JPH0790268A - Production of rare earth element-containing halide transparent material - Google Patents
Production of rare earth element-containing halide transparent materialInfo
- Publication number
- JPH0790268A JPH0790268A JP5256556A JP25655693A JPH0790268A JP H0790268 A JPH0790268 A JP H0790268A JP 5256556 A JP5256556 A JP 5256556A JP 25655693 A JP25655693 A JP 25655693A JP H0790268 A JPH0790268 A JP H0790268A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- rare earth
- transparent
- transparent body
- transparent material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lasers (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、希土類含有ハロゲン化
物透明体の製造方法に関する。本発明により製造される
透明体は、光波長上方変換(アップコンバージョン)材
料、特に可視光レーザ発振素子の母材として有用であ
る。FIELD OF THE INVENTION The present invention relates to a method for producing a rare earth-containing halide transparent body. The transparent body produced by the present invention is useful as a base material for a light wavelength up-conversion material (up-conversion), particularly a visible light laser oscillation element.
【0002】[0002]
【従来技術】一般に蛍光発光においては、放出される光
の波長は吸収された光の波長よりも長い。ところが、希
土類イオンの中には、励起光よりも短波長の光を放出す
るアップコンバージョンと呼ばれる蛍光を示すものがあ
る。かかる現象は、従来、ディスプレイの発光体や赤外
光の検出器等としての応用が考えられていたが、最近で
は、赤外半導体レーザ光を可視光に変換することにより
実現される可視光レーザ、特に青・緑色光レーザ発振素
子の母材として検討が進められており、そのために透明
体の発光体が求められている。2. Description of the Related Art Generally, in fluorescence emission, the wavelength of emitted light is longer than the wavelength of absorbed light. However, some rare earth ions exhibit fluorescence called upconversion, which emits light having a shorter wavelength than the excitation light. Although such a phenomenon has been conventionally considered to be applied as a light-emitting body of a display, a detector of infrared light, etc., recently, a visible light laser realized by converting infrared semiconductor laser light into visible light. Especially, as a base material of a blue / green light laser oscillating device, investigations are being made, and therefore, a transparent light-emitting body is required.
【0003】アップコンバージョン蛍光を示す透明材料
としてはこれまでに種々のガラス材料が提案されてい
る。例えば、特開平3-295828号公報には、重金属酸化物
あるいは希土類元素酸化物を含有する酸化物ガラスが記
載されている。また、特開平4-12035 号公報には、ジル
コニウムおよびバリウムのフッ化物を主成分として、ラ
ンタン、アルミニウム、ナトリウム、インジウムならび
にエルビウムおよびイッテルビウムの各フッ化物を含有
する希土類含有フッ化物ガラスが、さらに、特開平4-32
8191号公報には、アルカリ金属、リチウムおよびジルコ
ニウムの各フッ化物を主成分として、エルビウム、ツリ
ウムおよびホルミウムのいずれかならびにイッテルビウ
ムのフッ化物を含有する希土類含有フッ化物ガラスが、
それぞれ提案されている。Various glass materials have been proposed as transparent materials exhibiting up-conversion fluorescence. For example, Japanese Patent Application Laid-Open No. 3-295828 describes an oxide glass containing a heavy metal oxide or a rare earth element oxide. Further, in JP-A-4-12035, a rare earth-containing fluoride glass containing fluorides of zirconium and barium as main components and containing lanthanum, aluminum, sodium, indium and fluorides of erbium and ytterbium is further provided. JP 4-32
In the 8191 publication, an alkali metal, each of fluorides of lithium and zirconium as a main component, erbium, any of thulium and holmium, and a rare earth-containing fluoride glass containing a fluoride of ytterbium,
Each has been proposed.
【0004】ところが、これらの材料は発光源であるE
r3+などの希土類イオンの濃度を高めることが本質的に
難しいために光路長の短いコンパクトな発光素子を得る
ことができない。また、仮に高濃度で希土類イオンを含
有させたとしても濃度消光と呼ばれる現象のために逆に
発光効率が低下することが知られている。さらに、これ
らはいずれもガラス材料であり、溶融原料を急冷して製
造するものであるために多成分ガラスに共通する問題点
として均質な組成を得るのが難しいという大きな問題が
ある。また、上記ガラス材料はいずれもフッ化物ないし
酸化物であるが、希土類塩としてはむしろ塩化物あるい
は臭化物の方が優れた特性を有することが知られている
(田部他「セラミックス」、26(1991)144 頁)。にも拘
らずフッ化物等が提案されてきたのは、塩化物や臭化物
は極めて吸湿性が高く、合成・使用ともに困難であるた
めに実用材料としては適さないと考えられていたためで
ある。However, these materials are the light emitting source E
Since it is essentially difficult to increase the concentration of rare earth ions such as r 3+ , a compact light emitting device with a short optical path length cannot be obtained. Further, it is known that even if a rare earth ion is contained at a high concentration, the luminous efficiency is lowered due to a phenomenon called concentration quenching. Further, since all of them are glass materials and are produced by quenching a molten raw material, there is a big problem that it is difficult to obtain a homogeneous composition as a problem common to multi-component glasses. Further, all of the above glass materials are fluorides or oxides, but it is known that chloride or bromide is more preferable as a rare earth salt (Tabe et al., "Ceramics", 26 (1991)). ) 144). Nevertheless, fluorides and the like have been proposed because chlorides and bromides are considered to be unsuitable as practical materials because they have extremely high hygroscopicity and are difficult to synthesize and use.
【0005】ガラス以外の透明材料としては結晶体を用
いることも考えられる。この場合、多結晶体は透過率を
高めることが困難であるため、実質上、単結晶に限られ
るが、希土類ハロゲン化物は、単塩(希土類元素のみを
陽イオンとして含有)については、るつぼ中で原料を融
解してから徐冷することによって結晶構造解析を行なう
に足る程度の単結晶が得られているものの、大部分の複
合塩はレーザ波長変換素子として実用に供し得る程度の
大きさ(数mm角)に達する単結晶が得られていない。ま
た単結晶育成のために必要な状態図、結晶構造などの基
礎データもほとんど得られていない。It is also conceivable to use a crystalline material as a transparent material other than glass. In this case, since it is difficult to increase the transmittance of the polycrystalline body, it is practically limited to a single crystal, but the rare earth halide is a single salt (containing only a rare earth element as a cation) in the crucible. Although a single crystal of sufficient size for crystal structure analysis was obtained by melting the raw material and then slowly cooling it, most of the complex salts are of a size that can be put to practical use as a laser wavelength conversion element ( A single crystal reaching several mm square) has not been obtained. In addition, basic data such as phase diagrams and crystal structures necessary for growing single crystals have not been obtained.
【0006】[0006]
【発明の解決課題】本発明は、従来技術における上記問
題点の解消を目的として、希土類イオン濃度、発光効率
および可視光透過率がいずれも高く、なおかつ実用的な
大きさを有して取扱い性にも優れた希土類を含有するハ
ロゲン化物透明体の製造方法を提供することを目的とす
る。DISCLOSURE OF THE INVENTION In order to solve the above problems in the prior art, the present invention has a high rare earth ion concentration, a high luminous efficiency and a high visible light transmittance, and has a practical size and is easy to handle. Another object of the present invention is to provide a method for producing a halide transparent body containing a rare earth element.
【0007】[0007]
【発明の構成】本発明によれば、以下の希土類含有ハロ
ゲン化物透明体の製造方法が提供される。 (1)希土類を含むハロゲン化物の製造において、原料
を溶融し、該融体をこれに対して不活性な物質からなる
細管に充填した後、帯溶融法により再溶融して透明化す
ることを特徴とする希土類含有ハロゲン化物透明体の製
造法。 (2)原料を溶融した後に、該融体にハロゲンガスを導
入して不純物を除去し、引き続き該融体を石英ガラスの
細管に吸引して充填し、帯溶融法により再溶融して透明
化する(1) の製造方法。 (3)得られる透明体の組成式が、R1x R2(1-x) Baz Cl
3+2z (ここでR1 とR2 は同一または異種の希土類元素、0.
01<x≦1、 1<z<4)で表わされる上記(1) の製
造方法。 (4)得られる透明体の組成式がErBaz Cl3+2zまたはTm
Baz Cl3+2z(zは上記定義と同じ)である上記(3) の製
造方法。According to the present invention, the following method for producing a rare earth-containing halide transparent body is provided. (1) In the production of a halide containing a rare earth, after melting a raw material, filling the melt into a thin tube made of a substance inert thereto, remelting by a zone melting method to make it transparent. A method for producing a transparent halide containing a rare earth characterized. (2) After melting the raw material, a halogen gas is introduced into the melt to remove impurities, and then the melt is sucked and filled in a thin tube of quartz glass and remelted by a zone melting method to be transparent. The manufacturing method of (1). (3) The composition formula of the obtained transparent body is R1 x R2 (1-x) Ba z Cl
3 + 2z (where R1 and R2 are the same or different rare earth elements,
The production method according to (1) above, wherein 01 <x ≦ 1 and 1 <z <4). (4) The composition formula of the obtained transparent body is ErBa z Cl 3 + 2z or Tm.
The manufacturing method of (3) above, which is Ba z Cl 3 + 2z (z is the same as defined above).
【0008】本発明は、希土類含有ハロゲン化物を透明
体として得るための製造方法を与える。本発明の方法
は、基本的にはハロゲン化物原料に帯溶融(ゾーン・メ
ルティング)法を適用したものである。帯溶融法そのも
のは非調和融解組成の化合物の単結晶育成のために一般
的に用いられる方法であるが、本発明においては原料、
融体および得られる結晶体を保持する態様に特徴を有す
る。すなわち、本発明では、原料をこれに対して不活性
な細管に充填して帯溶融法を適用する点、およびこの際
に、原料を溶融して融体として充填する点が特徴であ
る。かかる方法をとることにより、該細管を満たす大き
さの透明結晶体が得られる。The present invention provides a manufacturing method for obtaining a rare earth-containing halide as a transparent body. The method of the present invention is basically a method of applying a zone melting method to a halide material. The zone melting method itself is a method generally used for growing a single crystal of a compound having an anharmonic melting composition.
It is characterized in that it holds the melt and the resulting crystal. That is, the present invention is characterized in that the raw material is filled in a thin tube which is inactive to the raw material, and the zone melting method is applied, and at this time, the raw material is melted and filled as a melt. By adopting such a method, a transparent crystal having a size that fills the thin tube can be obtained.
【0009】細管が原料に対して不活性であるとは原料
およびこれから発生するガス等と実質的に反応しないも
のをいい、さらに水分や酸素などに対して不透過性の緻
密質材料が用いられる。また、後述するように透明であ
ることが好ましい。かかる条件を満たす材料の例として
は、石英ガラスが挙げられる。細管の内径は6mm以下が
好ましい。これより径の大きい管を用いると、熱膨張の
違いに起因する応力によって結晶に亀裂が入ったり、石
英管が割れたりすることがある。また、後述の吸い上げ
による充填法は、管径が大きすぎると充填密度の低下を
生じやすく、透過率の高い透明体を製造するのが難しく
なる。管長は必要とする透明体や加熱炉の大きさなどに
応じて適宜定められる。The fact that the thin tube is inactive with respect to the raw material means that it does not substantially react with the raw material and the gas generated therefrom, and a dense material impermeable to moisture and oxygen is used. . It is also preferably transparent as described later. Quartz glass is an example of a material that satisfies such conditions. The inner diameter of the thin tube is preferably 6 mm or less. If a tube having a diameter larger than this is used, the crystals may crack or the quartz tube may crack due to the stress caused by the difference in thermal expansion. Further, in the filling method by siphoning described later, if the tube diameter is too large, the packing density is likely to decrease, and it becomes difficult to manufacture a transparent body having high transmittance. The pipe length is appropriately determined according to the required transparent body and the size of the heating furnace.
【0010】本発明では、原料を溶融した後に細管に充
填する。塊状や粉末状の試料を充填する方法では充填密
度が不足して安定した結晶育成が困難であり、さらに粉
末充填作業中に雰囲気から汚染される虞があるが、本発
明では溶融体を用いて充填しているためこのような問題
がない。なお、再溶融の際の上記細管の破損や雰囲気か
らの汚染あるいは原料から発生するハロゲンによる装置
の損傷を避けるため、細管をこれよりも大きな石英管な
どに真空封入して用いてもよい。In the present invention, the raw material is melted and then filled in the thin tube. In the method of filling the lump or powder sample, the packing density is insufficient and stable crystal growth is difficult, and there is a possibility that the atmosphere is contaminated during the powder filling operation. There is no such problem because it is filled. In order to avoid damage to the thin tube during remelting, contamination from the atmosphere, or damage to the device due to halogen generated from the raw material, the thin tube may be vacuum-sealed in a quartz tube larger than this.
【0011】細管への充填は種々の方法で行なうことが
できるが、溶融体を原料としているため吸い上げ法が特
に有利である。具体的には管の一方の端にスポイトのよ
うな吸引手段を結合して溶融原料の吸い上げを行なう。
原料の溶融および管への充填は、アルゴンのような不活
性ガス雰囲気下で行なうことが好ましく、溶融した原料
には対応するハロゲンガスを吹き込んでその他の陰イオ
ン成分、例えば炭酸イオンなどの不純物を揮発除去する
ことが好ましい。The filling of the thin tube can be carried out by various methods, but the siphoning method is particularly advantageous since the melt is used as the raw material. Specifically, suction means such as a dropper is connected to one end of the pipe to suck up the molten raw material.
It is preferable to melt the raw material and fill the tube in an inert gas atmosphere such as argon, and blow a corresponding halogen gas into the melted raw material to remove other anionic components such as impurities such as carbonate ion. It is preferable to remove by volatilization.
【0012】帯溶融法そのものは既知の方法に従って行
なえばよい。本発明に即して説明すれば、上記溶融原料
の充填された細管を冷却または放冷して原料を凝固さ
せ、しかる後、側端の一部を加熱して内部の原料を帯状
に再溶融し、加熱部分を長手方向に移動して再溶融部分
を徐々に移動させる。なお、帯溶融法では試料の両端に
無効部分が生じるために、試料をなるべく長い棒状にす
ることが望ましい。The zone melting method itself may be performed according to a known method. According to the present invention, the thin tube filled with the molten raw material is cooled or allowed to cool to solidify the raw material, and then a part of the side end is heated to remelt the internal raw material into a band. Then, the heated portion is moved in the longitudinal direction to gradually move the remelted portion. In the band melting method, ineffective portions are formed at both ends of the sample, so it is desirable to make the sample into a rod shape as long as possible.
【0013】透明体の育成速度、すなわち、上記原料溶
融部の移動速度は毎時20mm以下が望ましい。これより速
い育成速度では透過率の低下を招きやすい。原料溶融部
の温度は目的組成によるが、例えば希土類塩化物系の場
合、通常300 〜800 ℃程度である。It is desirable that the growth speed of the transparent body, that is, the moving speed of the raw material melting portion is 20 mm or less per hour. A growth rate higher than this tends to cause a decrease in transmittance. The temperature of the raw material melting portion depends on the target composition, but is usually about 300 to 800 ° C. in the case of a rare earth chloride system.
【0014】本発明で得られる透明体は単結晶であると
考えられる。本発明により従来製造が困難であった大き
さの透明結晶体が得られる理由の詳細は明らかではない
が、(i) 原料を溶融して充填するために細管内の充填密
度が高い、(ii)細管を用いることにより結晶の成長方向
が限定されるので軸のずれが生じない、(iii) 原料に対
して不活性な容器に充填しているため雰囲気中の水分に
よる結晶の崩壊が避けられる、(iv)結晶育成と同時に精
製効果がある、(v) 帯溶融によるため温度、出発原料の
組成などの結晶育成条件の最適値からのずれがある程度
許容される、等の理由が考えられる。The transparent body obtained in the present invention is considered to be a single crystal. Although the details of the reason why the present invention can obtain a transparent crystal having a size that was difficult to produce in the related art are not clear, (i) the packing density in the capillary is high because the raw material is melted and packed, (ii) ) The use of a thin tube limits the crystal growth direction so that no axis deviation occurs. (Iii) Since the container is inert to the raw material, the collapse of the crystal due to moisture in the atmosphere is avoided. The reason is considered to be that (iv) there is a refining effect at the same time as crystal growth, and (v) some deviation from optimum values of crystal growth conditions such as temperature and composition of starting materials is allowed due to zone melting.
【0015】本発明により製造される希土類含有ハロゲ
ン化物透明体の組成は広い範囲に及び、高純度の原料の
製造が難しく、また、状態図などの基礎データの乏しい
希土類含有ハロゲン物にも適用できる。一例として、従
来製造が困難であった希土類−バリウム系ハロゲン化
物:R1x R2(1-x) Baz Cl3+2z (ここでR1 とR2 は同
一または異種の希土類元素、0.01<x≦1、 1<z<
4)の透明結晶体を得ることができる。特に、赤外光に
対して優れた発光効率を有するErBaz Cl3+2zおよびTmBa
z Cl3+2z(1<z<4)の希土類−バリウム系複合塩化
物の透明体を得ることができる。The composition of the rare earth-containing halide transparent body produced according to the present invention has a wide range, and it is difficult to produce a high-purity raw material, and it is also applicable to a rare earth-containing halide having poor basic data such as a phase diagram. . As an example, a rare earth-barium halide which has been difficult to produce in the past: R1 x R2 (1-x) Ba z Cl 3 + 2z (where R1 and R2 are the same or different rare earth elements, 0.01 <x ≦ 1 , 1 <z <
The transparent crystal of 4) can be obtained. In particular, ErBa z Cl 3 + 2z and TmBa which have excellent luminous efficiency for infrared light.
z Cl 3 + 2z of (1 <z <4) rare earth - can be obtained transparent body barium complex chlorides.
【0016】上記希土類含有ハロゲン化物透明体は比較
的強度が弱く、応力が加わると容易に破壊され、また破
壊されるほどの応力が加わらなくとも透過率の低下を招
く。さらに大気中の水分や酸素によって容易に分解する
問題もある。しかし、本発明によって製造された透明体
は、細管内で結晶化されるため、製造時において既に細
管に封入されており、従って、この細管を水分や酸素な
どの有害成分を通過させない緻密質かつ透明なものを用
いることにより耐久性や強度の優れた透明体を得ること
ができる。The above rare earth-containing halide transparent body has a relatively low strength, and is easily broken when stress is applied, and the transmittance is lowered even if the stress for breaking is not applied. Further, there is a problem that it is easily decomposed by moisture and oxygen in the atmosphere. However, the transparent body produced by the present invention is already crystallized in the thin tube at the time of production because it is crystallized in the thin tube, and therefore, the thin tube is dense and has no harmful components such as moisture and oxygen. By using a transparent material, a transparent body having excellent durability and strength can be obtained.
【0017】[0017]
【実施例】以下、本発明の実施例を示す。なお、本実施
例は例示であり発明の範囲を限定するものではない。EXAMPLES Examples of the present invention will be shown below. It should be noted that the present embodiment is an example and does not limit the scope of the invention.
【0018】実施例1 無水塩化エルビウム(ErCl3 )40g と無水塩化バリウム
(BaCl2 )60g をガラス状炭素製のるつぼに充填し、石
英ガラス製の容器内で真空−アルゴン置換を行なったの
ちにアルゴン雰囲気で 800℃まで加熱し溶融した。この
融体に塩素ガスを石英管を用いて毎分約 100mlで1時間
吹き込み精製した。約30分静置したのちに内径 2.5mmの
石英管でこの融体を吸い上げると、約 300mmの試料が石
英管内に吸い上げられ凝固した。この管を一回り径の大
きい石英管内に真空封入した後に、加熱炉に設置入し、
加熱部分を毎時 7mmの速度で下端から上昇させて透明体
を育成した。なお、炉内は炉の中心部約10mmで 700℃、
中心から 1mm離れるごとに約 5℃温度が低下する温度分
布であった。また、試料の最下端は完全に封止せず、細
管の下端から約40mm上の部分から再溶融を開始した。こ
のようにして得られた試料は試料全長約 300mmのうち中
心付近の 120mmが透明体であった。石英管を長さ12mmに
渡って切り出し、切断面を研磨し、これをさらに透明樹
脂に組み込んで軸方向の透過率を測定したところ、測定
波長 700nmで実測値75%を示した。端面による散乱や樹
脂による吸収などの影響を差し引けば透明結晶自体の透
過率は90%を超えていると推定される。また、この透明
体に波長 810nm,出力 5mWの赤外レーザ光を照射したと
ころ内部で強い緑色発光が起こることが観察された。さ
らに、透明体を取り出して粉砕し粉末X線回折により測
定したところ、図1最下段に示すように、ErCl3 および
BaCl2 の回折ピークは、見当たらず、従ってこの結晶は
これらの混合物ではなくErBa2 Cl7 の組成を有する単一
化合物であることが確認された。Example 1 40 g of anhydrous erbium chloride (ErCl 3 ) and 60 g of anhydrous barium chloride (BaCl 2 ) were filled in a glassy carbon crucible, and vacuum-argon substitution was performed in a quartz glass container. It was heated to 800 ° C in an argon atmosphere and melted. Chlorine gas was blown into this melt at a rate of about 100 ml / min for 1 hour using a quartz tube for purification. When the melt was sucked up by a quartz tube with an inner diameter of 2.5 mm after standing still for about 30 minutes, a sample of about 300 mm was sucked into the quartz tube and solidified. After vacuum-sealing this tube in a quartz tube with a large diameter, install it in a heating furnace,
The heated part was raised from the lower end at a speed of 7 mm per hour to grow a transparent body. The inside of the furnace is about 10 mm at the center of the furnace, 700 ° C,
The temperature distribution was such that the temperature dropped about 5 ° C every 1 mm from the center. Further, the lowermost end of the sample was not completely sealed, and remelting was started from a portion about 40 mm above the lower end of the thin tube. The sample obtained in this way had a total length of about 300 mm, and 120 mm near the center was transparent. A quartz tube was cut out over a length of 12 mm, the cut surface was polished, and this was further incorporated into a transparent resin, and the transmittance in the axial direction was measured. The measured value was 75% at a measurement wavelength of 700 nm. The transmittance of the transparent crystal itself is estimated to exceed 90% after subtracting the effects of scattering by the end faces and absorption by the resin. It was also observed that when this transparent body was irradiated with infrared laser light having a wavelength of 810 nm and an output of 5 mW, strong green light emission occurred inside. Further, the transparent body was taken out, pulverized, and measured by powder X-ray diffraction. As a result, as shown at the bottom of FIG. 1, ErCl 3 and
No diffraction peak of BaCl 2 was found, thus confirming that this crystal is not a mixture thereof but a single compound having a composition of ErBa 2 Cl 7 .
【0019】実施例2 酸化ツリウム(Tm2 O 3 ) 28gとグラファイト粉末3gを
混合し、ペレット化したものと無水塩化バリウム(BaCl
2 )60g とをガラス質炭素製るつぼに充填し、石英ガラ
ス製の容器内で真空−アルゴン置換したのち、1000℃ま
で昇温した。これに塩素ガスを毎分 300mlで 3時間吹き
込んで、塩化ツリウム−塩化バリウム混合物約100gを得
た。これには表面に未反応グラファイトが残っていたの
で冷却後これを削り落とし、再びガラス質の炭素製るつ
ぼに入れ、石英ガラス製容器で 800℃まで加熱して融体
とし、精製のために塩素ガスを毎分 100mlで1時間吹き
込んだ後、30分静置してから内径 2.5mmの透明石英管で
吸い上げた。この石英管には、実施例1と同様に、約 3
00mmの試料が吸い上げられており、実施例1と同様な処
理を行なったところ、実施例1と同様に約 120mmの透明
体が得られた。軸方向透過率は実施例1と同様であっ
た。また、この透明体に波長780nm ,出力 5mWの赤外レ
ーザ光を照射したところ内部で青緑色の発光が起こるこ
とが観察された。さらに、透明体を取り出して粉砕し粉
末X線回折により測定したところ、図2最下段に示すよ
うに、TmCl3 およびBaCl2 の回折ピークは見当たらず、
この結晶はこれらの混合物ではなくTmBa2 Cl7 の組成を
有する単一化合物であることが確認された。Example 2 Thulium oxide (Tm 2 O 3 ) (28 g) and graphite powder (3 g) were mixed and pelletized, and anhydrous barium chloride (BaCl 2
2 ) 60 g was charged into a glassy carbon crucible, vacuum-argon substitution was performed in a quartz glass container, and then the temperature was raised to 1000 ° C. Chlorine gas was blown into this at 300 ml / min for 3 hours to obtain about 100 g of a thulium chloride-barium chloride mixture. Since unreacted graphite remained on the surface of this, it was scraped off after cooling, put again in a glassy carbon crucible, heated to 800 ° C in a quartz glass container to form a melt, and chlorine was added for purification. The gas was blown at 100 ml / min for 1 hour, allowed to stand for 30 minutes, and then sucked up by a transparent quartz tube having an inner diameter of 2.5 mm. In this quartz tube, as in Example 1, about 3
When a sample of 00 mm was sucked up and the same treatment as in Example 1 was performed, a transparent body of about 120 mm was obtained as in Example 1. The axial transmittance was the same as in Example 1. It was also observed that when this transparent body was irradiated with infrared laser light having a wavelength of 780 nm and an output of 5 mW, blue-green light emission occurred inside. Furthermore, when the transparent body was taken out and pulverized and measured by powder X-ray diffraction, as shown in the bottom of FIG. 2, no diffraction peaks of TmCl 3 and BaCl 2 were found,
It was confirmed that this crystal was not a mixture thereof but a single compound having a composition of TmBa 2 Cl 7 .
【0020】実施例3〜6 実施例1、2と同様にして表1に示す組成の透明結晶を
製造し、これらの結晶について表1に示す波長の光を入
射し、その発光状態を観察した。結果を表1に纏めて示
す。なお、表中、試料番号1、2として実施例1、2の
結果を併せて示した。Examples 3 to 6 Transparent crystals having the compositions shown in Table 1 were produced in the same manner as in Examples 1 and 2, and light having a wavelength shown in Table 1 was made to enter these crystals, and their light emitting states were observed. . The results are summarized in Table 1. In the table, the results of Examples 1 and 2 are also shown as sample numbers 1 and 2.
【0021】[0021]
【表1】試料 組成 透過率(%) 励起波長 発光色 発光強度 1 ErBa2 Cl7 90以上 810nm 緑 最強 2 TmBa2 Cl7 90以上 780nm 青緑 やや弱 3 HoBa2 Cl7 90以上 650nm 緑 強 4 Tm0.2 Gd0.8 Ba2 Cl7 85以上 780nm 青緑 普通 5 Tm0.1 Yb0.9 Ba2 Cl7 85以上 980nm 青緑 普通6 Tm0.8 Er0.2 Ba2 Cl7 85以上 780nm 緑 強 [Table 1] Sample composition Transmittance (%) Excitation wavelength Emission color Emission intensity 1 ErBa 2 Cl 7 90 or more 810 nm Green strongest 2 TmBa 2 Cl 7 90 or more 780 nm Blue green Slightly weak 3 HoBa 2 Cl 7 90 or more 650 nm Green strong 4 Tm 0.2 Gd 0.8 Ba 2 Cl 7 85 or more 780 nm Blue-green Normal 5 Tm 0.1 Yb 0.9 Ba 2 Cl 7 85 or more 980 nm Blue-green Normal 6 Tm 0.8 Er 0.2 Ba 2 Cl 7 85 or more 780 nm Green Strong
【0022】[0022]
【発明の効果】本発明によれば、アップコンバージョン
の発光効率の高い希土類含有ハロゲン化物の透明体を安
定して製造することができる。特に、本発明の製造法に
よれば透明管に封入された形態で透明結晶が得られるの
で、そのまま適当な長さに切り出して使用することが可
能であり、赤外レーザ光の発振素子として必要な大きさ
の透明体を容易に得ることができ、実用性の高い半導体
可視光レーザの発振素子母材を提供できる。さらに本発
明の製造法によって得た透明体は透明管に覆われている
ので製造後の取扱いも容易である。According to the present invention, it is possible to stably produce a transparent rare earth element-containing halide having a high luminous efficiency in up-conversion. In particular, according to the production method of the present invention, a transparent crystal can be obtained in the form of being enclosed in a transparent tube, so that it can be cut out to an appropriate length and used as it is, and is required as an oscillation element for infrared laser light. A transparent body of various sizes can be easily obtained, and a highly practical semiconductor visible light laser oscillation element base material can be provided. Further, since the transparent body obtained by the production method of the present invention is covered with the transparent tube, it is easy to handle after production.
【図1】 ErCl3 およびBaCl2 のX線回折グラフと対照
して示した実施例1の化合物の粉末X線回折グラフ。1 is a powder X-ray diffraction chart of the compound of Example 1 shown in contrast to the X-ray diffraction charts of ErCl 3 and BaCl 2 .
【図2】 TmCl3 およびBaCl2 のX線回折グラフと対照
して示した実施例2の化合物の粉末X線回折グラフ。FIG. 2 is a powder X-ray diffraction graph of the compound of Example 2 shown in contrast to TmCl 3 and BaCl 2 X-ray diffraction graphs.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 花上 康宏 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Hanagami 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Corporation Central Research Laboratory
Claims (4)
て、原料を溶融し、該融体をこれに対して不活性な物質
からなる細管に充填した後、帯溶融法により再溶融して
透明化することを特徴とする希土類含有ハロゲン化物透
明体の製造法。1. In the production of a halide containing a rare earth, a raw material is melted, the melt is filled in a narrow tube made of a substance inert thereto, and then remelted by a zone melting method to be transparent. A method for producing a rare earth-containing halide transparent body, comprising:
スを導入して不純物を除去し、引き続き該融体を石英ガ
ラスの細管に吸引して充填し、帯溶融法により再溶融し
て透明化する請求項1の製造方法。2. After melting the raw material, a halogen gas is introduced into the melt to remove impurities, and then the melt is sucked and filled in a silica glass thin tube and remelted by a zone melting method. The manufacturing method according to claim 1, which is transparent.
Baz Cl3+2z (R1 とR2 は同一または異種の希土類元素、0.01<x
≦1、 1<z<4)で表わされる請求項1の製造方
法。3. The composition formula of the obtained transparent body is R1 x R2 (1-x)
Ba z Cl 3 + 2z (R1 and R2 are the same or different rare earth elements, 0.01 <x
The manufacturing method according to claim 1, wherein ≦ 1, 1 <z <4).
たはTmBaz Cl3+2z(zは上記定義と同じ)である請求項
3の製造方法。4. The method according to claim 3, wherein the composition formula of the obtained transparent body is ErBa z Cl 3 + 2z or TmBa z Cl 3 + 2z (z is the same as the above definition).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05256556A JP3106806B2 (en) | 1993-09-20 | 1993-09-20 | Production method of transparent halide containing rare earth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05256556A JP3106806B2 (en) | 1993-09-20 | 1993-09-20 | Production method of transparent halide containing rare earth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790268A true JPH0790268A (en) | 1995-04-04 |
JP3106806B2 JP3106806B2 (en) | 2000-11-06 |
Family
ID=17294286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05256556A Expired - Fee Related JP3106806B2 (en) | 1993-09-20 | 1993-09-20 | Production method of transparent halide containing rare earth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106806B2 (en) |
-
1993
- 1993-09-20 JP JP05256556A patent/JP3106806B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3106806B2 (en) | 2000-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2324021C2 (en) | Method for treatment of rare-earth metal chloride, bromide or iodode in carbonaceous crucible | |
Fedorov et al. | 11 Crystal Growth of Fluorides | |
KR100340047B1 (en) | Multi-component oxyhalide glass for optical amplifier and laser | |
US6015765A (en) | Rare earth soluble telluride glasses | |
US4277303A (en) | Getter for melt-grown scintillator ingot and method for growing the ingot | |
JP3106806B2 (en) | Production method of transparent halide containing rare earth | |
US5439616A (en) | Infrared light-excited light-emitting substance | |
JP4072269B2 (en) | Method for producing fluoride | |
JP5170502B2 (en) | Fluoride bulk single crystal material for upconversion | |
JP2007153626A (en) | Fluorescent glass | |
JPH10236843A (en) | Glass containing copper ion | |
Hehlen | Design and fabrication of rare-earth-doped laser cooling materials | |
JP2002274882A (en) | Transition metal containing chalcogenide glass phosphor | |
JPH09208947A (en) | Up-conversion phosphor and its production | |
Mortier et al. | Oxyfluoride transparent glass ceramics | |
JPH05319858A (en) | 0.8mum luminant tm ion-doped fluoride laser glass | |
CN1330799C (en) | Fluorine-doped tungstate laser crystal and growth method thereof | |
JPH05319859A (en) | Wavelength variable fluoride laser glass doped with tm ion | |
RU2600359C1 (en) | OPTICAL MEDIUM BASED ON CADMIUM-CAESIUM HALIDE CRYSTAL CsCdBr3, CONTAINING IMPURITY OF UNIVALENT BISMUTH IONS CAPABLE OF BROADBAND PHOTOLUMINESCENCE IN NEAR INFRARED RANGE, AND PRODUCTION METHOD THEREOF (VERSIONS) | |
JP7090905B2 (en) | Transparent crystallized glass and method for producing transparent crystallized glass | |
JP4839634B2 (en) | Scintillator manufacturing method and scintillator | |
KR20050010513A (en) | Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon | |
JPH101396A (en) | Light emitting material and its production | |
JP3132245B2 (en) | Fluoride glass composition | |
JPH1041577A (en) | Upconversion laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000808 |
|
LAPS | Cancellation because of no payment of annual fees |