[go: up one dir, main page]

JPH0790529A - Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet - Google Patents

Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet

Info

Publication number
JPH0790529A
JPH0790529A JP23830693A JP23830693A JPH0790529A JP H0790529 A JPH0790529 A JP H0790529A JP 23830693 A JP23830693 A JP 23830693A JP 23830693 A JP23830693 A JP 23830693A JP H0790529 A JPH0790529 A JP H0790529A
Authority
JP
Japan
Prior art keywords
steel sheet
roll
dip galvanized
rolling
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23830693A
Other languages
Japanese (ja)
Inventor
Hideo Yamamoto
秀男 山本
Yoshiyuki Kaseda
良之 綛田
Masahiko Hori
雅彦 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23830693A priority Critical patent/JPH0790529A/en
Publication of JPH0790529A publication Critical patent/JPH0790529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

(57)【要約】 (修正有) 【構成】ロール1 の研磨目2 が平均的にロール軸方向に
分布し、かつロール周方向におけるロールの表面粗さ
(Raθ)が 0.1〜0.6 μm で、直径が 200mm以上のワー
クロールを用いてSi含有量が 0.2重量%以上の鋼板に冷
間圧延を施した後、鋼板の表面を酸化性雰囲気(例え
ば、O2、H2O 、CO2 、COなどを含む雰囲気)中で加熱
し、引き続き還元性雰囲気(例えば、H2が2〜10体積%
含まれる窒素ガス)中で加熱した後、溶融亜鉛めっき、
あるいは更に合金化処理を施す。 【効果】珪素含有鋼板を母材として、不めっきがなく、
めっき密着性の良好な溶融亜鉛めっき鋼板および合金化
溶融亜鉛めっき鋼板を高能率で製造することができる。
この鋼板は自動車、建材等の産業分野で使用される素材
鋼板として好適である。
(57) [Summary] (Corrected) [Constitution] The polishing meshes 2 of the roll 1 are evenly distributed in the roll axial direction, and the roll surface roughness (Raθ) in the roll circumferential direction is 0.1 to 0.6 μm. After cold rolling a steel sheet with a Si content of 0.2 wt% or more using a work roll with a diameter of 200 mm or more, the surface of the steel sheet is subjected to an oxidizing atmosphere (for example, O 2 , H 2 O, CO 2 , CO 2 Etc.) in a reducing atmosphere (for example, 2 to 10% by volume of H 2).
Hot dip galvanizing, after heating in nitrogen gas included)
Alternatively, alloying treatment is further performed. [Effect] Using a silicon-containing steel plate as a base material, there is no non-plating,
A hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having good plating adhesion can be produced with high efficiency.
This steel sheet is suitable as a material steel sheet used in the industrial fields such as automobiles and building materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、建材等の産業
分野で使用される、珪素(Si)を含有させた高張力鋼板
を母材とする溶融亜鉛めっき鋼板および合金化溶融亜鉛
めっき鋼板の製造方法に関する。
The present invention relates to a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet, which are used in the industrial field of automobiles, building materials, etc., and whose base material is a high-strength steel sheet containing silicon (Si). Manufacturing method.

【0002】[0002]

【従来の技術】自動車用鋼板としては、車体の軽量化等
を目的として高張力鋼板が多用される傾向にあり、防錆
効果を高めるためにめっき等の表面処理を施すことが求
められている。
2. Description of the Related Art As a steel sheet for automobiles, a high-strength steel sheet is often used for the purpose of reducing the weight of a vehicle body, and it is required to apply a surface treatment such as plating in order to enhance a rust prevention effect. .

【0003】めっき方法としては、容易に厚めっきが可
能で、生産性にも優れる溶融めっき法が採用されてい
る。この方法は、特開昭55−122865号公報に記載される
ように、母材鋼板を無酸化炉内で加熱して鋼板表面に付
着している油を除去した後、還元炉内で焼鈍し、0.08〜
0.15重量%のアルミニウムを含む溶融亜鉛浴に浸漬して
鋼板表面にめっきを施す方法である。
As a plating method, a hot dipping method is employed, which enables easy thick plating and is excellent in productivity. This method, as described in JP-A-55-122865, heats the base steel sheet in a non-oxidizing furnace to remove oil adhering to the steel sheet surface, and then annealing in a reducing furnace. , 0.08 ~
This is a method of plating on the surface of a steel sheet by immersing it in a molten zinc bath containing 0.15% by weight of aluminum.

【0004】母材鋼板を高張力化すると同時に延性を確
保するためSiを添加することが多いが、Si含有量が 0.2
重量%以上の高張力鋼板を母材として用いると、無酸化
炉で加熱中に鋼中の珪素(Si)、マンガン(Mn)、アル
ミニウム(Al)、りん(P)などが鋼板の表面に酸化物
として濃化し、還元炉で焼鈍しても還元されず、めっき
の際の濡れ不良、めっき皮膜の密着性不良、更には、合
金化処理した場合の合金化の遅延の原因となる。
Si is often added in order to increase the tensile strength of the base steel sheet and at the same time ensure the ductility, but the Si content is 0.2
When a high-strength steel sheet with a weight percentage of more than 5% is used as the base material, silicon (Si), manganese (Mn), aluminum (Al), phosphorus (P), etc. in the steel are oxidized on the surface of the steel sheet during heating in a non-oxidizing furnace. It is concentrated as a substance and is not reduced even if it is annealed in a reducing furnace, which causes poor wetting during plating, poor adhesion of the plated film, and delay of alloying when alloying is performed.

【0005】珪素含有鋼板を母材として用いる場合の上
記の問題に対して、無酸化炉での加熱の際に炉内の空気
比を高くして鋼板の表面に鉄(Fe)の酸化物を生成させ
た後還元焼鈍を施すと、良好なめっきが得られることが
知られている。しかし、実際のめっきラインにおいて
は、ライン速度、炉温および加熱サイクルが常に変化す
るため、空気比を高くして所定の温度に制御すること、
ならびに酸化物の生成量を制御することが極めて難し
く、安定した操業ができず、特に、Si含有量の多い鋼で
はSi量の増加とともにFeの酸化物の形成が抑制されるの
で、実用化には問題があった。
In order to solve the above problems when using a silicon-containing steel plate as a base material, the air ratio in the furnace is increased during heating in a non-oxidizing furnace so that iron (Fe) oxide is added to the surface of the steel plate. It is known that good plating can be obtained by applying reduction annealing after the formation. However, in an actual plating line, since the line speed, the furnace temperature and the heating cycle are constantly changing, it is necessary to increase the air ratio to control the temperature to a predetermined level.
In addition, it is extremely difficult to control the amount of oxides generated, stable operation is not possible, and especially in steel with a high Si content, the formation of Fe oxides is suppressed as the Si content increases, so practical application is possible. Had a problem.

【0006】また、酸洗後の研磨処理により導入される
鋼板表面の残留歪みや残留応力が溶融亜鉛と母材鋼板と
の反応性を向上させ得る可能性が示唆されており(例え
ば、鉄と鋼 Vol.79 No.5(1993) 590〜596 頁)、更に、
特開平4-202630号公報では、酸化帯での平均酸化速度を
30Å/sec以上とする急速酸化を行って、鋼板表面に酸化
され易いSiやMnが拡散、酸化されないうちにFeの酸化物
を形成させ、次いで、水素を含有する雰囲気中で焼鈍し
た後溶融亜鉛めっきを行う方法が提案されている。
It has also been suggested that residual strain and residual stress on the surface of the steel sheet introduced by the polishing treatment after pickling may improve the reactivity between the molten zinc and the base steel sheet (for example, iron and Steel Vol.79 No.5 (1993) pp. 590-596),
JP-A-4-202630 discloses the average oxidation rate in the oxidation zone.
Performs rapid oxidation at 30 Å / sec or more to form Fe oxides before Si and Mn, which are easily oxidized, diffuse and oxidize on the surface of the steel sheet, then annealed in an atmosphere containing hydrogen and then melted zinc A method of performing plating has been proposed.

【0007】しかし、鋼板表面に有効な残留応力を与え
る具体的な手段として考えられるのは母材鋼板の表面を
研削する方法であるが、工程が増えるので、経済的では
ない。また、急速酸化処理を行うためには大がかりな設
備が必要であり、製造コストを高めることになる。
However, although a method of grinding the surface of the base steel sheet is considered as a concrete means for giving an effective residual stress to the surface of the steel sheet, it is not economical because the number of steps is increased. In addition, large-scale equipment is required to perform the rapid oxidation treatment, which increases the manufacturing cost.

【0008】[0008]

【発明が解決しようとする課題】本発明は、珪素含有鋼
板を母材として、不めっきがなく、めっき密着性の良好
な溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
を高能率で製造する方法を提供することを課題としてな
されたものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet, which have no plating and have good plating adhesion, using a silicon-containing steel sheet as a base material with high efficiency. It was made as an issue to provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋼板表面
の残留応力が高いと加熱時に酸化され易く、かつ、Feの
酸化物の比率が高い酸化物層が形成され、更にこの酸化
物層は、引き続き行われる還元性雰囲気での焼鈍の際に
還元鉄の多い層となり、還元焼鈍中のSi、Mn、Al、P等
の鋼板表面への濃化を抑制することを知見した。
Means for Solving the Problems The present inventors have found that when the residual stress on the surface of a steel sheet is high, it is easily oxidized during heating and an oxide layer having a high ratio of Fe oxide is formed. It has been found that the layer becomes a layer containing a large amount of reduced iron during subsequent annealing in a reducing atmosphere, and suppresses the concentration of Si, Mn, Al, P, etc. on the steel sheet surface during reduction annealing.

【0010】一方、鋼板の表面に残留応力が発生し易い
製造プロセスについて検討した結果、表面を特殊な研磨
状態としたワークロール、即ち、ロール軸方向に研磨筋
(研磨により生じる表面の凹凸、以下、研磨目という)
を付与した状態のワークロールを使用して母材鋼板に冷
間圧延を施すと、通常のワークロールによる圧延に比
べ、鋼板の表面に高い残留応力が発生することを見いだ
した。そして、このような鋼板に溶融亜鉛めっきを施す
と、溶融亜鉛の濡れ性がよくなって不めっきがなくな
り、密着性に優れためっきが得られ、更に、母材鋼板の
組織に不均一性があってもこれが解消されるためにムラ
のないめっきが得られる。また、浴中のAl濃度が 0.1重
量%程度のめっき浴を用いて溶融亜鉛めっきを施しため
っき鋼板に 500℃程度で合金化処理を施したところ、母
材鋼板として珪素含有鋼板を使用した場合に特有の合金
化遅延現象がみられず、合金化速度が著しく促進され
た。
On the other hand, as a result of studying a manufacturing process in which residual stress is likely to occur on the surface of a steel sheet, a work roll having a specially polished surface, that is, polishing streaks in the roll axial direction (surface irregularities caused by polishing, , Called polishing eyes)
It was found that when the base steel sheet is cold-rolled by using the work roll in the state of being provided with, a higher residual stress is generated on the surface of the steel sheet as compared with the rolling by the normal work roll. Then, when such a steel sheet is subjected to hot dip galvanizing, the wettability of hot dip zinc is improved, non-plating is eliminated, and plating with excellent adhesion is obtained. Furthermore, the base steel sheet has a non-uniform structure. Even if there is, this is eliminated, and uniform plating can be obtained. In addition, when a galvanized steel sheet was galvanized using a plating bath with an Al concentration in the bath of approximately 0.1% by weight and subjected to an alloying treatment at approximately 500 ° C, when a silicon-containing steel sheet was used as the base steel sheet. The alloying retardation phenomenon peculiar to the alloy was not observed, and the alloying rate was significantly accelerated.

【0011】本発明は上記の知見に基づいてなされたも
ので、その要旨は、下記の溶融亜鉛めっき鋼板および合
金化溶融亜鉛めっき鋼板にある。
The present invention has been made on the basis of the above findings, and its gist resides in the hot-dip galvanized steel sheet and galvannealed steel sheet described below.

【0012】 ロールの研磨目が平均的にロール軸方
向に分布し、かつロール周方向におけるロール表面の中
心線平均粗さ(Raθ)が 0.1〜0.6 μm (以下、ロール
の周方向の表面粗さ(Raθ)、あるいは単に表面粗さ
(Raθ)という)で、直径が 200mm以上のワークロール
を用い、Si含有量が 0.2重量%以上の鋼板に冷間圧延を
施した後、鋼板の表面を酸化性雰囲気で加熱し、引き続
き還元性雰囲気で加熱した後、溶融亜鉛めっきを施すこ
とを特徴とする溶融亜鉛めっき鋼板の製造方法。
[0012] Grinding grains of the roll are evenly distributed in the roll axial direction, and the center line average roughness (Raθ) of the roll surface in the roll circumferential direction is 0.1 to 0.6 μm (hereinafter, the surface roughness in the circumferential direction of the roll is (Raθ), or simply referred to as surface roughness (Raθ)), using a work roll with a diameter of 200 mm or more, after cold rolling a steel sheet with a Si content of 0.2 wt% or more, oxidize the surface of the steel sheet. A method for producing a hot-dip galvanized steel sheet, which comprises heating in a reducing atmosphere, followed by heating in a reducing atmosphere, and then hot-dip galvanizing.

【0013】 上記に記載の方法で溶融亜鉛めっき
を行った後、更に合金化処理を行う合金化溶融亜鉛めっ
き鋼板の製造方法。
A method for producing an alloyed hot-dip galvanized steel sheet, which comprises hot-dip galvanizing by the method described above, and then further alloying treatment.

【0014】[0014]

【作用】以下、本発明の構成要件と作用効果について詳
細に説明する。
The function of the present invention and the effects thereof will be described in detail below.

【0015】本発明方法で対象とする母材鋼板はSi含有
量が 0.2重量%以上の鋼板である。
The base steel sheet targeted by the method of the present invention is a steel sheet having a Si content of 0.2% by weight or more.

【0016】Si含有量が 0.2重量%未満であれば、従来
の技術で対応が可能であり、敢えて本発明方法を適用す
る必要がない。
When the Si content is less than 0.2% by weight, it is possible to deal with the problem by the conventional technique, and it is not necessary to dare to apply the method of the present invention.

【0017】本発明方法における最大の特徴は、表面を
特殊な研磨状態としたワークロールを用いて母材鋼板に
冷間圧延を施し、鋼板の表面に高い残留応力を付与する
点にある。
The most significant feature of the method of the present invention is that a base material steel sheet is cold-rolled by using a work roll whose surface is in a specially polished state to impart a high residual stress to the surface of the steel sheet.

【0018】一般に、残留応力を付与する方法として、
曲げ加工、表面研削加工、ブラシ加工およびショット加
工が知られているが、これらの方法を実施するにはそれ
ぞれ専用の設備を別に必要とするとともに、工程が増え
るので、生産性の向上ならびに製造コストの削減という
要請に応えることができない。従って、最も望ましいの
は、従来の製造工程の中で、即ち、冷間圧延から焼鈍ま
での工程において母材鋼板の表面に残留応力を付与する
ことである。本発明者らは、冷間圧延について種々検討
を重ねた結果、ロール軸方向に研磨筋を付与した特殊な
ワークロールを使用して母材鋼板に冷間圧延を施すと、
通常のワークロールを使用した圧延に比べ、鋼板の表面
に高い残留応力が発生することを見いだした。
Generally, as a method of applying residual stress,
Bending, surface grinding, brushing and shot processing are known, but in order to carry out these methods, separate dedicated equipment is required and the number of processes increases, so productivity and manufacturing cost are improved. We cannot meet the demand for reduction. Therefore, what is most desirable is to impart a residual stress to the surface of the base steel sheet in the conventional manufacturing process, that is, in the process from cold rolling to annealing. As a result of various studies on cold rolling, the present inventors performed cold rolling on the base steel sheet using a special work roll having polishing streaks in the roll axial direction,
It has been found that a higher residual stress is generated on the surface of the steel sheet as compared with rolling using a normal work roll.

【0019】図1は、従来のワークロール(以下、単に
ロールともいう)および本発明方法で用いるワークロー
ルの研磨目の方向についての説明図で、(a) はロールの
研磨目の方向を一般的に示す図、(b) は従来のロールの
研磨目の方向を示す図、(c)は本発明方法で用いるロー
ルの研磨目の方向を示す図である。図1の(a) に示すよ
うに、ロール1の研磨目2はロール周方向(ロール軸に
直角の方向)に対してαの角度を有している。従来のロ
ールでは、(b) に示すようにαはほぼ0°で、ロールの
研磨目2がロールの周方向に平行である。一方、本発明
方法で用いるロールでは、(c) に示すようにαをほぼ90
°、即ち、ロールの研磨目2を平均的にロール軸方向に
平行とする。なお、「平均的に」というのは、一部の研
磨目の方向が多少乱れていても、研磨目が全体として実
質的にロール軸に平行であればよい、ということであ
る。上記αで定義すれば、αがおよそ90°±20°、好ま
しくは、90°±5°の範囲であればよい。
FIG. 1 is an explanatory view of the direction of the grinds of a conventional work roll (hereinafter, also simply referred to as a roll) and the work roll used in the method of the present invention. FIG. 4B is a diagram schematically showing the direction of a grain of a conventional roll, and FIG. 7C is a diagram showing a direction of a grain of a roll used in the method of the present invention. As shown in FIG. 1 (a), the polishing stitch 2 of the roll 1 has an angle of α with respect to the roll circumferential direction (direction perpendicular to the roll axis). In the conventional roll, as shown in (b), α is approximately 0 °, and the polishing grain 2 of the roll is parallel to the circumferential direction of the roll. On the other hand, in the roll used in the method of the present invention, α is almost 90% as shown in (c).
°, that is, the polishing grain 2 of the roll is made parallel to the roll axial direction on average. It should be noted that “on average” means that even if the directions of some of the polishing eyes are somewhat disturbed, it is sufficient that the polishing eyes as a whole are substantially parallel to the roll axis. As defined by α, α may be in the range of about 90 ° ± 20 °, preferably 90 ° ± 5 °.

【0020】図2は、冷間圧延におけるロールの表面と
金属板の表面との間の滑り(ずれ)についての説明図
で、(a) はロールバイト部の縦断面図、(b) はロールの
表面上のある一点の金属板表面上への転写パターンを示
す図である。
2A and 2B are explanatory views of slippage (deviation) between the surface of the roll and the surface of the metal plate in cold rolling. (A) is a vertical sectional view of a roll bite part, and (b) is a roll. It is a figure which shows the transfer pattern on the surface of a metal plate of a certain point on the surface of.

【0021】図2の(a) は、金属板Sをワークロール1
によってXの方向へ、厚さt1からt2へ圧延する場合で、
金属板Sの圧延速度vがロールの周速Vと同じになる点
が中立点(N点)であり、N点から前方(ロール出側)
が先進域、N点から後方(ロール入側)が後進域であ
る。また、ロール入側(A点)での金属板Sの圧延速度
をv1 、ロール出側(B点)での圧延速度をv2 とすれ
ば、v1 <v2 となる。
In FIG. 2A, the metal plate S is attached to the work roll 1
When rolling from the thickness t 1 to t 2 in the X direction by
The point at which the rolling speed v of the metal plate S becomes the same as the peripheral speed V of the roll is the neutral point (N point), and is forward from the N point (roll exit side).
Is the advanced area, and the area from the N point behind (on the roll entry side) is the reverse area. Further, if the rolling speed of the metal plate S on the roll entrance side (point A) is v 1 and the rolling speed on the roll exit side (point B) is v 2 , then v 1 <v 2 .

【0022】今、ロール1の表面上のある一点に注目す
ると、その一点がA点→N点→B点の順に回転すると、
その点の金属板Sの表面での軌跡は、(b) に示すように
A点→N点→B点となる。即ち、A点→N点の間では圧
延方向Xと同方向、N点→B点の間で圧延方向Xと逆方
向になる。これは、上述の先進域と後進域とで金属板1
の圧延速度に差があり、ロールの周速Vと金属板Sの圧
延速度v1 、v2 との関係がv1 <V<v2 となるから
である。その結果、ロールの表面上のある一点の金属板
表面上への転写(以下、転写パターンという)は、(b)
に斜線部で示すように、AからNまでのずれが生じるこ
ととなる。つまり、後述するように、ロールの表面上の
凸部が金属板の表面上に強調されて転写される。
Now, paying attention to a certain point on the surface of the roll 1, when the one point rotates in the order of A point → N point → B point,
The locus on the surface of the metal plate S at that point is A point → N point → B point as shown in (b). That is, the rolling direction X is in the same direction between the points A and N, and the rolling direction X is the reverse between the points N and B. This is the metal plate 1 in the above-mentioned advanced region and backward region.
Because there is a difference in the rolling speed, and the relationship between the peripheral speed V of the roll and the rolling speeds v 1 and v 2 of the metal plate S is v 1 <V <v 2 . As a result, the transfer of a certain point on the surface of the roll onto the surface of the metal plate (hereinafter referred to as the transfer pattern) is (b)
As indicated by the shaded area, a deviation from A to N will occur. That is, as will be described later, the convex portion on the surface of the roll is emphasized and transferred onto the surface of the metal plate.

【0023】図3は、ロールの研磨目がロールの周方向
に平行な、図1の(b) に示した従来のロールを用いて冷
間圧延を行ったときのロールの研磨目の金属板表面上へ
の転写の状況を示す図で、(a) は圧延の状態を示す平面
図、(b) はロールの研磨目の金属板表面上への転写パタ
ーンを示す図、(c) はロールと金属板の幅方向における
接触状況を示す縦断面図である。
FIG. 3 shows a metal plate having a grain of the roll of which the grain of the roll is parallel to the circumferential direction of the roll when cold rolling is performed using the conventional roll shown in FIG. 1 (b). Fig. 2 is a diagram showing the state of transfer onto the surface, (a) is a plan view showing the state of rolling, (b) is a diagram showing the transfer pattern onto the metal plate surface of the roll's abrasive grain, and (c) is the roll. It is a longitudinal cross-sectional view showing a contact state in the width direction of the metal plate and.

【0024】(a) に示すようにロールの研磨目2がロー
ルの周方向に平行な従来のロールにより金属板SをXの
方向に圧延すると、ロールの研磨目2は、図2で説明し
たように金属板Sの表面上に転写される際にずれ(滑
り)が生じるので、(b) に示すようにA点→N点→B点
までのずれが生じた転写パターンになる。一つの研磨目
2が金属板Sの表面を滑った面積はS1 である。(c) は
金属板Sの表面近傍の縦断面で、ロールの研磨目の凸部
3が金属板側にくい込んだ状態で圧延方向(紙面に垂直
の方向)にずれるので、ロールの周方向の滑りによる疵
と、ロールの研磨目の転写による疵の両者が重なりあっ
た状態でロールの研磨目が金属板に強調されて転写さ
れ、微小な凹凸疵となる。
As shown in (a), when the metal plate S is rolled in the X direction by a conventional roll whose roll grinding marks 2 are parallel to the circumferential direction of the roll, the grinding marks 2 of the roll are described with reference to FIG. As described above, when the image is transferred onto the surface of the metal plate S, a shift (slip) occurs, so that the transfer pattern has a shift from the point A to the point N to the point B as shown in (b). The area where one polishing eye 2 slides on the surface of the metal plate S is S 1 . (c) is a vertical cross section near the surface of the metal plate S. Since the projections 3 of the roll's polishing eyes are slipped in the metal plate side, they are displaced in the rolling direction (direction perpendicular to the paper surface). In the state where both the scratches caused by slippage and the scratches caused by the transfer of the polishing marks of the roll overlap each other, the polishing marks of the roll are emphasized and transferred to the metal plate, resulting in minute irregularities.

【0025】図4は、炭素(C)含有量が0.05重量%、
Si含有量が 0.5重量%の高張力鋼板(JIS に規定される
SPFC 780Y)に前記の図3の(a) に示した研磨目を有す
る従来のロール(直径 400mm、α≒0°、表面粗さRa
θ:0.07μm、表面粗さ RaL:0.30μm、なお、表面粗
さ RaLはロール軸方向におけるロール表面の中心線平均
粗さを意味する)で4パスの冷間圧延(4パス目の圧下
率:22%)を施した後の鋼板の表面状態と、圧延方向お
よび板幅方向における粗さの断面曲線を示す図である。
板幅方向における断面曲線の凹凸が激しくなっている
が、これは、ロールの周方向に平行なロールの研磨目が
金属板表面に転写されたことによるものである。
FIG. 4 shows that the carbon (C) content is 0.05% by weight,
High-strength steel sheet with Si content of 0.5% by weight (specified in JIS
SPFC 780Y) has a conventional roll (diameter 400 mm, α ≈ 0 °, surface roughness Ra with the polishing pattern shown in FIG. 3 (a) above.
θ: 0.07 μm, surface roughness RaL: 0.30 μm, where surface roughness RaL means the center line average roughness of the roll surface in the roll axial direction) and cold rolling in 4 passes (4th pass rolling reduction) 22%) is applied to the surface state of the steel sheet and a sectional curve of roughness in the rolling direction and the sheet width direction.
The unevenness of the cross-sectional curve in the plate width direction is severe, but this is because the polishing grain of the roll parallel to the circumferential direction of the roll is transferred to the surface of the metal plate.

【0026】図5は、ロールの研磨目がロールの軸方向
に平行な、図1の(c) に示した本発明方法で規定するロ
ールを用いて冷間圧延を行ったときのロールの研磨目の
金属板表面上への転写の状況を示す図で、(a) は圧延の
状態を示す平面図、(b) はロールの研磨目の金属板表面
上への転写パターンを示す図、(c) はロールと金属板の
圧延方向における接触状況を示す縦断面図である。
FIG. 5 shows the polishing of a roll when cold rolling is performed using the roll defined by the method of the present invention shown in FIG. FIG. 3A is a plan view showing the state of rolling of a roll on the surface of the metal plate, FIG. 2B is a plan view showing the transfer pattern of the roll on the surface of the metal plate, and FIG. c) is a vertical cross-sectional view showing a contact state between the roll and the metal plate in the rolling direction.

【0027】(a) に示すように、本発明方法で規定する
ロールにより金属板SをXの方向に圧延すると、(b) に
示すようにA点→N点→B点までのずれが生じた転写パ
ターンになる。ロールの一つの研磨目2が金属板Sの表
面を滑った面積はS2 であり、図3(b) に示した従来の
ロールによる圧延の場合の滑り面積S1 に比べるとかな
り大きい。この滑りは金属板の表面層にせん断力として
作用するため残留応力として残り、S2 とS1 の差が表
面の残留応力の差となって現れる。(c) は金属板Sの表
面近傍の縦断面で、ロールの研磨目の凸部3が図に示し
た圧延方向に滑るので、この凸部3に押されて金属板の
一部がロール研磨目の凹部に沿って盛り上がり、板幅方
向(紙面に垂直の方向)に連なる微小な凸部4(微小な
凸疵)が形成される。
As shown in (a), when the metal plate S is rolled in the X direction by the rolls defined by the method of the present invention, a deviation from A point → N point → B point occurs as shown in (b). It becomes a transfer pattern. The area in which one polishing grain 2 of the roll slides on the surface of the metal plate S is S 2 , which is considerably larger than the sliding area S 1 in the case of rolling by the conventional roll shown in FIG. 3 (b). Since this slip acts as a shearing force on the surface layer of the metal plate, it remains as residual stress, and the difference between S 2 and S 1 appears as the difference in residual stress on the surface. (c) is a vertical cross section near the surface of the metal plate S. Since the convex portions 3 of the roll-grinding glide in the rolling direction shown in the figure, a part of the metal plate is pressed by the convex portions 3 and roll-polished. A minute convex portion 4 (a minute convex flaw) that is raised along the concave portion of the eye and continues in the plate width direction (direction perpendicular to the paper surface) is formed.

【0028】図6は、前記の図4の場合に用いた鋼板と
同じ鋼板に対して前記の図5の(a)に示した研磨目を有
する本発明方法で規定するロール(直径 400mm、α≒90
°±5°、表面粗さRaθ:0.32μm、 RaL:0.07μm)
で4パスの冷間圧延を行った後の鋼板の表面状態と、圧
延方向および板幅方向における粗さの断面曲線を示す図
である。図中の板幅方向に見られる黒い筋は、ロールの
研磨目の凸部に押されて生じた盛り上がり(図5の微小
な凸部4)である。
FIG. 6 shows a roll (diameter 400 mm, α) defined by the method of the present invention having the same polishing plate as shown in FIG. 5A for the same steel plate as that used in FIG. ≈ 90
° ± 5 °, surface roughness Raθ: 0.32μm, RaL: 0.07μm)
FIG. 3 is a diagram showing a surface state of a steel sheet after cold rolling for four passes in FIG. 4 and a sectional curve of roughness in a rolling direction and a sheet width direction. The black streak seen in the plate width direction in the figure is a bulge (a minute convex portion 4 in FIG. 5) generated by being pressed by the convex portion of the polishing mesh of the roll.

【0029】本発明方法において、ロールの研磨目がロ
ール軸方向に平行で、かつロール周方向におけるロール
の表面の粗さ(Raθ)が 0.1〜0.6 μm Raで、直径が 2
00mm以上のワークロールを用いるのは、以下の理由によ
る。
In the method of the present invention, the grain of the roll is parallel to the axial direction of the roll, the surface roughness (Raθ) of the roll in the roll circumferential direction is 0.1 to 0.6 μm Ra, and the diameter is 2
The reason for using a work roll of 00 mm or more is as follows.

【0030】ロールの研磨目の方向がロールの周方向か
ら軸方向にわずかでも傾けば、圧延を行った後に鋼板の
表面にロールの研磨目の滑りによる残留応力が発生する
が、傾きが小さいと発生する残留応力は小さい。また、
傾きが30°以上になると十分な残留応力が発生するが、
残留応力の板幅方向の成分が大きく、圧延時に蛇行した
り、鋼板に捻れが発生し、次工程での通板性を阻害する
ので好ましくない。従って、ロールの研磨目の方向は、
板幅方向の残留応力の発生が少ないロール軸方向とす
る。
If the direction of the grinds of the roll is slightly inclined from the circumferential direction of the roll in the axial direction, residual stress due to the slip of the grinds of the roll occurs on the surface of the steel sheet after rolling, but if the tilt is small. The residual stress generated is small. Also,
Sufficient residual stress occurs when the inclination is 30 ° or more,
The residual stress has a large component in the plate width direction, which meanders during rolling and causes twisting of the steel plate, which impairs the stripability in the next step, which is not preferable. Therefore, the direction of the polishing eye of the roll is
The roll axis direction is set so that the residual stress in the plate width direction is small.

【0031】ロールの周方向の表面粗さ(Raθ)が 0.1
μm 未満では、油膜厚及び鋼板表面の粗さに対してロー
ルの粗さが小さ過ぎるため、ロールの研磨目の凸部(表
面の凹凸部の頂部)が鋼板の表面に十分届かず、残留応
力が発生しない。一方、ロールの周方向の表面粗さ(Ra
θ)が 0.6μm を超えると、圧延の際、ロール研磨目の
凸部が鋼板の表面に深く入り込んで、圧延時の摩擦係数
が高くなり、圧延が不安定になる。更に、摩耗粉の発生
が多く、局部的な焼き付き疵や鋼板の摩耗粉による押込
疵等の新たな疵が発生する。従って、ロール周方向にお
ける表面粗さ(Raθ)は 0.1〜0.6 μm とする。
The surface roughness (Raθ) in the circumferential direction of the roll is 0.1.
If it is less than μm, the roughness of the roll is too small compared to the oil film thickness and the roughness of the steel plate surface, so the convex parts of the roll's polishing edges (the tops of the irregularities on the surface) do not reach the surface of the steel plate sufficiently and the residual stress Does not occur. On the other hand, the surface roughness (Ra
When θ) exceeds 0.6 μm, the convex portions of the roll-polished mesh penetrate deeply into the surface of the steel sheet during rolling, the friction coefficient during rolling increases, and rolling becomes unstable. Furthermore, abrasion powder is often generated, and new defects such as local seizure flaws and indentation flaws due to the abrasion powder of the steel sheet occur. Therefore, the surface roughness (Raθ) in the roll circumferential direction is 0.1 to 0.6 μm.

【0032】圧延時に直径が 200mm以上のワークロール
を用いるのは、鋼板表面における残留応力を高めるため
である。
The work roll having a diameter of 200 mm or more is used for rolling in order to increase the residual stress on the surface of the steel sheet.

【0033】図5に示したようなロール研磨目の凸部の
金属板表面上での滑り、およびこの滑りにより発生する
残留応力は、圧延時にロールと金属板とが接触する弧の
長さ、即ち、A点からB点までの長さが長いほど大き
い。この長さは圧下率が大きいほど、また、ワークロー
ルの直径が大きいほど大となる。しかし、圧延では、1
パスで圧延できる圧下率に限度があり、通常35%以下な
ので、圧下率を一定とすれば、ワークロールの直径が大
きいほどロールと金属板とが接触する長さが長くなる。
ワークロールの直径が200 mm未満の小径ロールでは十分
な接触長さが得られず、必要な残留応力が付与されな
い。従って、ワークロールの直径は 200mm以上とする。
望ましくは 400mm以上である。
The slip of the convex portion of the roll-polished mesh as shown in FIG. 5 on the surface of the metal plate and the residual stress caused by this slip are determined by the length of the arc of contact between the roll and the metal plate during rolling. That is, the longer the length from the point A to the point B, the larger the length. This length becomes larger as the rolling reduction becomes larger and the diameter of the work roll becomes larger. However, in rolling 1
There is a limit to the rolling reduction that can be rolled in a pass, and it is usually 35% or less. Therefore, if the rolling reduction is constant, the larger the diameter of the work roll, the longer the contact length between the roll and the metal plate.
A small roll with a work roll diameter of less than 200 mm does not provide a sufficient contact length and does not give the required residual stress. Therefore, the work roll diameter should be 200 mm or more.
It is preferably 400 mm or more.

【0034】なお、圧延機の各スタンドの全てのロール
に本発明方法で規定するワークロールを使用する必要は
なく、少なくとも最終パスのロールに使用すればよい。
その場合の圧下率が小さすぎると、ワークロールが小径
の場合は接触弧の長さが短くなり、また、ワークロール
が大径の場合は圧延時にロールと鋼板との間に引き込ま
れる油膜厚が厚くなってロールの研磨目の凸部が鋼板の
表面に届かなくなるので、圧下率は5%以上とすること
が望ましく、10%以上とすれば一層好ましい。
It is not necessary to use the work rolls defined by the method of the present invention for all the rolls of each stand of the rolling mill, but at least for the rolls in the final pass.
If the rolling reduction in that case is too small, the length of the contact arc becomes short when the work roll has a small diameter, and when the work roll has a large diameter, the oil film thickness drawn between the roll and the steel plate during rolling is small. Since the projections of the rolls become thicker and the projections of the rolls cannot reach the surface of the steel sheet, the rolling reduction is preferably 5% or more, and more preferably 10% or more.

【0035】図7は、炭素(C)含有量が0.01重量%未
満、Si含有量が0.25〜1.5 重量%の高張力鋼板の表面に
圧延条件を変えて種々の残留応力を付与した後、酸素濃
度が500ppmの弱酸化性の窒素(N2)雰囲気中で 550℃ま
で加熱し、引き続き水素を10体積%含有する還元性の窒
素雰囲気中で 850℃×60秒の焼鈍を施した際の鋼板の表
面におけるFeの含有率(図中の実線)と、Si、Mn、Alお
よびPの合計の含有率(破線)を、残留応力に対して示
した図である。なお、残留応力(σ)は付与できるレベ
ルが鋼板の降伏応力(YP)により異なるため、鋼板に冷間
圧延を施した状態における降伏応力に対する比率で示し
た。また、鋼板表面の元素量は、鋼板の表面を5秒間ア
ルゴン(Ar)エッチングした後、ESCAにより測定し
た。
FIG. 7 shows that after applying various residual stresses by changing the rolling conditions on the surface of a high-strength steel sheet having a carbon (C) content of less than 0.01% by weight and a Si content of 0.25 to 1.5% by weight, oxygen is applied. Steel sheet when heated to 550 ° C in a weakly oxidizing nitrogen (N 2 ) atmosphere with a concentration of 500 ppm and then annealed at 850 ° C for 60 seconds in a reducing nitrogen atmosphere containing 10% by volume of hydrogen FIG. 3 is a diagram showing the content rate of Fe (solid line in the figure) and the total content rate of Si, Mn, Al and P (broken line) with respect to the residual stress on the surface of FIG. Since the level of residual stress (σ) that can be applied differs depending on the yield stress (YP) of the steel sheet, the residual stress (σ) is shown as a ratio to the yield stress in the state where the steel sheet is cold rolled. Further, the amount of elements on the surface of the steel sheet was measured by ESCA after etching the surface of the steel sheet for 5 seconds with argon (Ar).

【0036】図8は、上記の焼鈍処理を行った鋼板に浴
温が 460℃の溶融亜鉛浴(Al含有量: 0.1重量%)中で
めっきを施した後、 500℃で20秒間合金化処理を行った
際の溶融亜鉛の密着性の調査結果を残留応力(図7の場
合と同様に、降伏応力に対する比率で表示)に対して示
した図である。溶融亜鉛の密着性は、試験面に 500gの
おもりを 500mm離れた高さから落下させ、亀裂や剥離の
発生の有無を調べるボールインパクト法で評価し、剥離
が多い場合を評点1、一部が剥離した場合を評点2、亀
裂が発生した場合を評点3、亀裂・剥離ともに認められ
ない場合を評点4として表した。
FIG. 8 shows that the annealed steel sheet was plated in a molten zinc bath (Al content: 0.1% by weight) having a bath temperature of 460 ° C. and then alloyed at 500 ° C. for 20 seconds. FIG. 8 is a diagram showing the results of an examination of the adhesiveness of molten zinc when performing the above with respect to residual stress (displayed as a ratio to yield stress as in the case of FIG. 7). The adhesion of molten zinc was evaluated by a ball impact method in which a 500-g weight was dropped from a height of 500 mm on the test surface to check for the occurrence of cracks or peeling. The case of peeling is shown as a score 2, the case of cracking is shown as a score 3, and the case where neither crack nor peeling is observed is shown as a score 4.

【0037】図7および図8に示されるように、残留応
力が増すにつれて焼鈍後の鋼板の表面におけるFeの含有
率が徐々に増加し、降伏応力の50%前後で増加割合が急
激に大きくなる。そして、このFeの含有率の増加に伴っ
て溶融亜鉛の密着性が向上する。本発明方法では、鋼板
表面の残留応力は特に規定しないが、本発明方法で規定
するロールを使用し、前記の好適な圧下率で圧延を行う
と、鋼板表面の残留応力は鋼板に冷間圧延を施した状態
における降伏応力に対して50%以上になる。
As shown in FIGS. 7 and 8, the Fe content in the surface of the annealed steel sheet gradually increases as the residual stress increases, and the increase rate rapidly increases at around 50% of the yield stress. . Then, as the content of Fe increases, the adhesion of molten zinc improves. In the method of the present invention, the residual stress on the surface of the steel sheet is not particularly specified, but when a roll defined by the method of the present invention is used and rolling is performed at the suitable reduction ratio, the residual stress on the surface of the steel sheet is cold-rolled to the steel sheet. 50% or more with respect to the yield stress in the state of applying.

【0038】本発明方法では、上記のように冷間圧延を
行って鋼板の表面に残留応力を付与した後、酸化性雰囲
気で加熱して表面を酸化し、引き続き還元性雰囲気で加
熱して焼鈍した後、溶融亜鉛めっきを施し、あるいは更
に合金化処理を行う。加熱(酸化)、焼鈍(還元)、溶
融亜鉛めっきおよび合金化処理の各工程における条件に
ついては特に規定しないが、次の条件で行うのが好まし
い。
In the method of the present invention, after cold rolling as described above to give a residual stress to the surface of the steel sheet, it is heated in an oxidizing atmosphere to oxidize the surface, and subsequently heated in a reducing atmosphere to anneal. After that, hot dip galvanizing is performed or further alloying treatment is performed. The conditions in each step of heating (oxidation), annealing (reduction), hot dip galvanizing and alloying treatment are not particularly specified, but the following conditions are preferable.

【0039】<酸化条件>酸化条件としては、酸素
(O2) 、水分(H2O) 、二酸化炭素(CO2) 、一酸化炭素(C
O)などを含有する酸化性雰囲気中で 300〜700 ℃程度の
温度で加熱するか、または、バーナの空燃比を 1.0〜1.
3 程度に調整し、その酸化炎を鋼板に当てて加熱するの
が好ましい。加熱温度の下限は酸化鉄の形成に十分な酸
化速度が得られる温度とし、上限は酸化速度が速くなり
過ぎ、酸化鉄層が厚くなり過ぎない温度とするのが好ま
しい。酸化鉄層が厚くなり過ぎると還元時に酸化鉄が還
元されずに残りその部分が不めっきとなる。好ましい酸
化鉄量は、Feに換算して 0.5〜5.0 g/mm2 程度であり、
上記の酸化条件の範囲内で容易に制御することができ
る。
<Oxidation conditions> Oxidation conditions include oxygen (O 2 ), water (H 2 O), carbon dioxide (CO 2 ), carbon monoxide (C
(O) etc. in an oxidizing atmosphere at a temperature of about 300 to 700 ° C, or the burner air-fuel ratio is 1.0 to 1.
It is preferable to adjust the temperature to about 3 and apply the oxidizing flame to the steel sheet to heat it. It is preferable that the lower limit of the heating temperature is a temperature at which an oxidation rate sufficient to form iron oxide is obtained, and the upper limit is a temperature at which the oxidation rate becomes too fast and the iron oxide layer does not become too thick. If the iron oxide layer becomes too thick, the iron oxide will not be reduced during the reduction, and the portion will remain unplated. A preferable amount of iron oxide is about 0.5 to 5.0 g / mm 2 in terms of Fe,
It can be easily controlled within the range of the above-mentioned oxidation conditions.

【0040】なお、酸化鉄量の下限は溶融亜鉛の付着性
の向上に必要な量である。
The lower limit of the amount of iron oxide is the amount required to improve the adhesion of molten zinc.

【0041】<焼鈍条件>還元性雰囲気での焼鈍は通常
の溶融亜鉛めっきラインで用いられている雰囲気で行え
ばよく、雰囲気ガスとしては、例えば、水素(H2)濃度が
2〜10体積%で露点が−20℃〜−60℃の窒素と水素の混
合ガスを用いればよい。焼鈍温度は、極低炭素鋼板の場
合は 800〜900 ℃とするのが好ましく、再結晶温度の低
い低炭素鋼板などの場合は、酸化鉄の還元が可能な 600
℃以上とする。処理時間は30〜180秒程度で十分であ
る。
<Annealing Conditions> Annealing in a reducing atmosphere may be carried out in an atmosphere used in an ordinary hot dip galvanizing line. As an atmosphere gas, for example, hydrogen (H 2 ) concentration is 2 to 10% by volume. A mixed gas of nitrogen and hydrogen having a dew point of -20 ° C to -60 ° C may be used. The annealing temperature is preferably 800 to 900 ° C for ultra-low carbon steel sheets, and it is possible to reduce iron oxides for low-carbon steel sheets with low recrystallization temperature.
℃ or above. A processing time of 30 to 180 seconds is sufficient.

【0042】<めっきおよび合金化処理条件>めっき条
件は、浴温を 460℃とし、めっき後に合金化処理を行う
場合はAl含有量が0.07〜0.11重量%程度のめっき浴を、
合金化処理を行わない場合にはAl含有量が0.12〜0.2 重
量%のめっき浴を用いる。
<Plating and alloying treatment conditions> The plating condition is that the bath temperature is 460 ° C., and when the alloying treatment is performed after plating, a plating bath with an Al content of about 0.07 to 0.11% by weight is used.
When no alloying treatment is performed, a plating bath having an Al content of 0.12 to 0.2% by weight is used.

【0043】合金化処理は 500℃前後の温度で20〜30秒
加熱する処理を行えばよい。
The alloying treatment may be performed by heating at a temperature of about 500 ° C. for 20 to 30 seconds.

【0044】本発明方法で規定するロールで冷間圧延す
る方法は、鋼板の表面に残留応力を付与する効果を有す
るだけではなく、物理的に溶融亜鉛の付着性を改善する
効果も有している。
The method of cold rolling with a roll specified by the method of the present invention has not only the effect of imparting residual stress to the surface of the steel sheet, but also the effect of physically improving the adhesion of molten zinc. There is.

【0045】図9は、ロールの研磨目の転写により生じ
た鋼板表面の疵(研磨目疵)の方向とめっき性(不めっ
きの発生状況)の関係を示す図で、C含有量が 0.007重
量%、Si含有量が 0.8重量%の高張力鋼板に、図1(a)
に示したロールの研磨目のロール周方向(圧延方向)に
対する角度αを0°から90°の範囲で変えたロールによ
り冷間圧延を施して、圧延方向に対して種々の角度を有
する研磨目疵を生じさせた後、酸素濃度が500ppmの酸化
性の窒素雰囲気中で 600℃まで加熱し、次いで水素を10
体積%含有する還元性の窒素雰囲気中で 850℃×60秒の
焼鈍を施した鋼板について、めっき性を調査した結果で
ある。めっき性の評価は目視観察により行い、鋼板の表
面に溶融亜鉛がほとんど付着しない場合を評点1とし、
不めっきがひどい場合を評点2、わずかに不めっきが有
る場合を評点3、全く不めっきがない場合を評点4とし
た。
FIG. 9 is a diagram showing the relationship between the direction of the flaws (polishing flaws) on the surface of the steel sheet caused by the transfer of the polishing stitches of the roll and the plating property (the state of occurrence of non-plating). %, Si content of 0.8% by weight on high-strength steel, Fig. 1 (a)
The cold-rolled rolls having different angles α from 0 ° to 90 ° with respect to the roll circumferential direction (rolling direction) of the roll of the roll shown in FIG. After scratching, heat to 600 ° C in an oxidizing nitrogen atmosphere with an oxygen concentration of 500 ppm and then add hydrogen to 10 ° C.
It is the result of investigating the plating property of the steel sheet annealed at 850 ° C. for 60 seconds in a reducing nitrogen atmosphere containing vol%. The plating property was evaluated by visual observation, and the case where molten zinc hardly adhered to the surface of the steel plate was rated as 1,
The case where the unplating was severe was rated as 2, the case where there was slight unplating was rated as 3, and the case where there was no unplating was rated 4.

【0046】この図に示されるように、研磨目疵の方向
が圧延方向に対して90°の場合、即ち、微小な凸部が板
幅方向に平行に存在している場合の方が鋼板の長手方向
に微小な凹凸疵が存在している場合よりもめっき性が良
好である。
As shown in this figure, when the direction of the polishing flaws is 90 ° with respect to the rolling direction, that is, when the minute projections are present in parallel with the strip width direction, The plating property is better than that in the case where minute unevenness flaws are present in the longitudinal direction.

【0047】以上述べたように、本発明方法ではロール
の研磨目がロール軸に平行で、所定の表面粗さと直径を
有するワークロールを用いて珪素含有鋼板に冷間圧延を
施し、その後は通常の方法に準じて加熱、焼鈍、溶融亜
鉛めっき、あるいは更に合金化処理を施せばよいので、
大がかりな設備を必要とせず、工程が増すこともなく、
溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を
高能率で製造することが可能である。なお、本発明方法
は、溶融亜鉛めっきだけではなく、4%Al−Zn浴を用い
るガルファン、または55%Al−Zn浴を用いるガルバリウ
ムなど、溶融Al−Zn合金めっきに対しても適用すること
ができる。
As described above, in the method of the present invention, the silicon-containing steel plate is cold-rolled by using the work roll having the polishing grain of the roll parallel to the roll axis and having the predetermined surface roughness and diameter, and then the normal rolling. Since heating, annealing, hot dip galvanizing, or further alloying treatment may be performed according to the method of
Does not require large-scale equipment and does not increase the number of processes,
It is possible to manufacture galvanized steel sheets and galvannealed steel sheets with high efficiency. The method of the present invention can be applied not only to hot-dip galvanizing but also to hot-dip Al-Zn alloy plating such as galfan using a 4% Al-Zn bath or galvalume using a 55% Al-Zn bath. it can.

【0048】[0048]

【実施例】表1に示すA〜Eの高張力鋼板(板厚: 3.2
mm、板幅: 300mm)の母材を供試材とし、これらの鋼板
を、表2に示す直径、研磨目の方向および表面粗さを有
する記号1〜10の圧延用ロールを装備した4Hi 圧延機
を用いて、表3に示す圧延条件で圧延した。なお、4パ
スまでの圧延には表2の記号9のロールを用い、最後の
5パス目のみに表2に示したロールを用いた。表4に供
試材および5パス目に使用したロールを記号で示す。
EXAMPLES High tensile strength steel sheets A to E shown in Table 1 (thickness: 3.2
mm, plate width: 300 mm) was used as a test material, and these steel plates were rolled for 4Hi equipped with rolling rolls having diameters, directions of polishing and surface roughness shown in Table 2 and symbols 1 to 10. It rolled using the machine under the rolling conditions shown in Table 3. For rolling up to 4 passes, the roll indicated by symbol 9 in Table 2 was used, and only for the final 5th pass, the roll shown in Table 2 was used. Table 4 shows the test materials and the rolls used in the fifth pass by symbols.

【0049】冷間圧延を施した後、鋼板の形状を調査
し、残留応力を測定した。結果を表4に併せて示す。鋼
板の形状については捻れ度合いで評価し、捻れのない場
合を○、軽度の捻れのある場合を△、捻れのかなり大き
い場合を×とした。また、残留応力は、鋼板に5パス目
の冷間圧延を施した状態における降伏応力の50%以上の
場合を○、30%以上50%未満の場合を△、30%未満の場
合を×とした。なお、鋼板の5パス目の冷間圧延を施し
た後の降伏応力は表1に示した。
After the cold rolling, the shape of the steel sheet was investigated and the residual stress was measured. The results are also shown in Table 4. The shape of the steel sheet was evaluated based on the degree of twist. When there was no twist, the grade was ◯, when there was a slight twist, the grade was Δ, and when the twist was considerably large, x. Residual stress is indicated by ○ when the yield stress is 50% or more of the steel sheet after cold rolling in the fifth pass, Δ when it is 30% or more and less than 50%, and × when it is less than 30%. did. The yield stress of the steel sheet after cold rolling in the fifth pass is shown in Table 1.

【0050】表4の結果から、本発明例(No.1〜12)で
は形状、残留応力の何れについても良好な結果が得られ
たが、本発明方法で定める条件から外れる比較例(No.13
〜17)では、形状、残留応力の少なくとも一方で△また
は×の評価となった。
From the results of Table 4, in the present invention examples (Nos. 1 to 12), good results were obtained in terms of both shape and residual stress, but comparative examples (No. 13
In ~ 17), at least one of shape and residual stress was evaluated as Δ or ×.

【0051】次に、供試材に冷間圧延を施した後、表5
に示すa〜dの条件で加熱して鋼板の表面を酸化させ、
更に表6に示す条件で焼鈍した後、表7に示す条件で溶
融亜鉛めっきおよび合金化処理を行った。冷間圧延、酸
化、焼鈍、めっきおよび合金化処理の各条件を表8に記
号で示す。
Then, after cold rolling the test material,
The surface of the steel sheet is oxidized by heating under the conditions a to d shown in
Further, after annealing under the conditions shown in Table 6, hot dip galvanizing and alloying treatment were performed under the conditions shown in Table 7. The conditions of cold rolling, oxidation, annealing, plating, and alloying treatment are shown by symbols in Table 8.

【0052】めっき後、板幅方向におけるめっき性(不
めっきの発生状況)、ならびに、めっき皮膜の密着性を
評価した。めっき性の評価は目視観察により行い、めっ
き後の鋼板の表面に溶融亜鉛が付着していない場合を
×、付着しているがムラがある場合を△、ムラがない場
合を○とした。めっき皮膜の密着性は、ボールインパク
ト法により評価し、めっき皮膜の亀裂・剥離ともにない
場合を○、亀裂・一部剥離がある場合を△、剥離が多い
場合を×とした。なお、めっき後の鋼板の総合評価とし
て、めっき性、めっき皮膜の密着性のいずれも○の場合
を◎、△と○の場合は△、少なくとも一方が×であれば
×、とした。結果を表8に併せて示す。
After plating, the plating property in the width direction of the plate (the state of occurrence of non-plating) and the adhesion of the plating film were evaluated. The plating property was evaluated by visual observation. When the surface of the steel sheet after plating was not adhered to the molten zinc, x was given, when there was adhesion but unevenness was evaluated as Δ, and when there was no unevenness, it was evaluated as o. The adhesion of the plating film was evaluated by the ball impact method. When there was neither cracking nor peeling of the plating film, it was rated as O, when there was cracking or partial peeling, it was rated as Δ, and when there was much peeling, it was rated as X. In addition, as a comprehensive evaluation of the steel sheet after plating, when the plating property and the adhesion of the plating film were both ◯, ◯, when Δ and ◯ were Δ, and when at least one of them was ×, it was ×. The results are also shown in Table 8.

【0053】また、合金化処理後、めっき皮膜の密着性
と色調を評価した。密着性についてはボールインパクト
法により評価した。色調については、合金化が完了して
金属光沢が消失した場合を○、合金化が未完了の場合を
△、ムラがある場合を×とした。結果を同じく表8に示
した。
After the alloying treatment, the adhesion and color tone of the plating film were evaluated. The adhesion was evaluated by the ball impact method. Regarding the color tone, the case where alloying was completed and the metallic luster disappeared was marked with ◯, the case where alloying was not completed was marked with Δ, and the case where there was unevenness was marked with x. The results are also shown in Table 8.

【0054】表8の結果から明らかなように、本発明例
ではめっき後の性状、合金化処理後の性状の何れについ
ても良好であったが、本発明方法で定める条件から外れ
る比較例では、めっき後の性状ならびに合金化処理後の
性状の何れについても欠陥が認められた。
As is clear from the results of Table 8, in the examples of the present invention, both the properties after plating and the properties after the alloying treatment were good, but in the comparative examples deviating from the conditions defined by the method of the present invention, Defects were found in both the properties after plating and the properties after alloying.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】[0062]

【表8】 [Table 8]

【0063】[0063]

【発明の効果】本発明方法によれば、珪素含有鋼板を母
材として、不めっきがなく、めっき密着性の良好な溶融
亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を高能
率で製造することができる。この鋼板は自動車、建材等
の産業分野で使用される素材鋼板として好適である。
EFFECTS OF THE INVENTION According to the method of the present invention, a galvanized steel sheet and an alloyed hot-dip galvanized steel sheet which have no plating and have good plating adhesion can be produced with high efficiency using a silicon-containing steel sheet as a base material. it can. This steel sheet is suitable as a material steel sheet used in the industrial fields such as automobiles and building materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のロールおよび本発明方法で用いるロール
の研磨目の方向についての説明図である。
FIG. 1 is an explanatory view of a direction of a polishing grain of a conventional roll and a roll used in a method of the present invention.

【図2】冷間圧延におけるロールの表面と金属板の表面
との間の滑り(ずれ)についての説明図である。
FIG. 2 is an explanatory diagram of slippage (deviation) between the surface of a roll and the surface of a metal plate in cold rolling.

【図3】ロールの研磨目がロールの周方向に平行な従来
のロールを用いて冷間圧延を行ったときのロールの研磨
目の金属板表面上への転写の状況を示す図である。
FIG. 3 is a diagram showing a state of transfer of polishing marks on a metal plate surface of a roll when cold rolling is performed using a conventional roll whose polishing marks are parallel to the circumferential direction of the roll.

【図4】従来のロールで冷間圧延を行った後の金属板の
表面状態と、圧延方向および板幅方向における粗さの断
面曲線を示す図である。
FIG. 4 is a diagram showing a surface state of a metal plate after cold rolling with a conventional roll and a sectional curve of roughness in a rolling direction and a plate width direction.

【図5】ロールの研磨目がロールの軸方向に平行な本発
明方法で規定するロールを用いて冷間圧延を行ったとき
のロールの研磨目の金属板表面上への転写の状況を示す
図である。
FIG. 5 shows the state of transfer of the polishing marks of the roll onto the surface of the metal plate when cold rolling is performed using the roll defined by the method of the present invention, the polishing marks of the roll being parallel to the axial direction of the roll. It is a figure.

【図6】本発明方法で規定するロールで冷間圧延を行っ
た後の金属板の表面状態と、圧延方向および板幅方向に
おける粗さの断面曲線を示す図である。
FIG. 6 is a view showing a surface state of a metal plate after cold rolling with a roll defined by the method of the present invention and a sectional curve of roughness in a rolling direction and a plate width direction.

【図7】鋼板の表面におけるFeならびに、Si、Mn、Alお
よびPの含有率と残留応力の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the content of Fe, Si, Mn, Al and P on the surface of a steel sheet and the residual stress.

【図8】溶融亜鉛の密着性と鋼板表面の残留応力の関係
を示す図である。
FIG. 8 is a diagram showing the relationship between the adhesiveness of molten zinc and the residual stress on the surface of a steel sheet.

【図9】ロールの研磨目の転写により生じた鋼板表面の
疵(研磨目疵)の方向とめっき性の関係を示す図であ
る。
FIG. 9 is a diagram showing the relationship between the direction of a flaw (polishing flaw) on the surface of a steel sheet caused by transfer of a polishing eye of a roll (polishing flaw) and plating property.

【符号の説明】[Explanation of symbols]

1:ロール、2:ロール研磨目、3:ロール研磨目の凸
部、4:微小な凸部、S:金属板、X:圧延方向。
1: Roll, 2: Roll-polished mesh, 3: Roll-polished convex part, 4: Micro convex part, S: Metal plate, X: Rolling direction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ロールの研磨目が平均的にロール軸方向に
分布し、かつロール周方向におけるロール表面の中心線
平均粗さ(Raθ)が 0.1〜0.6 μm で、直径が 200mm以
上のワークロールを用い、Si含有量が 0.2重量%以上の
鋼板に冷間圧延を施した後、鋼板の表面を酸化性雰囲気
で加熱し、引き続き還元性雰囲気で加熱した後、溶融亜
鉛めっきを施すことを特徴とする溶融亜鉛めっき鋼板の
製造方法。
1. A work roll having an average distribution of polishing grains in the roll axial direction, a center line average roughness (Raθ) of the roll surface in the roll circumferential direction of 0.1 to 0.6 μm, and a diameter of 200 mm or more. Steel sheet with a Si content of 0.2 wt% or more is cold-rolled, the surface of the steel sheet is heated in an oxidizing atmosphere, then in a reducing atmosphere, and then hot-dip galvanized. And a method for manufacturing a hot-dip galvanized steel sheet.
【請求項2】ロールの研磨目が平均的にロール軸方向に
分布し、かつロール周方向におけるロール表面の中心線
平均粗さ(Raθ)が 0.1〜0.6 μm で、直径が 200mm以
上のワークロールを用い、Si含有量が 0.2重量%以上の
鋼板に冷間圧延を施した後、鋼板の表面を酸化性雰囲気
で加熱し、引き続き還元性雰囲気で加熱した後、溶融亜
鉛めっきを施し、次いで合金化処理を行うことを特徴と
する合金化溶融亜鉛めっき鋼板の製造方法。
2. A work roll having an average distribution of polishing grains in the roll axial direction, a center line average roughness (Raθ) of the roll surface in the roll circumferential direction of 0.1 to 0.6 μm, and a diameter of 200 mm or more. After cold rolling a steel sheet with a Si content of 0.2% by weight or more, the surface of the steel sheet is heated in an oxidizing atmosphere, then in a reducing atmosphere, then hot dip galvanized, and then alloyed. A method for producing an alloyed hot-dip galvanized steel sheet, which comprises performing an alloying treatment.
JP23830693A 1993-09-24 1993-09-24 Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet Pending JPH0790529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23830693A JPH0790529A (en) 1993-09-24 1993-09-24 Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23830693A JPH0790529A (en) 1993-09-24 1993-09-24 Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
JPH0790529A true JPH0790529A (en) 1995-04-04

Family

ID=17028250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23830693A Pending JPH0790529A (en) 1993-09-24 1993-09-24 Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH0790529A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900857A4 (en) * 1997-01-13 2000-08-02 Kawasaki Steel Co Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
JP2004346375A (en) * 2003-05-22 2004-12-09 Jfe Steel Kk Hot-dip galvanized steel sheet and method for producing the same
WO2006068169A1 (en) * 2004-12-21 2006-06-29 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
JP2007239012A (en) * 2006-03-08 2007-09-20 Jfe Steel Kk Manufacturing method of high strength hot dip galvanized steel sheet
EP1978113B1 (en) 2005-12-06 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP2019131879A (en) * 2018-02-02 2019-08-08 日本製鉄株式会社 Method for manufacturing alloyed hot-dip galvanized steel sheet
CN113528764A (en) * 2021-06-02 2021-10-22 广西柳钢华创科技研发有限公司 Method for improving quality of passivation film of galvanized product
US11591685B2 (en) 2017-11-14 2023-02-28 Nippon Steel Corporation Manufacturing method of galvannealed steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900857A4 (en) * 1997-01-13 2000-08-02 Kawasaki Steel Co Hot dip galvanized steel sheet reduced in defects derived from failed plating and excellent in contact plating adhesion and process for producing the same
JP2004346375A (en) * 2003-05-22 2004-12-09 Jfe Steel Kk Hot-dip galvanized steel sheet and method for producing the same
WO2006068169A1 (en) * 2004-12-21 2006-06-29 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
KR100892815B1 (en) * 2004-12-21 2009-04-10 가부시키가이샤 고베 세이코쇼 Method and facility for hot dip zinc plating
CN102260842A (en) * 2004-12-21 2011-11-30 株式会社神户制钢所 Method and facility for hot dip zinc plating
US8216695B2 (en) 2004-12-21 2012-07-10 Kobe Steel, Ltd. Method and facility for hot dip zinc plating
EP1978113B1 (en) 2005-12-06 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP2007239012A (en) * 2006-03-08 2007-09-20 Jfe Steel Kk Manufacturing method of high strength hot dip galvanized steel sheet
US11591685B2 (en) 2017-11-14 2023-02-28 Nippon Steel Corporation Manufacturing method of galvannealed steel sheet
JP2019131879A (en) * 2018-02-02 2019-08-08 日本製鉄株式会社 Method for manufacturing alloyed hot-dip galvanized steel sheet
CN113528764A (en) * 2021-06-02 2021-10-22 广西柳钢华创科技研发有限公司 Method for improving quality of passivation film of galvanized product

Similar Documents

Publication Publication Date Title
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
JP2024020359A (en) High-strength galvanized steel sheet with excellent electrical resistance spot weldability and its manufacturing method
JP5478804B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
EP3375902B1 (en) High strength hot dip hot-rolled steel sheet and manufacturing method therefor
JP2024138314A (en) Zinc-coated steel sheet with excellent fatigue strength at electric resistance spot welds and its manufacturing method
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method
JP5673708B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JPH0790529A (en) Method for producing hot dip galvanized steel sheet containing silicon and alloyed hot dip galvanized steel sheet
JPH07126747A (en) Method for producing Si-containing steel sheet having excellent hot-dip galvanizing property
CN1131742C (en) Method for producing plating steel plate
JPH04202631A (en) Method for producing P-containing high tensile strength alloyed galvanized steel sheet
JP2019167576A (en) Method for manufacturing hot-dip galvanized steel sheet
EP0148957B1 (en) Steel plated with molten aluminum excellent in high-temperature oxidation resistance and high-temperature strength and process fo r its production
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2964910B2 (en) Method for producing hot-dip galvanized steel sheet and apparatus therefor
JP3020846B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JPH06158254A (en) Method for producing galvannealed steel sheet
KR100985370B1 (en) Continuous hot dip plating equipment and plating method
JP3271749B2 (en) Hot-dip galvanized steel sheet excellent in appearance and method for producing the same
JPH10130801A (en) Manufacturing method of hot-dip coated steel sheet with excellent surface quality
JPH0971850A (en) Manufacturing method of hot-dip coated steel sheet with excellent surface quality
JP3248431B2 (en) Manufacturing method of hot-dip coated steel sheet
JP4604327B2 (en) Cold rolling method of raw steel sheet for hot metal plating and manufacturing method of alloyed hot metal plating steel sheet
JPH0941111A (en) High-strength hot-dip galvanized steel sheet with excellent plating properties
JP2010059463A (en) Method for producing hot-dip galvannealed steel sheet