10mm3で、例えば第5図に形状を示す如く、黒
鉛ロツド10の先端に穴12を開けた形態であるため、ロツ
ド部の熱容量が大き過ぎて、試料の急速な昇温、原子化
が困難であり、特に、高沸点金属の励起には適さない。
又、導入可能な試料量が少ないため、分析値のばらつき
が大きく、試料の偏析の影響を受け易いという問題点が
あつた。 そのため、黒鉛原子化をカツプ状にして容量を増大し、
更に原子化部の下の部分を細く削つて、試料の効率的な
昇温を行おうとする試みもなされている(梅本雅夫、久
保田正明「分光研究」35巻1号50頁(1986年))。 しかしながら、カツプ部と軸部が一体であつたため、加
工が困難であり、軸部への熱伝導も大きく、試料部のみ
を急速に昇温しようとするには充分でなかつた。
As an analysis method for exciting a sample using plasma as an excitation source, a high-frequency inductively coupled plasma (IC) using electromagnetic induction by a high frequency of about MHz is used.
P), microwave induced plasma utilizing microwave (M
IP), direct current plasma (DCP) using direct current as a discharge power source, etc. Among them, the emission spectroscopic analysis method using ICP as an excitation source is
As a highly sensitive and highly accurate analysis method, it has been put to practical use in a wide range of fields such as steel and environmental measurement. However, the samples that can be introduced into the plasma and analyzed are limited to solutions, gases, or aerosols, and analysis of samples with a small absolute amount (about 5 cm 3 or less) is also difficult with ordinary devices. Therefore, as a method for analyzing solids and minute amounts of solution, a method of inserting a sample into a graphite furnace and directly inserting it into plasma has been reported (EDSalin, G. Horlick: Anal. Chem. Vol. 5).
1, P. 13 (1979) etc.). There are also examples of application to living organisms, environmental samples, etc. (M. Abdullah, K. Fuwa, H. Haraguchi: Spe
ctrochim.Acta, Vol.39B, P.1129 (1984) etc.). However, the atomizer used for these measurements was
With a capacity of 5 to 10 mm 3 , for example, as shown in FIG. 5, the graphite rod 10 has a hole 12 at the tip, so that the heat capacity of the rod portion is too large and the temperature of the sample rapidly rises. However, it is not suitable for exciting a high boiling point metal.
Further, since the amount of sample that can be introduced is small, there is a problem in that there is a large variation in analysis values and the sample is easily affected by segregation. Therefore, the atomization of graphite is made into a cup shape to increase the capacity,
Attempts have also been made to cut the lower part of the atomization part finely to efficiently raise the temperature of the sample (Masao Umemoto, Masaaki Kubota, "Spectroscopic Research," Vol. 35, No. 1, p. 50 (1986)). . However, since the cup portion and the shaft portion are integrally formed, processing is difficult and heat conduction to the shaft portion is large, which is not sufficient to rapidly raise the temperature of only the sample portion.

【考案が達成しようとする課題】[Issues to be achieved by the device]

本考案は、前記従来の問題点を解消するべくなされたも
ので、試料原子化部を支持する軸部への熱伝導が小さ
く、試料の効率的な励起が可能であり、しかも成型加工
が容易なプラズマ励起用試料原子化炉を提供することを
目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems. The heat conduction to the shaft supporting the sample atomization part is small, the sample can be efficiently excited, and the molding process is easy. A sample atomization furnace for plasma excitation is provided.

【課題を達成するための手段】[Means for achieving the object]

本考案は、プラズマ励起用試料原子化炉において、熱伝
導に優れた非金属性の素材で成型した試料原子化部と、
該試料原子化部を分析装置の支持・駆動部分と接続する
ための、前記試料原子化部と別体とされ、該試料原子化
部の外径より十分に細い径を有することにより、熱伝導
を小とした中実軸部とを備えることによつて、前記目的
を達成したものである。 又、前記と同様のプラズマ励起用試料原子化炉におい
て、前記試料原子化部を分析装置の支持・駆動部分と接
続するめの、前記試料原子化部と別体とされた軸部を、
非伝熱性素材で成型することによつて、同じく前記目的
を達成したものである。
The present invention is a sample atomization furnace for plasma excitation, and a sample atomization part molded of a non-metallic material with excellent thermal conductivity,
The sample atomization part is connected to the supporting / driving part of the analyzer, is separate from the sample atomization part, and has a diameter sufficiently smaller than the outer diameter of the sample atomization part, so that heat conduction can be improved. The above-mentioned object is achieved by providing a small solid shaft portion. Further, in the same plasma-exciting sample atomization furnace as described above, for connecting the sample atomization section to the supporting / driving section of the analyzer, a shaft section which is separate from the sample atomization section,
By molding with a non-heat-conducting material, the above-mentioned object is also achieved.

【作用】[Action]

本考案においては、プラズマ励起用試料原子化炉を、試
料原子化部と、該試料原子化部を分析装置の支持・駆動
部分と接続するための軸部(及び必要に応じて接続部)
とに分離し、前記試料原子化部を熱伝導に優れた非金属
性の素材(例えば黒鉛)で成型する一方、該試料原子化
部に例えば嵌合される前記軸部を、該試料原子化部の外
径より十分に細い径とし、又は、非伝熱性素材(例えば
セラミツク)で成型することによつて、その熱伝導性を
抑えるようにしている。従つて、軸部への熱伝導が小さ
くなり、プラズマ中に挿入された際に、試料原子化部及
び含有する試料を効率的に昇温、励起して、プラズマを
励起源とする分析を高感度、高精度で行うことができ
る。
In the present invention, a sample atomization furnace for plasma excitation is connected to a sample atomization section and a shaft section (and a connection section if necessary) for connecting the sample atomization section to a supporting / driving section of an analyzer.
While separating the sample atomization part from a non-metallic material having excellent thermal conductivity (eg, graphite), the shaft part fitted to the sample atomization part is converted into the sample atomization part. The heat conductivity is suppressed by making the diameter sufficiently smaller than the outer diameter of the portion or by molding with a non-heat-conductive material (for example, ceramic). Therefore, the heat conduction to the shaft becomes small, and when it is inserted into the plasma, the sample atomization part and the contained sample are efficiently heated and excited to improve the analysis using the plasma as the excitation source. It can be performed with high sensitivity and high accuracy.

【実施例】【Example】

以下、図面を参照して、プラズマが垂直方向に形成され
る場合に適用した本考案の実施例を詳細に説明する。 本実施例は、第1図に示す如く、試料原子化部20と、該
試料原子化部20を分析装置(図示省略)の支持・駆動部
分と接続するための、該試料原子化部20の底面に形成さ
れた穴20Aに上端が嵌合される、前記試料原子化部20と
別体とされた軸部22と、該軸部22を分析装置に接続する
ための、該軸部22の下端が穴24Aに嵌合される接続部24
とから構成されている。 前記試料原子化部20は、プラズマの温度が6,000〜10,00
0°K、原子化部の温度が3,000℃程度となり、しかも原
子化部は取換え頻度が高いので、例えば高密度黒鉛、グ
ラツシーカーボン、パイロコートカーボン等の黒鉛材で
成型されている。なお、黒鉛以外の熱伝導に優れた非金
属性の素材で成型することもできる。 この試料原子化部20の炉径Dは、プラズマトーチ最内管
径より小さければ、試料量に応じて変更可能であるが、
プラズマを安定に維持するためには、トーチ管径の2/3
以下であることが望ましい。試料原子化部20の炉径Dを
4.5mm、炉長Lを5.5mmとした場合、溶液で50μlが注入
可能であり、プラズマへの挿入時も安定なプラズマが維
持できる。又、孔径の小さい素材を用いて、壁厚を1mm
以下と薄くすることにより、炉内の昇温速度を増大させ
ると共に、炉壁を通しての目的元素の拡散を防止するこ
とができる。 前記軸部22には、耐熱性セラミツクス等、非伝熱性素材
を用いることが望ましい。なお、試料原子化部20と同じ
ように熱伝導性の大きい素材を用いる場合には、できる
だけ細くすることが必要であり、強度等の点から、軸径
dは1〜1.5mmが適当である。実施例では1.5mmとしてい
る。又、この軸部22の長さlは実施例では35mmとしてい
る。 前記接続部24の形状は、分析装置の原子化炉支持部の形
状に応じて変更されるが、本実施例では、前記軸部22の
下端が長さZ=4mmだけ挿入して嵌合されるようにして
いる。なお、装置支持部から軸部22に直接接続可能な場
合には、接続部24を省略することも可能である。 分析に際しては、前記試料原子化部20内に分析試料を入
れ、接続部24を介して、あるいは軸部22を直接、分析装
置(図示省略)の支持部に接続して、プラズマ中に挿入
し、該プラズマにより試料を励起して、例えば発光分光
分析を行う。 第1図に示した形状で、高密度の黒鉛で形成した試料原
子化炉を用いて、ICP発光分析で試料直接挿入法を実施
したところ、第2図に示すような発光シグナルが得られ
た。分析試料には、P、CU、Mn、Sn、Al、Crの各1μg/
ml(0.1NHCl)溶液50μlを用いている。第2図は、こ
の溶液試料を原子化部20に注入し、水分を除去した後、
プラズマトーチ下部よりプラズマ中へ挿入して得られた
もので、各元素のピークの位置に元素記号を記入したも
のである。 一方、本考案の原子化炉の代わりに、第5図に示したよ
うな形状の市販の発光分析用黒鉛ロツド10(ロツド先端
に容量50μlの穴12を開けたもの)を用いた場合のICP
発光シグナルの例を第3図に示す。 図から明らかな如く、本実施例による場合には、原子化
部の急速な昇温により、各元素の励起が効率的に起こ
り、観測される発光ピークの強度が増大し、波形も鋭く
なつている。この効果は、Cr、Fe等の原子化しにくい金
属(Crの沸点は2877℃、Feの沸点は2870℃)では特に顕
著に現われる。なお、軸部22の長さlを0mm、1mm、15m
m、35mmと変化させると、発光強度は1:1、7:2、3:2.5の
ように増大するので、軸長lは、1mm以上あればよく、3
5mm以上としても、励起効率増大の効果は小さい。 なお、発光分析で分析感度の指標になるバツクグラウン
ド相当濃度BEC(Background Equivalent Concetratio
n、ICP発光分析では通常BEC/(20〜30)が定量下限と言
われている)と、繰返し精度σを、本実施例による場合
と市販の発光分析黒鉛ロツド10を用いた場合とで比較す
ると、下記第1表に示す如くとなる。試料数nは、いず
れも5個である。 第1表から明らかなように、本実施例においては、BEC
で1/2〜1/8(感度として2〜8倍)になつており、又σ
も小さく分析精度も大幅に向上していることが明らかで
ある。 又、第1図の試料原子化炉を用いて、固体試料(鉄鋼)
をICPで直接励起した場合の発光シグナルの例を第4図
に示す。図から明らかな如く、本考案によれば、鉄マト
リツクス中の0.1%以下の微量不純物が、Cr等原子化し
にくい金属も含めて精度良く分析できる。 更に、第1図と同容量の黒鉛製試料原子化部20に、軸径
3mm、軸長35mmのジルコニア製軸部22を用いて、同様の
操作を行つた場合にも、第2図と同等の鋭い発光シグナ
ルが得られ、原子化効率の向上が認められた。
Hereinafter, an embodiment of the present invention applied when plasma is formed in a vertical direction will be described in detail with reference to the drawings. In the present embodiment, as shown in FIG. 1, a sample atomization unit 20 and a sample atomization unit 20 for connecting the sample atomization unit 20 to a supporting / driving portion of an analyzer (not shown). An upper end fitted to a hole 20A formed on the bottom surface, a shaft portion 22 which is a separate body from the sample atomization portion 20, and a shaft portion 22 for connecting the shaft portion 22 to an analyzer. Connection part 24 whose lower end is fitted in hole 24A
It consists of and. The sample atomization unit 20 has a plasma temperature of 6,000 to 10,000.
Since the temperature of the atomization part is 0 ° K and the temperature of the atomization part is about 3,000 ° C., and the atomization part is frequently replaced, it is molded with a graphite material such as high-density graphite, glassy carbon, or pyro-coated carbon. It should be noted that a non-metallic material having excellent heat conduction other than graphite can be used for molding. The furnace diameter D of the sample atomizing section 20 can be changed according to the sample amount as long as it is smaller than the innermost tube diameter of the plasma torch.
In order to maintain the plasma stable, 2/3 of the torch tube diameter
The following is desirable. Set the furnace diameter D of the sample atomization unit 20
When the length is 4.5 mm and the furnace length L is 5.5 mm, 50 μl of solution can be injected, and stable plasma can be maintained even when it is inserted into the plasma. Also, using a material with a small hole diameter, the wall thickness is 1 mm.
By making the thickness as follows, it is possible to increase the temperature rising rate in the furnace and prevent the diffusion of the target element through the furnace wall. For the shaft portion 22, it is desirable to use a non-heat conductive material such as heat resistant ceramics. When using a material having a high thermal conductivity like the sample atomization section 20, it is necessary to make the material as thin as possible, and from the viewpoint of strength and the like, the shaft diameter d is preferably 1 to 1.5 mm. . In the embodiment, it is set to 1.5 mm. The length l of the shaft portion 22 is 35 mm in the embodiment. The shape of the connecting portion 24 is changed according to the shape of the atomizing furnace supporting portion of the analyzer, but in the present embodiment, the lower end of the shaft portion 22 is inserted and fitted by a length Z = 4 mm. I am trying to do it. If the device support portion can be directly connected to the shaft portion 22, the connection portion 24 can be omitted. At the time of analysis, the analysis sample is put in the sample atomization section 20, and the shaft section 22 is directly connected to the support section of the analyzer (not shown) through the connection section 24 or inserted into the plasma. A sample is excited by the plasma to perform, for example, emission spectroscopic analysis. When the sample direct insertion method was performed by ICP emission analysis using the sample atomization furnace having the shape shown in FIG. 1 and formed of high-density graphite, the emission signal shown in FIG. 2 was obtained. . 1 μg / each of P, CU, Mn, Sn, Al and Cr is used as the analysis sample.
50 μl of ml (0.1 N HCl) solution is used. FIG. 2 shows that after injecting this solution sample into the atomization part 20 to remove water,
It was obtained by inserting it into the plasma from the bottom of the plasma torch, and the element symbols are entered at the peak positions of each element. On the other hand, an ICP in the case of using a commercially available graphite rod 10 for emission analysis (having a hole 12 with a volume of 50 μl at the tip of the rod) having a shape as shown in FIG.
An example of the luminescence signal is shown in FIG. As is clear from the figure, in the case of this example, the rapid temperature rise of the atomization portion efficiently causes the excitation of each element, the observed emission peak intensity increases, and the waveform becomes sharp. There is. This effect is particularly remarkable in metals such as Cr and Fe that are difficult to atomize (the boiling point of Cr is 2877 ° C and the boiling point of Fe is 2870 ° C). The length l of the shaft portion 22 is 0 mm, 1 mm, 15 m
When it is changed to m and 35 mm, the emission intensity increases like 1: 1, 7: 2 and 3: 2.5, so the axial length l should be 1 mm or more.
Even if it is 5 mm or more, the effect of increasing the excitation efficiency is small. The background equivalent concentration BEC (Background Equivalent Concetratio
n, ICP emission analysis, BEC / (20 to 30) is usually said to be the lower limit of quantification), and repeatability σ are compared between the case of this example and the case of using a commercially available emission analysis graphite rod 10. Then, it becomes as shown in the following Table 1. The number of samples n is 5 in each case. As is clear from Table 1, in this example, BEC
1/2 to 1/8 (sensitivity is 2 to 8 times), and σ
It is clear that the analysis accuracy is greatly improved. In addition, using the sample atomization furnace of Fig. 1, a solid sample (steel)
Fig. 4 shows an example of the luminescence signal when γ is directly excited by ICP. As is clear from the figure, according to the present invention, trace impurities of 0.1% or less in iron matrix can be accurately analyzed, including metals such as Cr that are difficult to atomize. Further, in the graphite sample atomization part 20 of the same capacity as in FIG.
Even when the same operation was performed using a zirconia shaft 22 having a length of 3 mm and a shaft length of 35 mm, a sharp luminescence signal equivalent to that shown in FIG. 2 was obtained, and improvement in atomization efficiency was confirmed.

【考案の効果】[Effect of device]

以上説明した通り、本考案によれば、試料原子化部に比
べて軸部の伝熱が抑えられるので、試料の効率的な励起
が可能となり、成型加工も容易となる。 従つて、プラズマへの直接挿入により、少量の固体試料
や溶液試料が効率的に励起され、高感度な分析を行うこ
とができる。更に、原子化部のみが容易に交換可能とな
るので、分析操作の迅速化とコストの低減を図ることが
できる等の優れた効果を有する。
As described above, according to the present invention, the heat transfer in the shaft portion is suppressed as compared with the sample atomization portion, so that the sample can be efficiently excited and the molding process becomes easy. Therefore, a small amount of solid sample or solution sample can be efficiently excited by direct insertion into plasma, and highly sensitive analysis can be performed. Further, since only the atomization part can be easily replaced, there is an excellent effect that the analysis operation can be speeded up and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案に係るプラズマ励起用試料原子化炉の
実施例の構成を示す断面図、第2図は、前記実施例を用
いてICP発光分析法で溶液試料を分析した場合の発光シ
グナルの例を示す線図、第3図は、市販の発光分析用黒
鉛ロツドを用いて溶液試料を分析した場合の発光シグナ
ルの例を示す線図、第4図は、前記実施例を用いてICP
発光分析法で固定の鉄鋼試料を直接分析した場合の発光
シグナルの例を示す線図、第5図は、市販の発光分析用
黒鉛ロツドの形状の例を示す断面図である。 20……試料原子化部、22……軸部、24……接続部、D…
…炉径、d……軸径。
FIG. 1 is a cross-sectional view showing the structure of an embodiment of a sample-atomization furnace for plasma excitation according to the present invention, and FIG. 2 is an emission of a solution sample analyzed by ICP emission spectrometry using the above-mentioned embodiment. FIG. 3 is a diagram showing an example of a signal, FIG. 3 is a diagram showing an example of a luminescence signal when a solution sample is analyzed using a commercially available graphite rod for emission analysis, and FIG. ICP
FIG. 5 is a diagram showing an example of a luminescence signal when a fixed steel sample is directly analyzed by an luminescence analysis method, and FIG. 5 is a sectional view showing an example of the shape of a commercially available graphite rod for luminescence analysis. 20 …… Sample atomization part, 22 …… Shaft part, 24 …… Connection part, D…
… Furnace diameter, d… Shaft diameter.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】熱伝導に優れた非金属性の素材で成型した
試料原子化部と、 該試料原子化部を分析装置の支持・駆動部分と接続する
ための、前記試料原子化部と別体とされ、該試料原子化
部の外径より十分に細い径を有することにより、熱伝導
を小とした中実軸部とを備え、 試料の効率的な励起を可能としたことを特徴とするプラ
ズマ励起用試料原子化炉。
1. A sample atomization part formed of a non-metallic material having excellent thermal conductivity, and a separate sample atomization part for connecting the sample atomization part to a supporting / driving part of an analyzer. It is a body and has a solid shaft portion having a small heat conduction by having a diameter sufficiently smaller than the outer diameter of the sample atomization portion, which enables efficient excitation of the sample. A sample atomizer for plasma excitation.
【請求項2】熱伝導に優れた非金属性の素材で成型した
試料原子化部と、 該試料原子化部を分析装置の支持・駆動部分と接続する
ための、前記試料原子化部と別体とされた、非伝熱性素
材で成型した軸部とを備え、 試料の効率的な励起を可能としたことを特徴とするプラ
ズマ励起用試料原子化炉。
2. A sample atomization part molded of a non-metallic material having excellent heat conduction, and a separate sample atomization part for connecting the sample atomization part to a supporting / driving part of an analyzer. A sample-atomization furnace for plasma excitation, which comprises a body and a shaft formed of a non-heat-conductive material, and enables efficient excitation of the sample.
JP1988043668U 1988-03-31 1988-03-31 Sample atomizer for plasma excitation Expired - Lifetime JPH07918Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988043668U JPH07918Y2 (en) 1988-03-31 1988-03-31 Sample atomizer for plasma excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988043668U JPH07918Y2 (en) 1988-03-31 1988-03-31 Sample atomizer for plasma excitation

Publications (2)

Publication Number Publication Date
JPH01146147U JPH01146147U (en) 1989-10-09
JPH07918Y2 true JPH07918Y2 (en) 1995-01-11

Family

ID=31270059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988043668U Expired - Lifetime JPH07918Y2 (en) 1988-03-31 1988-03-31 Sample atomizer for plasma excitation

Country Status (1)

Country Link
JP (1) JPH07918Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210754A (en) * 1987-02-27 1988-09-01 Shimadzu Corp Sample introducing device for icp emission analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210754A (en) * 1987-02-27 1988-09-01 Shimadzu Corp Sample introducing device for icp emission analysis

Also Published As

Publication number Publication date
JPH01146147U (en) 1989-10-09

Similar Documents

Publication Publication Date Title
Matusiewicz Thermal vaporisation for inductively coupled plasma optical emission spectrometry. A review
Pickhardt et al. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber
Schäffer et al. Multielement analysis of graphite and silicon carbide by inductively coupled plasma atomic emission spectrometry using solid sampling and electrothermal vaporization
CN108918226A (en) A kind of preparation method of the titanium sponge detected for GDMS and titanium grain specimens
JPH07918Y2 (en) Sample atomizer for plasma excitation
Nakata et al. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy
Karanassios et al. Characterization of a direct sample insertion device for inductively coupled plasma-atomic emission spectrometry
CN110595832A (en) Molten metal sampler for high and low oxygen applications
Nickel et al. A new electrothermal vaporization device for direct sampling of ceramic powders for inductively coupled plasma optical emission spectrometry
Brown et al. Moderate-power argon microwave-induced plasma for the detection of metal ions in aqueous samples of complex matrix
CN107591310A (en) A kind of graphite furnace Electrothermal vaporization feeding device ion gun and its plasma mass spectrograph
US7345484B2 (en) NMR probe for high-temperature measurements
Goltz et al. Inductively heated vaporizer for inductively coupled plasma mass spectrometry
CN105628686A (en) Method for measuring content of titanium in plain carbon steel and middle-low alloy steel
JPH09502798A (en) Method of atomizing electrolyte and its chemical analysis
JPH0747736Y2 (en) Composite probe for molten metal
Rattray et al. Communication. Rapid sample preconcentration by aerosol deposition for the determination of trace elements by inductively coupled plasma spectrometry
JPH11211662A (en) Quick analytical method for trace amount of phosphorus in silicon material
Bauhofer et al. Contactless resistivity measurements on small platelets
Herwig et al. Optimization of a direct sample insertion into a stabilized capacitive plasma for optical emission spectrometry (SCP-OES)
CN206532752U (en) A kind of hollow cathode lamp
Hu et al. Fluorination assisted electrothermal vaporization-inductively coupled plasma atomic emission spectrometry for a direct determination of chromium in biological materials
CN106783519A (en) A kind of excitation light source device
JPS60115833A (en) Sample introduction device
INOUE et al. Helium Radiofrequency Atomization and Excitation Source (He-RFIAES) forSimultaneous Direct Determination of Trace Elements in Solid Samples