JPH0790260A - Organic electroluminescent device - Google Patents
Organic electroluminescent deviceInfo
- Publication number
- JPH0790260A JPH0790260A JP6112502A JP11250294A JPH0790260A JP H0790260 A JPH0790260 A JP H0790260A JP 6112502 A JP6112502 A JP 6112502A JP 11250294 A JP11250294 A JP 11250294A JP H0790260 A JPH0790260 A JP H0790260A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hole
- transporting
- taz
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005401 electroluminescence Methods 0.000 claims abstract description 50
- 230000005525 hole transport Effects 0.000 claims abstract description 33
- 230000032258 transport Effects 0.000 claims description 90
- 239000000463 material Substances 0.000 claims description 48
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 37
- 238000000295 emission spectrum Methods 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 27
- 239000000975 dye Substances 0.000 claims description 26
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical class C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical class N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 claims description 4
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 3
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims description 3
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 claims description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 claims 1
- 150000003384 small molecules Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 13
- 239000003086 colorant Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- 150000003852 triazoles Chemical class 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 421
- 239000010408 film Substances 0.000 description 104
- 238000000576 coating method Methods 0.000 description 28
- 238000007740 vapor deposition Methods 0.000 description 27
- 239000000243 solution Substances 0.000 description 25
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- 239000000758 substrate Substances 0.000 description 24
- 230000000903 blocking effect Effects 0.000 description 18
- 239000011521 glass Substances 0.000 description 15
- 239000011777 magnesium Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- -1 Aromatic tertiary amines Chemical class 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 239000010409 thin film Substances 0.000 description 14
- 230000005684 electric field Effects 0.000 description 12
- 230000006798 recombination Effects 0.000 description 12
- 238000005215 recombination Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- VBVAVBCYMYWNOU-UHFFFAOYSA-N coumarin 6 Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 VBVAVBCYMYWNOU-UHFFFAOYSA-N 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 238000001947 vapour-phase growth Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000990 laser dye Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- FOQGQZNKXRATSS-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-1,2,4-triazole Chemical compound C(C)(C)(C)C1=CC=C(C=C1)C1=NN=CN1C1=CC=C(C=C1)CC FOQGQZNKXRATSS-UHFFFAOYSA-N 0.000 description 1
- YIZCFNBOVXMTMO-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=CN1C1=CC=CC=C1 YIZCFNBOVXMTMO-UHFFFAOYSA-N 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BTEAMLUWLVUBFF-UHFFFAOYSA-N 5-(3-methylphenyl)-4-phenylcyclohexa-2,4-diene-1,1-diamine Chemical compound CC=1C=C(C=CC1)C1=C(C=CC(C1)(N)N)C1=CC=CC=C1 BTEAMLUWLVUBFF-UHFFFAOYSA-N 0.000 description 1
- GDALETGZDYOOGB-UHFFFAOYSA-N Acridone Natural products C1=C(O)C=C2N(C)C3=CC=CC=C3C(=O)C2=C1O GDALETGZDYOOGB-UHFFFAOYSA-N 0.000 description 1
- KUTBASSAIOWAGE-UHFFFAOYSA-N COC1=CC=C(C=C1)C=CC=C(C2=CC=CC=C2)C3=CC=CC=C3 Chemical compound COC1=CC=C(C=C1)C=CC=C(C2=CC=CC=C2)C3=CC=CC=C3 KUTBASSAIOWAGE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000999 acridine dye Substances 0.000 description 1
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005425 toluyl group Chemical group 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/52—Luminescence
- C08G2261/524—Luminescence phosphorescent
- C08G2261/5242—Luminescence phosphorescent electrophosphorescent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/95—Use in organic luminescent diodes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3472—Five-membered rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
(57)【要約】
【構成】 第1の有機エレクトロルミネッセンス素子
は、色素を分子分散したホール輸送性発光層1を電子輸
送層2と積層した。電子輸送層2は、式(1) のトリアゾ
ール誘導体を含むのがよい。第2の素子は、上記式(1)
のトリアゾール誘導体の層を備える。第3の素子は、上
記式(1) のトリアゾール誘導体の層を、電子輸送層とホ
ール輸送層の間に介在させた。
【化1】
(式中の符号は明細書に記載のとおり。)
【効果】 かかる有機エレクトロルミネッセンス素子
は、発光効率、発光輝度、安定性にすぐれ、青色発光、
三原色マルチカラー発光、白色発光等が可能である。
(57) [Summary] [Structure] In the first organic electroluminescence device, a hole-transporting light-emitting layer 1 in which a dye is molecularly dispersed is laminated with an electron-transporting layer 2. The electron transport layer 2 preferably contains the triazole derivative of the formula (1). The second element is the above formula (1)
Of a triazole derivative of In the third device, a layer of the triazole derivative represented by the above formula (1) was interposed between the electron transport layer and the hole transport layer. [Chemical 1] (The symbols in the formula are as described in the specification.) [Effect] Such an organic electroluminescence device has excellent luminous efficiency, luminous brightness, and stability, and emits blue light.
It is capable of multi-color light emission of three primary colors and white light emission.
Description
【0001】[0001]
【産業上の利用分野】この発明は有機エレクトロルミネ
ッセンス(EL)素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence (EL) device.
【0002】[0002]
【従来の技術】有機エレクトロルミネッセンス素子の発
光は、電極から注入されたホールと電子が発光層内で再
結合して励起子を生成し、それが発光層を構成する発光
材料の分子を励起することに基づくと考えられている。
そして、発光材料として蛍光色素を使用すると、当該色
素分子のフォトルミネッセンスと同等の発光スペクトル
が、エレクトロルミネッセンス発光として得られる。2. Description of the Related Art In light emission of an organic electroluminescence device, holes and electrons injected from electrodes recombine in a light emitting layer to generate excitons, which excite molecules of a light emitting material forming the light emitting layer. It is believed to be based on that.
Then, when a fluorescent dye is used as the light emitting material, an emission spectrum equivalent to the photoluminescence of the dye molecule can be obtained as electroluminescence emission.
【0003】近時、従来の単層構造の有機エレクトロル
ミネッセンス素子に比べて、約10Vという低電圧で効
率よく緑色発光する、ホール輸送層と電子輸送性発光層
の2層を備えた素子が、TangとVanslykeによって提案さ
れた〔C.W.Tang and S.A.VanSlyke; Appl.Phys.Lett.,
51 (1987) 913 〕。素子の構成は、ガラス基板上に形成
した陽極、ホール輸送層、電子輸送性発光層、陰極であ
る。Recently, an element having two layers, a hole transporting layer and an electron transporting light emitting layer, which efficiently emits green light at a voltage as low as about 10 V, as compared with a conventional organic electroluminescent element having a single layer structure, has been developed. Proposed by Tang and Vanslyke [CW Tang and SAVanSlyke; Appl.Phys.Lett.,
51 (1987) 913]. The device is composed of an anode, a hole transport layer, an electron transport light emitting layer, and a cathode formed on a glass substrate.
【0004】上記素子では、ホール輸送層が、陽極から
電子輸送性発光層へホールを注入する働きをするととも
に、陰極から注入された電子がホールと再結合すること
なく陽極へ逃げるのを防ぎ、電子輸送性発光層内へ電子
を封じ込める役割をも果たしている。このため、このホ
ール輸送層による電子の封じ込め効果により、従来の単
層構造の素子に比べてより効率良くホールと電子の再結
合が起こり、駆動電圧の大幅な低下が可能となる。In the above device, the hole transporting layer functions to inject holes from the anode into the electron transporting light emitting layer, and prevents the electrons injected from the cathode from escaping to the anode without being recombined with the holes. It also plays the role of confining electrons in the electron-transporting light-emitting layer. Therefore, due to the electron confinement effect of the hole transport layer, recombination of holes and electrons occurs more efficiently than in the conventional device having a single-layer structure, and the driving voltage can be significantly reduced.
【0005】また斎藤らは、2層構造の素子において、
電子輸送層だけでなくホール輸送層も発光層となり得る
ことを示した他〔C.Adachi, T.Tsutsui and S.Saito;Ap
pl.Phys.Lett., 55 (1989) 1489 〕、ホール輸送層と電
子輸送層の間に有機発光層が挟まれた3層構造の有機エ
レクトロルミネッセンス素子を提案した〔C.Adachi,S.T
okito, T.Tsutsui and S.Saito; Jpn.J.Appl.Phys., 27
(1988) L269 〕。Saito et al.
It has been shown that not only the electron transport layer but also the hole transport layer can be the light emitting layer [C. Adachi, T. Tsutsui and S. Saito;
Pl.Phys.Lett., 55 (1989) 1489], proposed a three-layer organic electroluminescent device in which an organic light emitting layer is sandwiched between a hole transport layer and an electron transport layer [C. Adachi, ST.
okito, T.Tsutsui and S.Saito; Jpn.J.Appl.Phys., 27
(1988) L269].
【0006】斎藤らの2層構造の素子は、ガラス基板上
に形成した陽極、ホール輸送性発光層、電子輸送層、陰
極からなり、先のものと逆に、電子輸送層が、陰極から
ホール輸送性発光層へ電子を注入する働きをするととも
に、陽極から注入されたホールが電子と再結合すること
なく陰極へ逃げるのを防ぎ、ホール輸送性発光層内へホ
ールを封じ込める役割をも果たしている。このため、こ
の電子輸送層によるホールの封じ込め効果により、先の
ものと同様に、駆動電圧の大幅な低下が可能となる。The two-layer structure element of Saito et al. Consists of an anode, a hole-transporting light-emitting layer, an electron-transporting layer, and a cathode formed on a glass substrate. Contrary to the above, the electron-transporting layer is from the cathode to the holes. It not only functions to inject electrons into the transporting light-emitting layer, but also prevents holes injected from the anode from escaping to the cathode without recombining with the electrons, and also plays a role in confining holes in the hole-transporting light-emitting layer. . Therefore, due to the hole confinement effect of this electron transport layer, the driving voltage can be drastically reduced as in the previous case.
【0007】また斎藤らの3層構造の素子は、先のTang
らの素子をさらに改良したもので、ガラス基板上に形成
した陽極、ホール輸送層、発光層、電子輸送層、陰極か
らなり、ホール輸送層が電子を発光層に封じ込める働き
をするとともに、電子輸送層がホールを発光層に封じ込
める働きをするため、2層構造のものにくらべて、発光
層内での電子とホールの再結合効率がさらに向上する。
また上記電子輸送層、ホール輸送層は、電子とホールの
再結合により生成した励起子が陰陽いずれかの電極に逃
げて消光されるのを防ぐ働きもする。したがって斎藤ら
の提案した3層構造の素子によれば、発光効率がさらに
向上する。The element of Saito et al. Has a three-layer structure,
These devices are further improved and consist of an anode formed on a glass substrate, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.The hole transport layer functions to confine electrons in the light emitting layer and to transport electrons. Since the layer functions to confine holes in the light emitting layer, the recombination efficiency of electrons and holes in the light emitting layer is further improved as compared with the two-layer structure.
Further, the electron transport layer and the hole transport layer also have a function of preventing excitons generated by recombination of electrons and holes from escaping to any of the positive and negative electrodes and being quenched. Therefore, according to the three-layer structure element proposed by Saito et al., The luminous efficiency is further improved.
【0008】これら有機エレクトロルミネッセンス素子
を構成するホール輸送材料としてはトリフェニルアミン
等の芳香族第3級アミン類、電子輸送材料としてはオキ
サジアゾール類、発光材料としてはテトラフェニルブタ
ジエン誘導体、トリス(8−キノリノラート)アルミニ
ウム(III) 錯体、ジスチリルベンゼン誘導体、ジスチリ
ルビフェニル誘導体等が知られている。Aromatic tertiary amines such as triphenylamine are used as hole transport materials constituting these organic electroluminescent devices, oxadiazoles are used as electron transport materials, and tetraphenylbutadiene derivatives and tris () are used as light emitting materials. 8-quinolinolato) aluminum (III) complex, distyrylbenzene derivative, distyrylbiphenyl derivative and the like are known.
【0009】上述したような有機エレクトロルミネッセ
ンス素子は、無機発光材料を用いた従来のエレクトロル
ミネッセンス素子に比べて低電圧で高輝度の発光が可能
であること、蒸着法だけでなく溶液塗布法によっても各
層を形成できるので大面積化が容易であること、有機分
子の分子設計により多色化が可能であること、等の長所
を有している反面、長時間発光させると輝度が大きく低
下するという問題があり、安定性の向上、長寿命化が大
きな課題となっている。The above-described organic electroluminescent device is capable of emitting light with high brightness at a low voltage as compared with the conventional electroluminescent device using an inorganic light emitting material, and it is possible to use not only the vapor deposition method but also the solution coating method. Although each layer can be formed, it is easy to increase the area, and it is possible to make multiple colors by designing the molecular weight of organic molecules. There are problems, and improvement of stability and prolongation of life are major issues.
【0010】また現在知られている従来のエレクトロル
ミネッセンス素子は、有機、無機、単層、複層を問わず
青色発光させるのが難しいという問題もある。たとえば
無機の素子の場合は、青色発光に必要な広いバンドギャ
ップを持つ無機発光材料が限られ、しかもそのような材
料は結晶成長や薄膜作製に技術的困難を伴う場合が多い
ため、素子化するのが困難である。In addition, there is a problem that it is difficult for the conventional electroluminescence device currently known to emit blue light regardless of whether it is organic, inorganic, single-layer or multi-layer. In the case of inorganic devices, for example, inorganic light-emitting materials with a wide bandgap required for blue light emission are limited, and such materials often involve technical difficulties in crystal growth and thin film fabrication, so they should be made into devices. Is difficult.
【0011】一方、有機の材料では分子設計により多色
化が可能である旨、先に述べたが、青色発光が可能な材
料は少なく、発光効率が十分でないアントラセンやジス
チリルベンゼン誘導体が知られているのみであり、実用
化には程遠い状態である。また従来のエレクトロルミネ
ッセンス素子は、いずれのものも単色の発光のみであ
り、R(赤),G(緑),B(青)の三原色によるマル
チカラー表示や白色発光等を可能とする、2つ以上の互
いに異なるスペクトルの発光を1つの素子で実現するこ
とは、現状では不可能である。On the other hand, although it has been described above that organic materials can be multicolored by molecular design, there are few materials capable of emitting blue light, and anthracene and distyrylbenzene derivatives, which have insufficient luminous efficiency, are known. However, it is far from being put to practical use. In addition, the conventional electroluminescence elements each emit only a single color of light, and are capable of performing multicolor display by the three primary colors of R (red), G (green), and B (blue) and white light emission. At present, it is impossible to realize the light emission of the above different spectra with one element.
【0012】そこでこの問題を解決すべく、小倉らは、
ホール輸送層にジアミン誘導体としてのビス−ジ(p−
トルイル)アミノフェニル−1,1−シクロヘキサン、
発光層にテトラフェニルブタジエン誘導体としての1,
1−ジ(p−メトキシフェニル)−4,4−ジフェニル
ブタジエン、電子輸送層にオキサジアゾール誘導体とし
ての2−(4−ビフェニルイル)−5−(4−tert−ブ
チルフェニル)−1,3,4−オキサジアゾールを使用
した3層構造の素子を提案した〔シャープ技報,52(3)
,15〜18 (1992) 〕。In order to solve this problem, Ogura et al.
Bis-di (p- as a diamine derivative in the hole transport layer
Toluyl) aminophenyl-1,1-cyclohexane,
1, as a tetraphenyl butadiene derivative in the light emitting layer
1-di (p-methoxyphenyl) -4,4-diphenylbutadiene, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3 as an oxadiazole derivative in the electron transport layer Proposed a three-layer device using 1,4-oxadiazole [Sharp Technical Report, 52 (3)
, 15-18 (1992)].
【0013】この素子は、波長480nmと590nmに発
光スペクトルのピークを有し、白色に発光する。波長4
80nmの光は、ホール輸送性を有する上記発光層に起因
し、波長590nmの光はホール輸送層に起因している。
小倉らは、ホール輸送層発光のメカニズムを、発光層か
ら励起子が拡散するためと説明している。また森らは、
ホール輸送材料と結着樹脂を兼ねる高分子のポリ−N−
ビニルカルバゾール中に、レーザー用色素として知られ
るクマリン6やクマリン7等の発光材料と、電子輸送材
料としてのオキサジアゾール誘導体とを分子分散させ
た、単層の発光層を備える有機エレクトロルミネッセン
ス素子を提案し、その報告の中で、発光層中に分子分散
させる色素の種類を選択することで、種々の色の発光が
可能であるとの見解を示した〔応用物理,61(10),1044
〜1047 (1992) 〕。This device has emission spectrum peaks at wavelengths of 480 nm and 590 nm and emits white light. Wavelength 4
Light having a wavelength of 80 nm is caused by the light emitting layer having a hole transporting property, and light having a wavelength of 590 nm is caused by the hole transporting layer.
Ogura et al. Explain the mechanism of light emission from the hole transport layer due to exciton diffusion from the light emitting layer. Mori et al.
Polymer poly-N- that doubles as hole transport material and binder resin
An organic electroluminescence device having a single light emitting layer, in which a light emitting material such as coumarin 6 or coumarin 7 known as a laser dye and an oxadiazole derivative as an electron transporting material are molecularly dispersed in vinylcarbazole. In his proposal, he reported that he could emit light of various colors by selecting the kind of dye to be molecularly dispersed in the light emitting layer [Applied Physics, 61 (10), 1044
~ 1047 (1992)].
【0014】そしてこの素子においては、発光層中に分
子分散させる色素の種類、組み合わせによって、R,
G,Bの三原色によるマルチカラー表示や白色発光を実
現できる可能性がある。In this device, depending on the kind and combination of dyes to be molecularly dispersed in the light emitting layer, R,
There is a possibility that multi-color display by the three primary colors of G and B and white light emission can be realized.
【0015】[0015]
【発明が解決しようとする課題】ところが前者の3層構
造の素子においては、使用中の発光強度の低下が大き
く、安定性の向上が大きな課題となっている。この原因
の一つとして、素子の発光時の発熱による材料の劣化、
凝集、結晶化等が考えられる。また後者の素子は1層構
造であるためか、ホールと電子の再結合効率が高くな
く、発光輝度が低輝度にとどまっていた。However, in the former device having a three-layer structure, the emission intensity during use is greatly reduced, and improvement in stability is a major problem. One of the causes of this is deterioration of the material due to heat generated when the device emits light.
Aggregation, crystallization, etc. are considered. The latter element has a single-layer structure, so that the recombination efficiency of holes and electrons is not high and the emission luminance is low.
【0016】この発明の目的は、発光効率、発光輝度な
らびに安定性にすぐれた有機エレクトロルミネッセンス
素子を提供することにある。またこの発明の他の目的
は、とくに青色発光等、従来は十分な発光効率が得られ
なかったり発光させることができなかった色の発光を、
高い発光効率で得ることのできる有機エレクトロルミネ
ッセンス素子を提供することにある。そしてこの発明の
さらに他の目的は、2つ以上の互いに異なる発光スペク
トルの発光が可能で、三原色によるマルチカラー表示や
白色発光等、従来は十分な発光効率が得られなかったり
発光させることができなかった色の発光を、高い発光効
率で得ることのできる有機エレクトロルミネッセンス素
子を提供することにある。An object of the present invention is to provide an organic electroluminescence device which is excellent in luminous efficiency, luminous brightness and stability. Another object of the present invention is to emit light of a color such as blue light emission, which could not be sufficiently emitted or could not be emitted in the past.
An object of the present invention is to provide an organic electroluminescence device that can be obtained with high luminous efficiency. Still another object of the present invention is that it is possible to emit light of two or more emission spectra different from each other, and multi-color display by three primary colors, white light emission, etc. can not be obtained or sufficient light emission efficiency can be obtained conventionally. An object of the present invention is to provide an organic electroluminescence device capable of obtaining undesired color light emission with high light emission efficiency.
【0017】[0017]
【課題を解決するための手段および作用】この発明の第
1の有機エレクトロルミネッセンス素子は、少なくと
も、電子輸送層とホール輸送性発光層とを備えるととも
に、上記ホール輸送性発光層が、少なくとも1種の色素
を高分子中に分子分散して構成されていることを特徴と
する。The first organic electroluminescent device of the present invention comprises at least an electron transporting layer and a hole transporting light emitting layer, and the hole transporting light emitting layer is at least one kind. The dye is characterized by being dispersed in a polymer.
【0018】上記構成からなる、この発明の有機エレク
トロルミネッセンス素子は、ホール輸送性発光層が、少
なくとも1種の色素を高分子中に分子分散して構成され
ているため、従来の低分子量の材料からなるホール輸送
層等に比べて耐熱性にすぐれているとともに、ITOガ
ラスやITOフィルム等の基材との密着性にもすぐれて
いる。このため、素子の発光時の発熱による劣化、凝
集、結晶化等が起こりにくいホール輸送性発光層を形成
でき、素子の安定性を向上できる。またこのホール輸送
性発光層を電子輸送層と組み合わせたことにより、従来
の単層のものに比べてキャリヤの注入効率、およびホー
ルと電子の再結合効率が向上するので、高効率、高輝度
での発光が可能となる。しかも色素の種類や組み合わせ
によって、R,G,Bの三原色による色純度のよいマル
チカラー表示や白色発光、自然光発光等を実現できる。In the organic electroluminescence device of the present invention having the above-mentioned constitution, since the hole transporting light emitting layer is constituted by dispersing at least one kind of dye in a polymer, a conventional low molecular weight material is used. It has excellent heat resistance as compared with a hole transport layer made of, and also has excellent adhesion to substrates such as ITO glass and ITO film. Therefore, it is possible to form a hole-transporting light-emitting layer in which deterioration, aggregation, crystallization and the like due to heat generation during light emission of the element are unlikely to occur, and the stability of the element can be improved. In addition, by combining this hole-transporting light-emitting layer with an electron-transporting layer, the carrier injection efficiency and the hole-electron recombination efficiency are improved compared to the conventional single layer, so that high efficiency and high brightness are achieved. Can be emitted. Moreover, depending on the type and combination of the dyes, multicolor display with high color purity by the three primary colors of R, G, B, white light emission, natural light emission, etc. can be realized.
【0019】上記第1の有機エレクトロルミネッセンス
素子において、電子輸送層は、1,2,4−トリアゾー
ル誘導体の層単独で構成されるか、または1,2,4−
トリアゾール誘導体の層とトリス(8−キノリノラー
ト)アルミニウム(III) 錯体の層の2層により構成され
ているのが好ましい。かかる電子輸送層は、1,2,4
−トリアゾール誘導体が良好な電子輸送性を有するだけ
でなく、ホールの通過を妨げるホールブロッキング性を
示すため、ホール輸送性発光層中で、電子とホールの再
結合を効率よく行うことができるとともに、生成した励
起子を、ホール輸送性発光層に効率よく封じ込めること
ができ、ホール輸送性発光層の発光効率、発光輝度をさ
らに向上することができる。In the first organic electroluminescence device, the electron transport layer is composed of a layer of 1,2,4-triazole derivative alone, or 1,2,4-.
It is preferably composed of two layers, a layer of a triazole derivative and a layer of a tris (8-quinolinolato) aluminum (III) complex. Such electron transport layers are 1, 2, 4
-The triazole derivative not only has a good electron-transporting property but also exhibits a hole-blocking property that prevents the passage of holes, so that in the hole-transporting light-emitting layer, recombination of electrons and holes can be efficiently performed, and The generated excitons can be efficiently contained in the hole-transporting light-emitting layer, and the light-emitting efficiency and emission brightness of the hole-transporting light-emitting layer can be further improved.
【0020】上記1,2,4−トリアゾール誘導体とし
ては、式(2) :The above 1,2,4-triazole derivative has the formula (2):
【0021】[0021]
【化2】 [Chemical 2]
【0022】で表される3−(4−ビフェニルイル)−
4−フェニル−5−(4−tert−ブチルフェニル)−
1,2,4−トリアゾール(以下「TAZ0」という)
等、種々の化合物が使用可能であるが、とくに一般式
(1) :3- (4-biphenylyl) -represented by
4-phenyl-5- (4-tert-butylphenyl)-
1,2,4-triazole (hereinafter referred to as "TAZ0")
Although various compounds such as
(1):
【0023】[0023]
【化3】 [Chemical 3]
【0024】(式中、R1 ,R2 ,R3 ,R4 およびR
5 は、同一または異なって、水素原子、アルキル基、ア
ルコキシル基、アリール基またはアラルキル基を示す。
但し、基R1 ,R2 ,R3 ,R4 およびR5 は同時に水
素原子ではない。)で表される1,2,4−トリアゾー
ル誘導体(以下「s−TAZ」という)が好適に使用さ
れる。(Wherein R 1 , R 2 , R 3 , R 4 and R
5 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxyl group, an aryl group or an aralkyl group.
However, the groups R 1 , R 2 , R 3 , R 4 and R 5 are not hydrogen atoms at the same time. 1,2,4-triazole derivative (hereinafter referred to as "s-TAZ") is preferably used.
【0025】かかるs−TAZは、蒸着法や溶液塗布法
による薄膜の形成性にすぐれ、ピンホールのない良好な
膜質の薄膜を形成できるため、膜厚が薄くても短絡しに
くく、上記TAZ0よりもさらにホールブロッキング性
にすぐれた電子輸送層を形成できるという利点がある。
また電子輸送層は、ホール輸送性発光層への電子の注入
効率の点で、表面が平滑である必要があるが、上記s−
TAZは、TAZ0に比べて凝集や結晶化が起こりにく
いため、このs−TAZからなる薄膜は、表面の凹凸の
経時変化が少なく、熱安定性にすぐれており、素子の寿
命を飛躍的に向上できるという利点もある。The s-TAZ has excellent thin film forming properties by the vapor deposition method or the solution coating method, and can form a thin film of good film quality without pinholes. Furthermore, there is an advantage that an electron transport layer having an excellent hole blocking property can be formed.
Further, the electron transport layer needs to have a smooth surface in terms of the efficiency of injecting electrons into the hole transporting light emitting layer.
Since TAZ is less likely to aggregate or crystallize than TAZ0, this thin film made of s-TAZ has little surface irregularity change over time, has excellent thermal stability, and dramatically improves the life of the device. There is also an advantage that you can.
【0026】また、この発明の第2の有機エレクトロル
ミネッセンス素子は、少なくとも、上記一般式(1) で表
されるs−TAZの層を備えることを特徴とする。かか
るこの発明の有機エレクトロルミネッセンス素子は、前
記のように良好な電子輸送性、ホールブロッキング性を
示すs−TAZの層を備えるため、電子とホールの結合
効率を従来よりもさらに向上できるとともに、両者の再
結合により生成した励起子を、発光層に効率よく封じ込
めることができるので、発光層の発光効率、発光輝度の
向上とそれにともなう安定性の向上に大いに有効であ
る。またとくに、ホール輸送性の高い従来の青色発光の
発光層と組み合わせると、その発光効率、発光輝度を、
十分実用可能な範囲まで向上できるので、従来は実用化
が困難であった高輝度の青色発光を実現することも可能
となる。しかもs−TAZの層は、前記のように表面の
凹凸の経時変化が少なく、熱安定性にすぐれているた
め、素子の寿命を飛躍的に向上できる。The second organic electroluminescent device of the present invention is characterized by including at least an s-TAZ layer represented by the general formula (1). Since the organic electroluminescent device of the present invention is provided with the s-TAZ layer exhibiting good electron transporting property and hole blocking property as described above, the coupling efficiency of electrons and holes can be further improved as compared with the conventional one. Since the excitons generated by the recombination of the can be efficiently contained in the light emitting layer, it is very effective in improving the light emitting efficiency and the light emitting brightness of the light emitting layer and the stability associated therewith. In particular, when combined with a conventional blue light emitting layer that has a high hole transporting property, its luminous efficiency and luminous brightness are
Since it can be improved to a practically sufficient range, it is also possible to realize blue light emission with high brightness, which has been difficult to put into practical use in the past. In addition, since the s-TAZ layer has less surface irregularities over time as described above and is excellent in thermal stability, the life of the device can be dramatically improved.
【0027】さらに、この発明の第3の有機エレクトロ
ルミネッセンス素子は、ホール輸送層と電子輸送層とを
備えるとともに、当該両層の間に、上記一般式(1) で表
されるs−TAZからなり、ホールおよび電子のうちの
少なくとも一方を選択的に輸送するキャリヤ輸送制御層
が介装されていることを特徴とする。かかるこの発明の
有機エレクトロルミネッセンス素子においては、上記s
−TAZからなるキャリヤ輸送制御層による励起子の封
じ込め効果により、ホール輸送層または電子輸送層を発
光層として高輝度、高効率で発光できるので、発光効
率、発光輝度の向上とそれにともなう安定性の向上が可
能であるとともに、青色発光の発光効率、発光輝度を実
用的な範囲まで向上できる。Further, the third organic electroluminescence device of the present invention comprises a hole transport layer and an electron transport layer, and between the layers, s-TAZ represented by the general formula (1) is used. In addition, a carrier transport control layer that selectively transports at least one of holes and electrons is interposed. In the organic electroluminescent element of the present invention, the above-mentioned s
Due to the exciton confinement effect of the carrier transport control layer made of -TAZ, the hole transport layer or the electron transport layer can be used as a light emitting layer to emit light with high brightness and high efficiency. In addition to being able to improve, the luminous efficiency and luminous brightness of blue light emission can be improved to a practical range.
【0028】また、キャリヤ輸送制御層の膜厚を選択す
ることにより、ホール輸送層および電子輸送層のいずれ
か一方または両方を、高輝度、高効率で発光させること
ができるので、上記ホール輸送層、電子輸送層に互いに
異なる発光スペクトルの材料を用いることにより、1つ
の素子で、2つ以上の互いに異なる発光スペクトルの発
光が可能となり、従来は不可能であった、R,G,Bの
三原色によるマルチカラー表示や白色発光等の発光を実
用化し得る可能性がある。By selecting the film thickness of the carrier transport control layer, one or both of the hole transport layer and the electron transport layer can emit light with high brightness and high efficiency. By using materials having emission spectra different from each other for the electron transport layer, one device can emit two or more emission spectra different from each other, which is impossible in the past. Therefore, there is a possibility that the multicolor display and the light emission such as white light emission can be put to practical use.
【0029】しかも、s−TAZからなるキャリヤ輸送
制御層は、前記のように表面の凹凸の経時変化が少な
く、熱安定性にすぐれているため、素子の寿命を飛躍的
に向上できる。以上のごとく、この発明の第1〜第3の
有機エレクトロルミネッセンス素子によれば、発光効
率、発光輝度ならびに安定性にすぐれるとともに、とく
に青色発光等、従来は十分な発光効率が得られなかった
り発光させることができなかった色の発光を、高い発光
効率で得ることが可能となる。さらに、これらの発明の
有機エレクトロルミネッセンス素子によれば、2つ以上
の互いに異なる発光スペクトルの発光が可能で、三原色
によるマルチカラー表示や白色発光等、従来は十分な発
光効率が得られなかったり発光させることができなかっ
た色の発光を、高い発光効率で得ることも可能となる。In addition, the carrier transport control layer made of s-TAZ has little change in surface irregularities over time and has excellent thermal stability, so that the life of the device can be dramatically improved. As described above, according to the first to third organic electroluminescence elements of the present invention, not only excellent luminous efficiency, luminous brightness and stability, but also sufficient luminous efficiency such as blue light emission cannot be obtained conventionally. It becomes possible to obtain light emission of a color that could not be emitted with high light emission efficiency. Furthermore, according to the organic electroluminescence elements of these inventions, it is possible to emit light of two or more emission spectra different from each other, and it has been impossible to obtain sufficient light emission efficiency in the past such as multicolor display by three primary colors or white light emission or light emission. It is also possible to obtain light emission of a color that could not be achieved with high light emission efficiency.
【0030】以下にこの発明を説明する。まずこの発明
のうち、少なくとも1種の色素を高分子中に分子分散し
てホール輸送性発光層を構成したことを特徴とする、第
1の有機エレクトロルミネッセンス素子について説明す
る。ホール輸送性発光層を構成する高分子としては、そ
れ自体がキャリヤ輸送性を有するもの、およびキャリヤ
輸送性を有しないものの何れを採用してもよい。それ自
体がキャリヤ輸送性を有しない高分子を使用する場合に
は、色素とともに、低分子のホール輸送材料を分子分散
してホール輸送性を付与すればよい。The present invention will be described below. First, of the present invention, a first organic electroluminescent device, which is characterized in that at least one kind of dye is molecularly dispersed in a polymer to form a hole transporting light emitting layer, will be described. As the polymer constituting the hole-transporting light-emitting layer, either one having carrier transportability itself or one not having carrier transportability may be adopted. In the case of using a polymer that does not have carrier transportability by itself, a low molecular weight hole transport material may be molecularly dispersed together with the dye to impart hole transportability.
【0031】前者の、それ自体がキャリヤ輸送性を有す
る高分子としては、たとえばポリフェニレンビニレンお
よびその誘導体、ポリアルキルチオフェン、ポリ−N−
ビニルカルバゾール、ポリメチルフェニルシラン、トリ
フェニルアミン基を側鎖または主鎖に有するポリマー等
があげられる。中でもとくに下記式(3) :Examples of the former polymer having carrier transporting property include polyphenylene vinylene and its derivatives, polyalkylthiophene and poly-N-.
Examples thereof include vinylcarbazole, polymethylphenylsilane, and polymers having a triphenylamine group in the side chain or main chain. Especially, the following formula (3):
【0032】[0032]
【化4】 [Chemical 4]
【0033】〔式中nは重合度を示す〕で表されるポリ
−N−ビニルカルバゾール(以下「PVK」という)
が、安定したキャリヤ輸送性を有すること等から、最も
好適に使用される。上記PVKの重合度nはとくに限定
されないが、20〜5000程度が好ましい。重合度n
が上記範囲より小さすぎると耐熱性、密着性が不十分に
なるおそれがあり、逆に上記範囲より大きすぎると、後
述する溶液塗布法によって層を形成するのが困難になる
おそれがある。Poly-N-vinylcarbazole represented by [wherein n represents the degree of polymerization] (hereinafter referred to as "PVK")
Is most preferably used because it has a stable carrier transporting property. The degree of polymerization n of PVK is not particularly limited, but is preferably about 20 to 5000. Degree of polymerization n
Is less than the above range, heat resistance and adhesiveness may be insufficient, and conversely, if it is more than the above range, it may be difficult to form a layer by a solution coating method described later.
【0034】また後者の、それ自体がキャリヤ輸送性を
有しない高分子としては、たとえばポリメチルメタクリ
レート、ポリカーボネート、ポリスチレン等の、光学特
性にすぐれた種々の高分子を用いることができる。高分
子中に分子分散される色素としては、前述したレーザー
用の色素等の、励起子によって励起されて蛍光を発する
ことのできる種々の色素が使用できる。上記色素として
は、たとえばシアニン染料、キサンテン系染料、オキサ
ジン染料、クマリン誘導体、ペリレン誘導体、アクリジ
ン染料、アクリドン染料、キノリン染料等があげられ
る。具体的には、下記式(4) :As the latter polymer having no carrier transporting property, various polymers having excellent optical properties such as polymethylmethacrylate, polycarbonate and polystyrene can be used. As the dye that is molecularly dispersed in the polymer, various dyes that can emit fluorescence when excited by excitons, such as the above-described laser dye, can be used. Examples of the dyes include cyanine dyes, xanthene dyes, oxazine dyes, coumarin derivatives, perylene derivatives, acridine dyes, acridone dyes and quinoline dyes. Specifically, the following formula (4):
【0035】[0035]
【化5】 [Chemical 5]
【0036】で表されるテトラフェニルブタジエン(青
色発光、以下「TPB」という)、下記式(5) :Tetraphenylbutadiene represented by the formula (blue emission, hereinafter referred to as "TPB"), the following formula (5):
【0037】[0037]
【化6】 [Chemical 6]
【0038】で表されるクマリン6(緑色発光)、下記
式(6) :Coumarin 6 (green emission) represented by the following formula (6):
【0039】[0039]
【化7】 [Chemical 7]
【0040】で表されるクマリン7、下記式(7) :Coumarin 7, represented by the following formula (7):
【0041】[0041]
【化8】 [Chemical 8]
【0042】で表される4−ジシアノメチレン−2−メ
チル−6−p−ジメチルアミノスチリル−4H−ピラン
(オレンジ色発光、以下「DCM」という)等が好適に
使用される。白色発光の場合、上記のうち式(4) のTP
Bと、式(5) のクマリン6と、式(7) のDCMの組み合
わせが好適に採用される。上記の組み合わせによれば、
ホール輸送性発光層の発光スペクトルが、波長400〜
700nmの可視光領域全体に亘るものとなり、良好な白
色発光を示す。4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (orange emission, hereinafter referred to as "DCM") and the like are preferably used. In the case of white light emission, TP of the above formula (4)
A combination of B, coumarin 6 of formula (5) and DCM of formula (7) is preferably employed. According to the above combination,
The emission spectrum of the hole-transporting light-emitting layer has a wavelength of 400 to
It covers the entire visible light region of 700 nm and exhibits excellent white light emission.
【0043】色素の、高分子中への配合割合はこの発明
ではとくに限定されず、高分子および色素の種類、発光
強度や色調等に応じて、適宜好ましい範囲が設定され
る。高分子がキャリヤ輸送性を有しない場合に、当該高
分子中に分子分散される低分子のホール輸送材料として
は、トリフェニルアミン誘導体等があげられ、中でも下
記式(8) :The mixing ratio of the dye in the polymer is not particularly limited in the present invention, and a preferable range is appropriately set depending on the types of the polymer and the dye, the emission intensity and the color tone. When the polymer does not have a carrier transporting property, examples of the low molecular weight hole transporting material that is molecularly dispersed in the polymer include triphenylamine derivatives and the like. Among them, the following formula (8):
【0044】[0044]
【化9】 [Chemical 9]
【0045】で表されるN,N′−ジフェニル−N,
N′−ビス(3−メチルフェニル)−1,1′−ビフェ
ニル−4,4−ジアミン(以下「TPD」という)が好
適に使用される。上記各成分からなるホール輸送性発光
層は、当該層を構成する高分子や色素等の材料を、適当
な溶媒に溶解した塗布液を、基板上または他の層上に塗
布して乾燥させる溶液塗布法によって形成される。N, N'-diphenyl-N, represented by
N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4-diamine (hereinafter referred to as "TPD") is preferably used. The hole-transporting light-emitting layer consisting of the above components is a solution in which a material such as a polymer or a dye forming the layer is dissolved in a suitable solvent, and the coating solution is applied onto a substrate or another layer and dried. It is formed by a coating method.
【0046】上記ホール輸送性発光層と組み合わされる
電子輸送層としては、従来公知の種々の電子輸送材料か
らなる層が採用できるが、とくに1,2,4−トリアゾ
ール誘導体の層、または1,2,4−トリアゾール誘導
体の層と、下記式(9) :As the electron-transporting layer combined with the hole-transporting light-emitting layer, layers made of various publicly known electron-transporting materials can be adopted. Particularly, a layer of 1,2,4-triazole derivative or 1,2,4-triazole derivative is preferable. A layer of a 4,4-triazole derivative and the following formula (9):
【0047】[0047]
【化10】 [Chemical 10]
【0048】で表されるトリス(8−キノリノラート)
アルミニウム(III) 錯体(以下「Alq」という)の層
を積層した2層構造の層が、電子輸送層として好適に採
用される。上記1,2,4−トリアゾール誘導体は、良
好な電子輸送性を有するだけでなく、ホールの通過を妨
げるホールブロッキング性を示すため、ホール輸送性発
光層中で、電子とホールの再結合を効率よく行うことが
できるとともに、生成した励起子を、ホール輸送性発光
層に効率よく封じ込めることができ、ホール輸送性発光
層の発光効率、発光輝度をさらに向上することができ
る。Tris (8-quinolinolato) represented by
A layer having a two-layer structure in which layers of aluminum (III) complex (hereinafter referred to as "Alq") are laminated is suitably used as the electron transport layer. The 1,2,4-triazole derivative not only has a good electron-transporting property but also exhibits a hole-blocking property that prevents the passage of holes, so that the recombination of electrons and holes is efficiently performed in the hole-transporting light-emitting layer. The exciton generated can be efficiently encapsulated in the hole-transporting light-emitting layer, and the light-emitting efficiency and emission brightness of the hole-transporting light-emitting layer can be further improved.
【0049】上記1,2,4−トリアゾール誘導体とし
ては種々の化合物が使用可能であり、合成や入手のし易
さ等の点で、前記式(2) で表されるTAZ0が一般的に
使用されるが、前述したように、下記一般式(1) :As the above 1,2,4-triazole derivative, various compounds can be used, and TAZ0 represented by the above formula (2) is generally used from the viewpoints of synthesis and availability. However, as described above, the following general formula (1):
【0050】[0050]
【化11】 [Chemical 11]
【0051】(式中、R1 ,R2 ,R3 ,R4 およびR
5 は、同一または異なって、水素原子、アルキル基、ア
ルコキシル基、アリール基またはアラルキル基を示す。
但し、基R1 ,R2 ,R3 ,R4 およびR5 は同時に水
素原子ではない。)で表されるs−TAZが、この発明
に最も好適に使用される。(Wherein R 1 , R 2 , R 3 , R 4 and R
5 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxyl group, an aryl group or an aralkyl group.
However, the groups R 1 , R 2 , R 3 , R 4 and R 5 are not hydrogen atoms at the same time. S-TAZ represented by) is most preferably used in the present invention.
【0052】上記s−TAZにおける、置換基の置換位
置および置換数はとくに限定されないが、合成の容易さ
からすると、基R1 ,R5 よりも基R2 ,R3 ,R4 の
いずれかに置換基が置換しているのが好ましく、その場
合の合計の置換数はモノ(1置換)、ジ(2置換)、ト
リ(3置換)のいずれでもよい。また、低級アルキル基
等の小さな基の場合は、基R1 ,R5 に置換しても差し
支えなく、その場合の合計の置換数は1〜5置換のいず
れでもよい。The substitution position and the number of substitutions of the substituent in s-TAZ are not particularly limited, but in view of easiness of synthesis, any one of the groups R 2 , R 3 and R 4 is more preferable than the groups R 1 and R 5 . Substituents are preferably substituted, and the total number of substitutions in that case may be mono (1 substitution), di (2 substitutions) or tri (3 substitutions). Further, in the case of a small group such as a lower alkyl group, the groups R 1 and R 5 may be substituted, and in this case, the total number of substitutions may be 1 to 5 substitutions.
【0053】基R1 〜R5 に相当するアルキル基として
は、これに限定されないが、たとえばメチル基、エチル
基、n−プロピル基、 iso−プロピル基、n−ブチル
基、 iso−ブチル基、tert−ブチル基、ペンチル基、ヘ
キシル基等の、炭素数1〜10のアルキル基があげら
れ、とくにメチル基、エチル基等が好適である。またア
ルコキシル基としては、たとえばメトキシ基、エトキシ
基、n−プロポキシ基、 iso−プロポキシ基、n−ブト
キシ基、 iso−ブトキシ基、tert−ブトキシ基、ペンチ
ルオキシ基、ヘキシルオキシ基等の、炭素数1〜10の
アルコキシル基があげられ、とくにメトキシ基、エトキ
シ基等が好適である。Examples of the alkyl group corresponding to the groups R 1 to R 5 include, but are not limited to, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as tert-butyl group, pentyl group and hexyl group, with methyl group and ethyl group being particularly preferred. Examples of the alkoxyl group include carbon number such as methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group. Examples thereof include alkoxyl groups of 1 to 10, and methoxy group and ethoxy group are particularly preferable.
【0054】さらにアリール基としては、たとえばフェ
ニル基、トリル基、キシリル基、ビフェニリル基、o−
ターフェニル基、ナフチル基、アントリル基、フェナン
トリル基等があげられる。そしてアラルキル基として
は、たとえばベンジル基、α−フェネチル基、β−フェ
ネチル基、3−フェニルプロピル基、ベンズヒドリル
基、トリチル基等があげられる。Further, as the aryl group, for example, phenyl group, tolyl group, xylyl group, biphenylyl group, o-
Examples thereof include a terphenyl group, a naphthyl group, an anthryl group and a phenanthryl group. Examples of the aralkyl group include benzyl group, α-phenethyl group, β-phenethyl group, 3-phenylpropyl group, benzhydryl group and trityl group.
【0055】上記s−TAZの具体例としては、これに
限定されないがたとえば式(1a):Specific examples of s-TAZ include, but are not limited to, formula (1a):
【0056】[0056]
【化12】 [Chemical 12]
【0057】で表される3−(4−ビフェニルイル)−
4−(4−エチルフェニル)−5−(4−tert−ブチル
フェニル)−1,2,4−トリアゾール(以下「s−T
AZ1」という)や、式(1b):3- (4-biphenylyl) -represented by:
4- (4-ethylphenyl) -5- (4-tert-butylphenyl) -1,2,4-triazole (hereinafter "s-T
AZ1 ”) and the formula (1b):
【0058】[0058]
【化13】 [Chemical 13]
【0059】で表される3−(4−ビフェニルイル)−
4−(3−エチルフェニル)−5−(4−tert−ブチル
フェニル)−1,2,4−トリアゾール(以下「s−T
AZ2」という)等があげられる。1,2,4−トリア
ゾール誘導体からなる層の膜厚について、この発明では
とくに限定されないが、上記層の膜厚があまりに薄すぎ
るとホールブロッキング性が不十分になるので、層の膜
厚はある程度厚いのが望ましい。3- (4-biphenylyl) -represented by
4- (3-ethylphenyl) -5- (4-tert-butylphenyl) -1,2,4-triazole (hereinafter "s-T
AZ2 ”) and the like. The thickness of the layer made of the 1,2,4-triazole derivative is not particularly limited in the present invention, but if the thickness of the layer is too thin, the hole blocking property becomes insufficient. Thick is desirable.
【0060】1,2,4−トリアゾール誘導体の層の、
好適な膜厚範囲についてはとくに限定されないが、たと
えば前記式(2) で表されるTAZ0の蒸着膜の場合、十
分なホールブロッキング性を確保するには、その膜厚が
100〜200Å以上であるのが好ましい。なお上記T
AZ0の蒸着膜の上限範囲についてもとくに限定はない
が、膜厚があまりに厚すぎると電子輸送性が低下するの
で、膜厚は1000Å以下であるのが好ましい。Of the layer of 1,2,4-triazole derivative,
The preferred film thickness range is not particularly limited, but for example, in the case of the vapor deposition film of TAZ0 represented by the above formula (2), the film thickness is 100 to 200Å or more in order to secure sufficient hole blocking property. Is preferred. The above T
The upper limit range of the vapor-deposited film of AZ0 is not particularly limited, however, if the film thickness is too thick, the electron transporting property is deteriorated, so the film thickness is preferably 1000 Å or less.
【0061】一方、一般式(1) で表されるs−TAZか
らなる層は、前述したようにTAZ0からなる層に比べ
てさらにホールブロッキング性にすぐれるため、TAZ
0の場合より膜厚を薄くすることができる。その好適な
膜厚範囲についてはとくに限定されないが、たとえばs
−TAZの蒸着膜の場合、十分なホールブロッキング性
を確保するには、その膜厚が100〜150Å以上であ
るのが好ましい。なお上記s−TAZの蒸着膜の膜厚の
上限範囲についてもとくに限定はないが、膜厚があまり
に厚すぎると電子輸送性が低下するので、膜厚は100
0Å以下であるのが好ましい。On the other hand, the layer composed of s-TAZ represented by the general formula (1) is more excellent in hole blocking property than the layer composed of TAZ0 as described above.
The film thickness can be made thinner than the case of 0. The suitable film thickness range is not particularly limited, but for example, s
In the case of a vapor-deposited film of -TAZ, the film thickness is preferably 100 to 150 Å or more in order to secure sufficient hole blocking property. The upper limit of the film thickness of the vapor-deposited film of s-TAZ is not particularly limited, but if the film thickness is too thick, the electron transporting property is lowered, so the film thickness is 100.
It is preferably 0 Å or less.
【0062】また上記1,2,4−トリアゾール誘導体
の層を、前記式(9) で表されるAlqの層と組み合わせ
た場合には、ホール輸送性発光層への電子注入特性がさ
らに改善され、より一層発光効率がよく、発光輝度の高
い素子が得られる。Alqの層の膜厚についてはとくに
限定されないが、ホール輸送性発光層への電子注入特性
および電子輸送性を考慮すると、上記層の膜厚は100
〜1000Å程度が好ましい。また、Alqの層を積層
する場合、このAlqの層が1,2,4−トリアゾール
誘導体の層のホールブロッキング性を補助する作用をす
るため、1,2,4−トリアゾール誘導体の層の膜厚
は、前記の好適な範囲を下回ってもよい。When the 1,2,4-triazole derivative layer is combined with the Alq layer represented by the above formula (9), the electron injection property to the hole transporting light emitting layer is further improved. Further, it is possible to obtain an element having higher luminous efficiency and higher luminous brightness. Although the film thickness of the Alq layer is not particularly limited, the film thickness of the layer is 100 when the electron injection property and the electron transport property to the hole transporting light emitting layer are taken into consideration.
It is preferably about 1000 Å. When laminating Alq layers, the thickness of the 1,2,4-triazole derivative layer is increased because the Alq layer acts to assist the hole blocking property of the 1,2,4-triazole derivative layer. May be below the preferred range described above.
【0063】さらに上記両層の合計の膜厚についてもと
くに限定されないが、200〜1500Å程度が好まし
い。膜厚がこの範囲より小さいとホールブロッキング性
が不十分になるおそれがあり、逆に膜厚がこの範囲より
大きいと電子輸送性が低下するおそれがある。上記1,
2,4−トリアゾール誘導体の層、Alqの層等の電子
輸送層は、それぞれ上記1,2,4−トリアゾール誘導
体やAlq等の電子輸送材料のみで構成されていても、
また適当なバインダー中に電子輸送材料を分散させて構
成されていてもよい。また電子輸送層は、各種添加剤等
の、電子輸送材料の機能を阻害しない他の成分を含んで
いてもよい。Further, the total film thickness of both layers is not particularly limited, but is preferably about 200 to 1500Å. If the film thickness is smaller than this range, the hole blocking property may be insufficient, and conversely, if the film thickness is larger than this range, the electron transporting property may be deteriorated. Above 1,
The electron transport layer such as the layer of the 2,4-triazole derivative and the layer of Alq may be composed of only the electron transport material such as the above 1,2,4-triazole derivative and Alq.
Alternatively, the electron transport material may be dispersed in a suitable binder. Further, the electron transport layer may contain other components such as various additives which do not impair the function of the electron transport material.
【0064】電子輸送層は、真空蒸着法等の気相成長法
によって形成できる他、層を構成する材料を適当な溶媒
に溶解した塗布液を、基板上または他の層上に塗布して
乾燥させる溶液塗布法によって形成することもできる。
上記各層を備えたこの発明の第1の有機エレクトロルミ
ネッセンス素子の、層の積層順序についてはとくに限定
されない。The electron transport layer can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or a coating solution prepared by dissolving a material constituting the layer in an appropriate solvent is coated on a substrate or another layer and dried. It can also be formed by a solution coating method.
The order of stacking the layers of the first organic electroluminescent element of the present invention including the above layers is not particularly limited.
【0065】しかし前述したように、ホール輸送性発光
層を構成する高分子がITOガラスやITOフィルム等
の基材との密着性にすぐれていることや、上記ホール輸
送性発光層が、専ら溶液塗布法によって形成されること
等を考慮すると、図1(a)(b)に示すように、ガラス基板
4等の表面に形成された、ITO(インジウム−チン−
オキサイド)等の透明導電材料からなる陽極40上に、
ホール輸送性発光層1および電子輸送層2の2層を、こ
の順に積層したものが好ましい。However, as described above, the polymer constituting the hole-transporting light-emitting layer has excellent adhesion to a substrate such as ITO glass or ITO film, and the hole-transporting light-emitting layer is exclusively a solution. Considering that it is formed by a coating method, etc., as shown in FIGS. 1A and 1B, ITO (Indium-tin-
On the anode 40 made of a transparent conductive material such as oxide),
It is preferable that two layers of the hole transporting light emitting layer 1 and the electron transporting layer 2 are laminated in this order.
【0066】なお図(a) の電子輸送層2は、1,2,4
−トリアゾール誘導体の層(TAZ層)21とAlqの
層22の2層を、ホール輸送性発光層1上にこの順に積
層した2層構造である。上記両図において符号5は、Mg
/Ag等の金属蒸着膜からなる陰極、Bは素子に駆動電圧
を印加する電源を示している。The electron transport layer 2 shown in FIG.
A two-layer structure in which two layers of a triazole derivative layer (TAZ layer) 21 and an Alq layer 22 are laminated in this order on the hole-transporting light-emitting layer 1. In both figures above, reference numeral 5 is Mg
/ Ag is a cathode made of a metal vapor deposition film, and B is a power source for applying a driving voltage to the device.
【0067】つぎにこの発明のうち、少なくとも、前記
一般式(1) で表されるs−TAZの層を備えることを特
徴とする、第2の有機エレクトロルミネッセンス素子に
ついて説明する。ここでいうs−TAZの層とは、前述
したs−TAZの1種または2種以上を少なくとも含む
層であって、s−TAZの1種または2種以上のみから
なる層の他、適当なバインダー中にs−TAZの1種ま
たは2種以上を分散させたもの等が例としてあげられ
る。またs−TAZの層は、各種添加剤等の、s−TA
Zの機能を阻害しない他の成分を含んでいてもよい。Next, of the present invention, a second organic electroluminescent device, which is characterized by comprising at least the s-TAZ layer represented by the general formula (1), will be described. The term "s-TAZ layer" as used herein refers to a layer containing at least one or two or more of the above-mentioned s-TAZ, and a layer formed of only one or two or more species of s-TAZ, or a suitable layer. An example is one in which one or more s-TAZ are dispersed in a binder. The layer of s-TAZ contains s-TA containing various additives.
It may contain other components which do not inhibit the function of Z.
【0068】上記s−TAZの層は、真空蒸着法等の気
相成長法により形成できる他、層を構成する材料を適当
な溶媒に溶解した塗布液を、基板上または他の層上に塗
布して乾燥させる溶液塗布法によって形成することもで
きる。s−TAZの層の膜厚については、この発明では
とくに限定されない。但し上記層の膜厚があまりに薄す
ぎるとホールブロッキング性が不十分になるので、層の
膜厚はある程度厚いのが望ましい。s−TAZの層の、
好適な膜厚範囲についてはとくに限定されないが、たと
えばs−TAZの蒸着膜の場合、十分なホールブロッキ
ング性を確保するには、その膜厚が100〜150Å以
上であるのが好ましい。なお上記s−TAZの蒸着膜の
膜厚の上限範囲についてもとくに限定はないが、膜厚が
あまりに厚すぎると電子輸送性が低下するので、膜厚は
1000Å以下であるのが好ましい。The s-TAZ layer can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or a coating solution prepared by dissolving a material forming the layer in an appropriate solvent is applied on a substrate or another layer. It can also be formed by a solution coating method of drying after drying. The thickness of the s-TAZ layer is not particularly limited in the present invention. However, if the film thickness of the above layer is too thin, the hole blocking property becomes insufficient, so it is desirable that the film thickness of the layer be somewhat thick. of the s-TAZ layer,
The suitable film thickness range is not particularly limited, but in the case of a vapor-deposited film of s-TAZ, for example, the film thickness is preferably 100 to 150 Å or more in order to secure a sufficient hole blocking property. The upper limit of the film thickness of the vapor-deposited film of s-TAZ is not particularly limited, but if the film thickness is too thick, the electron transporting property is deteriorated, so the film thickness is preferably 1000 Å or less.
【0069】この発明の有機エレクトロルミネッセンス
素子は、上記s−TAZの層を備えていれば、その他の
構成はとくに限定されず、従来どおりの単層構造であっ
ても、あるいは2層以上の多層構造であってもよい。要
するにこの発明の構成は、種々の層構成の素子に適用す
ることができる。素子が多層構造である場合に、s−T
AZの層以外の層を構成する材料は、この発明ではとく
に限定されず、各層に従来より用いられている種々の材
料を使用することができる。素子を構成する各層の膜厚
についても、この発明ではとくに限定されない。各層
は、s−TAZの層と同様に、真空蒸着法等の気相成長
法により形成できる他、層を構成する材料を適当な溶媒
に溶解した塗布液を、基板上または他の層上に塗布して
乾燥させる溶液塗布法によって形成することもできる。
また上記各層は、バインダー樹脂、各種添加剤等の、層
の機能に直接関係ない他の成分を含んでいてもよい。The organic electroluminescence device of the present invention is not particularly limited in other constitutions as long as it has the above-mentioned s-TAZ layer, and may have a conventional single-layer structure or a multilayer structure of two or more layers. It may be a structure. In short, the structure of the present invention can be applied to devices having various layer structures. When the device has a multi-layer structure, s-T
The material constituting the layers other than the AZ layer is not particularly limited in the present invention, and various materials conventionally used for each layer can be used. The thickness of each layer forming the element is not particularly limited in the present invention. Like each layer of s-TAZ, each layer can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or a coating solution obtained by dissolving a material forming the layer in an appropriate solvent is formed on a substrate or another layer. It can also be formed by a solution coating method of coating and drying.
Further, each of the above layers may contain other components such as a binder resin and various additives, which are not directly related to the function of the layer.
【0070】なおこの発明の有機エレクトロルミネッセ
ンス素子は、前記のようにs−TAZの層が、すぐれた
電子輸送性、ホールブロッキング性を示すので、このs
−TAZの層を電子輸送層として、前述したようにホー
ル輸送性の高い青色発光のホール輸送性発光層と組み合
わせることで、従来は実用化が困難であった、高輝度の
青色発光を実現することが可能である。また、上記s−
TAZの層は、前記のように表面の凹凸の経時変化が少
なく、熱安定性にすぐれているため、素子の寿命を飛躍
的に向上できる。In the organic electroluminescence device of the present invention, since the s-TAZ layer exhibits excellent electron transporting property and hole blocking property as described above,
By combining the TAZ layer as an electron transport layer with a hole transporting light emitting layer for emitting blue light having a high hole transporting property as described above, it is possible to realize blue light emission with high brightness, which has been difficult to put into practical use in the past. It is possible. Also, the above s-
As described above, the TAZ layer has little change in surface irregularities over time and is excellent in thermal stability, so that the life of the device can be dramatically improved.
【0071】中でもとくに、前記式(3) で表されるPV
Kの層が、青色発光のホール輸送性発光層として好適で
ある。PVKの層は高いホール移動度を有し、注入され
たホールが陰極側へ抜けてしまうため、通常は発光させ
るのが難しいが、このPVKの層を、前記のように励起
子の封じ込め効果にすぐれ、ホールブロッキング性の高
いs−TAZの層と組み合わせると、青色に発光でき
る。Above all, PV represented by the above formula (3)
The layer K is suitable as a blue light emitting hole transporting light emitting layer. Since the PVK layer has a high hole mobility and injected holes escape to the cathode side, it is usually difficult to emit light, but this PVK layer has the exciton confinement effect as described above. Excellent, when combined with a layer of s-TAZ having a high hole blocking property, blue light can be emitted.
【0072】また上記PVKは、その分子構造からわか
るようにホール輸送材料としての機能も有しており、し
かも高分子ゆえ、前記低分子の芳香族3級アミン化合物
等の、従来のホール輸送材料に比べて耐熱性にすぐれて
おり、保存時や素子の発光時の発熱による劣化、結晶化
等が起こりにくい青色発光のホール輸送性発光層を形成
できる。The PVK also has a function as a hole transport material as can be seen from its molecular structure, and since it is a polymer, it is a conventional hole transport material such as the low molecular weight aromatic tertiary amine compound. It has excellent heat resistance as compared with, and it is possible to form a hole-transporting light-emitting layer that emits blue light and is less likely to be deteriorated or crystallized due to heat generation during storage or light emission of the device.
【0073】しかもPVKの層は、ITOガラスやIT
Oフィルム等の基材との密着性にすぐれている。したが
って上記PVKの層をホール輸送性発光層として、s−
TAZの層と組み合わせると、発光効率にすぐれ、発光
輝度が高く、しかも安定性にすぐれた、十分実用可能な
青色発光の有機エレクトロルミネッセンス素子を構成で
きる。Moreover, the PVK layer is made of ITO glass or IT.
Excellent adhesion to substrates such as O film. Therefore, the above PVK layer is used as a hole transporting light emitting layer, and s-
When combined with a TAZ layer, a blue light emitting organic electroluminescence device having excellent light emission efficiency, high light emission brightness, and excellent stability can be formed.
【0074】上記PVKの重合度nはこの発明ではとく
に限定されないが、20〜5000程度が好ましい。重
合度nが上記範囲より小さすぎると耐熱性、密着性が不
十分になるおそれがあり、逆に上記範囲より大きすぎる
と、後述する溶液塗布法によって層を形成するのが困難
になるおそれがある。上記s−TAZの層とPVKの層
(ホール輸送性発光層)とを組み合わせた素子のさらに
好適な例としては、前記式(9) で表されるAlqの層を
電子輸送層として組み合わせた、3層構造のものがあげ
られる。この3層構造の有機エレクトロルミネッセンス
素子においては、上記Alqの層の働きにより、ホール
輸送性発光層への電子注入特性がさらに改善され、より
一層効率のよい、発光輝度の高い青色発光が得られる。The degree of polymerization n of PVK is not particularly limited in the present invention, but is preferably about 20 to 5,000. If the degree of polymerization n is less than the above range, heat resistance and adhesiveness may be insufficient. On the contrary, if the degree of polymerization n is more than the above range, it may be difficult to form a layer by a solution coating method described later. is there. As a further preferred example of the device in which the s-TAZ layer and the PVK layer (hole transporting light emitting layer) are combined, an Alq layer represented by the formula (9) is combined as an electron transport layer, An example is a three-layer structure. In this organic electroluminescent device having a three-layer structure, the function of the Alq layer further improves the electron injection property into the hole-transporting light-emitting layer, and more efficient blue light emission with high emission brightness is obtained. .
【0075】上記3層構造の素子の層構成についてはと
くに限定されない。しかし前述したように、PVKの層
がITOガラスやITOフィルム等の基材との密着性に
すぐれていることや、上記PVKの層が、専ら溶液塗布
法によって形成されること等を考慮すると、図2(a) に
示すように、ガラス基板4等の表面に形成された、IT
O(インジウム−チン−オキサイド)等の透明導電材料
からなる陽極40上に、ホール輸送性発光層(PVK
層)1、s−TAZ層20および電子輸送層(Alq
層)3の3層を、この順に積層したものが好ましい。な
お図において符号5は、先の図1(a)(b)の場合と同様
に、Mg/Ag等の金属蒸着膜からなる陰極、Bは素子に駆
動電圧を印加する電源を示している。The layer structure of the element having the three-layer structure is not particularly limited. However, as described above, considering that the PVK layer has excellent adhesion to a substrate such as ITO glass or ITO film, and that the PVK layer is formed exclusively by a solution coating method, As shown in FIG. 2 (a), the IT formed on the surface of the glass substrate 4 or the like.
A hole-transporting light-emitting layer (PVK) is formed on the anode 40 made of a transparent conductive material such as O (indium-tin-oxide).
Layer) 1, s-TAZ layer 20 and electron transport layer (Alq
It is preferable that three layers of Layer 3 are laminated in this order. In the figure, reference numeral 5 is a cathode made of a metal vapor deposition film of Mg / Ag or the like, and B is a power source for applying a drive voltage to the element, as in the case of FIGS.
【0076】PVK層1、Alq層3の膜厚は、この発
明ではとくに限定されず、組み合わされるs−TAZの
種類やその層の膜厚などに応じて、最適な膜厚範囲を設
定すればよい。PVK層1は、当該層を構成するPVK
が高分子ゆえ、前記のように主として、PVKを含む材
料を適当な溶媒に溶解した塗布液を、基板上または他の
層上に塗布して乾燥させる溶液塗布法によって形成され
る。The film thicknesses of the PVK layer 1 and the Alq layer 3 are not particularly limited in the present invention, and if the optimum film thickness range is set according to the type of s-TAZ to be combined and the film thickness of the layer. Good. The PVK layer 1 is the PVK that constitutes the layer.
Since it is a polymer, it is mainly formed by a solution coating method in which a coating liquid prepared by dissolving a material containing PVK in a suitable solvent is coated on a substrate or another layer and dried as described above.
【0077】一方Alq層3とは、少なくともAlqを
含む層であって、Alqのみからなる層の他、適当なバ
インダー中にAlqを分散させたもの等が例としてあげ
られる。上記Alq層3は、真空蒸着法等の気相成長法
により形成できる他、層を構成する材料を適当な溶媒に
溶解した塗布液を、基板上または他の層上に塗布して乾
燥させる溶液塗布法によって形成することもできる。On the other hand, the Alq layer 3 is a layer containing at least Alq, and examples thereof include a layer formed of only Alq, and a layer in which Alq is dispersed in a suitable binder. The Alq layer 3 can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or a solution in which a coating solution in which a material forming the layer is dissolved in a suitable solvent is applied on a substrate or another layer and dried. It can also be formed by a coating method.
【0078】なお上記PVK層1およびAlq層3は、
それぞれ各種添加剤等の、PVK、Alqの機能を阻害
しない他の成分を含んでいてもよい。つぎにこの発明の
うち、ホール輸送層と電子輸送層の間に、前記一般式
(1) で表されるs−TAZからなるキャリヤ輸送制御層
が介装された3層構造を特徴とする、第3の有機エレク
トロルミネッセンス素子について説明する。The PVK layer 1 and the Alq layer 3 are
Each may contain other components such as various additives that do not inhibit the functions of PVK and Alq. Next, among the present invention, between the hole transport layer and the electron transport layer,
A third organic electroluminescence device having a three-layer structure in which a carrier transport control layer made of s-TAZ represented by (1) is interposed will be described.
【0079】この発明の有機エレクトロルミネッセンス
素子は、たとえば図2(b) に示すように、ガラス基板4
の表面に形成された、ITO(インジウム−チン−オキ
サイド)等の透明導電材料からなる陽極40上に、ホー
ル輸送層10、s−TAZからなるキャリヤ輸送制御層
23および電子輸送層3の3層を積層することで構成さ
れる。3層の形成順序はこの逆でもよい。要するに、ホ
ール輸送層10と電子輸送層3の間に、s−TAZから
なるキャリヤ輸送制御層23が介装されていればよい。
なお図において符号5は、先の各図の場合と同様に、Mg
/Ag等の金属蒸着膜からなる陰極、Bは素子に駆動電圧
を印加する電源を示している。The organic electroluminescence device of the present invention is provided with a glass substrate 4 as shown in FIG. 2 (b), for example.
Three layers of the hole transport layer 10, the carrier transport control layer 23 made of s-TAZ and the electron transport layer 3 on the anode 40 made of a transparent conductive material such as ITO (indium-tin-oxide) formed on the surface of the. It is configured by stacking. The order of forming the three layers may be reversed. In short, the carrier transport control layer 23 made of s-TAZ may be interposed between the hole transport layer 10 and the electron transport layer 3.
In the figure, reference numeral 5 indicates Mg as in the case of the previous figures.
/ Ag is a cathode made of a metal vapor deposition film, and B is a power source for applying a driving voltage to the device.
【0080】ここでいう、s−TAZからなるキャリヤ
輸送制御層23とは、少なくともs−TAZを含む層で
あって、s−TAZのみからなる層の他、適当なバイン
ダー中にs−TAZを分散させたもの等が例としてあげ
られる。上記s−TAZ層は、真空蒸着法等の気相成長
法により形成できる他、層を構成する材料を適当な溶媒
に溶解した塗布液を、基板上または他の層上に塗布して
乾燥させる溶液塗布法によって形成することもできる。
また上記s−TAZからなるキャリヤ輸送制御層23
は、各種添加剤等の、s−TAZの機能を阻害しない他
の成分を含んでいてもよい。The carrier transport control layer 23 made of s-TAZ as used herein means a layer containing at least s-TAZ. In addition to a layer made of only s-TAZ, s-TAZ is added to an appropriate binder. Examples include dispersed materials. The s-TAZ layer can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or a coating solution in which a material forming the layer is dissolved in a suitable solvent is coated on a substrate or another layer and dried. It can also be formed by a solution coating method.
Further, the carrier transport control layer 23 made of s-TAZ described above.
May contain other components such as various additives that do not inhibit the function of s-TAZ.
【0081】上記s−TAZからなるキャリヤ輸送制御
層23は、先に述べたようにその材料や膜厚を選択する
ことで、ホール輸送層10および電子輸送層3のいずれ
か一方または両方を、高輝度、高効率で発光させる働き
をする。上記s−TAZからなるキャリヤ輸送制御層2
3の働きを、当該キャリヤ輸送制御層23としてs−T
AZの蒸着膜(s−TAZ層)を使用し、ホール輸送層
10として、前記式(8) で表されるTPDの蒸着膜(T
PD層)を使用し、かつ電子輸送層3として、前記式
(9) で表されるAlqの蒸着膜(Alq層)を使用する
場合を例にとって、以下に説明する。The carrier transport control layer 23 made of s-TAZ can be formed by selecting the material or the film thickness of the carrier transport control layer 23 as described above, so that either or both of the hole transport layer 10 and the electron transport layer 3 can be formed. It works to emit light with high brightness and high efficiency. Carrier transport control layer 2 comprising s-TAZ
3 has the function of s-T as the carrier transport control layer 23.
The vapor deposition film of AZ (s-TAZ layer) is used, and the vapor deposition film of TPD represented by the above formula (8) (T
PD layer), and as the electron transport layer 3, the above formula is used.
The case of using the Alq vapor deposition film (Alq layer) represented by (9) will be described below as an example.
【0082】一般に有機絶縁膜へのキャリヤの注入は空
間電荷によって制限を受け、流れる電流量はキャリヤの
移動度および電界強度の2乗に比例し、かつ有機絶縁膜
の膜厚の3乗に反比例する。つまり電界強度が高く、移
動度が大きいほどキャリヤの注入は促進され、膜厚が大
きいほど制限される。図6に示すように、TPD層10
とAlq層3とを組み合わせた2層構造の素子(前記Ta
ngらの素子に相当)においては、陽極40と陰極5との
間に直流電場を印加すると、まずホールがTPD層10
中に注入され、TPD/Alq界面でブロックされて空
間電荷を形成する(図6(a) )。Generally, the injection of carriers into the organic insulating film is limited by the space charge, and the amount of current flowing is proportional to the square of the carrier mobility and the electric field strength and inversely proportional to the cube of the film thickness of the organic insulating film. To do. That is, the higher the electric field strength and the higher the mobility, the more the carrier injection is promoted, and the larger the film thickness, the more restricted. As shown in FIG. 6, the TPD layer 10
And a device having a two-layer structure in which the Alq layer 3 is combined (the above-mentioned Ta
(corresponding to the device of ng et al.), when a DC electric field is applied between the anode 40 and the cathode 5, first, holes are generated in the TPD layer 10.
It is injected into the inside and blocked at the TPD / Alq interface to form space charge (FIG. 6 (a)).
【0083】このときAlq層3にかかる電界強度は、
TPD/Alq界面の空間電荷のため、両極40,5間
にかけられた見かけの電界強度より大きくなり、それに
よって電子がAlq層3に注入され始める(図6(b)
)。そして、TPD/Alq界面付近のAlq層3中
でホールと電子の再結合によって励起子が発生し(図6
(c) )、Alqが励起されて発光する。At this time, the electric field strength applied to the Alq layer 3 is
Due to the space charge at the TPD / Alq interface, the electric field strength becomes larger than the apparent electric field strength applied between the both electrodes 40 and 5, whereby electrons start to be injected into the Alq layer 3 (FIG. 6 (b)).
). Then, excitons are generated by recombination of holes and electrons in the Alq layer 3 near the TPD / Alq interface (see FIG. 6).
(c)), Alq is excited to emit light.
【0084】TPD層10とAlq層3の間にs−TA
Z層を介装した場合も、ホールおよび電子の注入順序は
同様であり、図3に示すように、s−TAZ層23の膜
厚が十分に大きい場合(約150Å以上の場合)には、
このs−TAZ層23が、先の発明で説明したようにホ
ールブロッキング性にすぐれるため、陽陰両極40,5
間に直流電場を印加することでTPD層10に注入され
たホールは、TPD/TAZ界面でブロックされる(図
3(a) )。S-TA is formed between the TPD layer 10 and the Alq layer 3.
The order of injecting holes and electrons is the same when the Z layer is interposed, and as shown in FIG. 3, when the film thickness of the s-TAZ layer 23 is sufficiently large (about 150 Å or more),
Since the s-TAZ layer 23 has an excellent hole blocking property as described in the previous invention, the positive and negative electrodes 40, 5
The holes injected into the TPD layer 10 by applying a DC electric field therebetween are blocked at the TPD / TAZ interface (FIG. 3 (a)).
【0085】そしてこのホールによって空間電荷が形成
されることでAlq層3に注入された電子は、上記s−
TAZ層23が電子輸送性にすぐれるため、TPD/T
AZ界面まで輸送され(図3(b) )、この界面でホール
と電子の再結合によって励起子が発生し(図3(c) )、
TAZより励起エネルギー凖位の低いTPDが、発生し
た励起子によって励起されて発光する。The electrons injected into the Alq layer 3 due to the formation of space charge by the holes are s-
Since the TAZ layer 23 has excellent electron transporting property, TPD / T
It is transported to the AZ interface (Fig. 3 (b)), and at this interface excitons are generated by recombination of holes and electrons (Fig. 3 (c)),
TPD, which has a lower excitation energy level than TAZ, is excited by the generated excitons and emits light.
【0086】一方、図4に示すようにs−TAZ層23
の膜厚が十分に小さい場合(約50Å以下の場合)は、
陽陰両極40,5間に直流電場を印加することでTPD
層10に注入されたホールがs−TAZ層23を通過
し、TAZ/Alq界面でブロックされて空間電荷を形
成する(図4(a) )。ホールがs−TAZ層23を通過
するようになるのは、前記のようにキャリヤ(この場合
ホール)の注入量が、有機絶縁膜であるs−TAZ層2
3の膜厚の3乗に反比例するためである。On the other hand, as shown in FIG. 4, the s-TAZ layer 23
If the film thickness of is sufficiently small (less than about 50Å),
By applying a DC electric field between the positive and negative electrodes 40 and 5, TPD
The holes injected into the layer 10 pass through the s-TAZ layer 23 and are blocked at the TAZ / Alq interface to form space charges (FIG. 4 (a)). The holes pass through the s-TAZ layer 23 because the carrier (holes in this case) is injected into the s-TAZ layer 2 which is an organic insulating film as described above.
This is because it is inversely proportional to the cube of the film thickness of 3.
【0087】そしてホールによって空間電荷が形成され
ることでAlq層3に電子が注入されると(図4(b)
)、TAZ/Alq界面でホールと電子の再結合によ
って励起子が発生し(図4(c) )、TAZより励起エネ
ルギー凖位の低いAlqが、発生した励起子によって励
起されて発光する。さらに図5に示すように、s−TA
Z層23の膜厚が上記の中間である場合(約50〜15
0Å程度の場合)には、陽陰両極40,5間に直流電場
を印加することでTPD層10に注入されたホールは、
TPD/TAZ界面でブロックされるものと、s−TA
Z層23を通過してTAZ/Alq界面でブロックされ
るものの両方が生じる(図5(a) )。When space charge is formed by holes, electrons are injected into the Alq layer 3 (FIG. 4 (b)).
4), excitons are generated by recombination of holes and electrons at the TAZ / Alq interface (FIG. 4C), and Alq having a lower excitation energy level than TAZ is excited by the generated excitons to emit light. Furthermore, as shown in FIG. 5, s-TA
When the film thickness of the Z layer 23 is between the above values (about 50 to 15)
In the case of 0 Å), holes injected into the TPD layer 10 by applying a DC electric field between the positive and negative electrodes 40, 5 are
What is blocked at the TPD / TAZ interface and s-TA
Both pass through the Z layer 23 and are blocked at the TAZ / Alq interface (FIG. 5 (a)).
【0088】そしてホールによって空間電荷が形成され
ることでAlq層3に電子が注入されると(図5(b)
)、TPD/TAZ界面とTAZ/Alq界面の両方
でホールと電子の再結合によって励起子が発生し(図5
(c) )、TAZより励起エネルギー凖位の低いTPDお
よびAlqがともに、発生した励起子によって励起され
て発光する。When space charge is formed by holes, electrons are injected into the Alq layer 3 (FIG. 5 (b)).
), Excitons are generated by recombination of holes and electrons at both the TPD / TAZ interface and the TAZ / Alq interface (FIG. 5).
(c)), TPD and Alq, both of which have lower excitation energy than TAZ, are excited by the generated excitons and emit light.
【0089】TPD層10に注入されたホールが、TP
D/TAZ界面でブロックされるものと、s−TAZ層
23を通過してTAZ/Alq界面でブロックされるも
のに分かれるのは、先にも述べたように、ホールの注入
量が、s−TAZ層23の膜厚の3乗に反比例するため
である。なお図5の素子の場合、s−TAZ層23はホ
ールと電子をともに通過させるので、このs−TAZ層
23内で両者の再結合がおこることも十分に考えられ
る。しかしTAZは4000nm以下の短波長領域に発光
ピークを有しているため、もしs−TAZ層23内でホ
ールと電子が再結合して励起子が発生し、それによって
TAZが励起されたとしても、より長波長領域に発光ピ
ークを有するTPD層またはAlq層のいずれか一方、
あるいは両方に励起エネルギーが移行するので、s−T
AZ層23自体が発光することはない。The holes injected into the TPD layer 10 are TP
As described above, the amount of holes injected is s− as the blocking at the D / TAZ interface and the blocking at the TAZ / Alq interface after passing through the s-TAZ layer 23. This is because it is inversely proportional to the cube of the film thickness of the TAZ layer 23. In the case of the device shown in FIG. 5, the s-TAZ layer 23 allows both holes and electrons to pass therethrough. Therefore, it is fully conceivable that both of them recombine in the s-TAZ layer 23. However, since TAZ has an emission peak in the short wavelength region of 4000 nm or less, even if holes and electrons are recombined in the s-TAZ layer 23 to generate excitons, and thus TAZ is excited, , Either a TPD layer or an Alq layer having an emission peak in a longer wavelength region,
Or since the excitation energy is transferred to both, s-T
The AZ layer 23 itself does not emit light.
【0090】以上の説明から明らかなように、TPD層
10、s−TAZ層23およびAlq層3の組み合わせ
においては、s−TAZ層23の膜厚を上述した範囲内
で調整することにより、その働きを変化させることがで
きた。しかし、この発明における、s−TAZからなる
キャリヤ輸送制御層23の働きと、当該キャリヤ輸送制
御層23の膜厚範囲との関係は、上記例とは必ずしも一
致しない。特定の働きをするキャリヤ輸送制御層23の
膜厚の範囲は、各層を構成する材料の違い、層の構造の
違い(蒸着膜かバインダー分散膜か等)等の因子に基づ
き、自ずと違った値となる。 図5の説明から明らかな
ように、s−TAZからなるキャリヤ輸送制御層23
は、ホールの注入量が膜厚の3乗に反比例することに起
因して、その膜厚を調整することにより、ホール輸送層
10および電子輸送層3の発光強度の比率を変化させる
ことができる。As is clear from the above description, in the combination of the TPD layer 10, the s-TAZ layer 23 and the Alq layer 3, by adjusting the film thickness of the s-TAZ layer 23 within the above-mentioned range, I was able to change my work. However, the relationship between the function of the carrier transport control layer 23 made of s-TAZ and the film thickness range of the carrier transport control layer 23 in the present invention does not necessarily match the above example. The range of the film thickness of the carrier transport control layer 23 that performs a specific function is a different value based on factors such as a difference in materials constituting each layer and a difference in layer structure (evaporation film or binder dispersion film, etc.). Becomes As is clear from the description of FIG. 5, the carrier transport control layer 23 made of s-TAZ.
Is due to the fact that the amount of injected holes is inversely proportional to the cube of the film thickness. Therefore, by adjusting the film thickness, the ratio of the emission intensity of the hole transport layer 10 and the electron transport layer 3 can be changed. .
【0091】したがって前記TPD層とAlq層の組み
合わせのように、異なる発光スペクトルで発光するホー
ル輸送層10と電子輸送層3を組み合せると、キャリヤ
輸送制御層23の膜厚を適宜設定することで、両層の発
光色の混色である、素子全体の発光色の色合いを微調整
できるという利点もある。上記この発明の有機エレクト
ロルミネッセンス素子は、ホール輸送層10、s−TA
Zからなるキャリヤ輸送制御層23および電子輸送層3
の3層を備えていれば、その他の構成はとくに限定され
ない。Therefore, when the hole transport layer 10 and the electron transport layer 3 which emit light with different emission spectra are combined like the combination of the TPD layer and the Alq layer, the film thickness of the carrier transport control layer 23 can be set appropriately. There is also an advantage that the hue of the emission color of the entire element can be finely adjusted, which is a mixture of emission colors of both layers. The organic electroluminescence device of the present invention has the hole transport layer 10, s-TA
Carrier transport control layer 23 and electron transport layer 3 made of Z
Other configurations are not particularly limited as long as the three layers are included.
【0092】キャリヤ輸送制御層23以外の各層は、当
該キャリヤ輸送制御層23と同様に、真空蒸着法等の気
相成長法によって形成できる他、層を構成する材料を適
当な溶媒に溶解した塗布液を、基板上または他の層上に
塗布して乾燥させる溶液塗布法によって形成することも
できる。なお、以上で説明したこの発明の第1〜第3の
有機エレクトロルミネッセンス素子においては、その空
気中における保存安定性や連続発光時の寿命の向上のた
めに、素子を空気中の水分や酸素からシールドすべく、
保護膜をコーティングしたり、当該保護膜をコートした
素子を、さらにガラスやポリマーで封止してもよい。Like the carrier transport control layer 23, each layer other than the carrier transport control layer 23 can be formed by a vapor phase growth method such as a vacuum vapor deposition method, or the material constituting the layer is dissolved in an appropriate solvent. It can also be formed by a solution coating method in which the liquid is coated on a substrate or another layer and dried. In the first to third organic electroluminescent elements of the present invention described above, in order to improve the storage stability in the air and the life during continuous light emission, the element is protected from moisture and oxygen in the air. To shield
The protective film may be coated, or the element coated with the protective film may be further sealed with glass or polymer.
【0093】[0093]
【実施例】以下にこの発明を、実施例に基づき説明す
る。s−TAZの安定性評価 一般式(1) で表されるs−TAZに属する、前記式(1a)
で表されるs−TAZ1および式(1b)で表されるs−T
AZ2と、前記式(2) で表されるTAZ0とを、それぞ
れITO(インジウム−チン−オキサイド)コートガラ
ス基板(旭硝子社製、ITO膜厚1500〜1600
Å)上に、真空蒸着法により成膜して、膜厚1000Å
の薄膜を形成した。蒸着の条件は、到達真空度:1〜2
×10-5Torr、基板温度:室温、蒸着速度:2〜4Å/
秒であった。EXAMPLES The present invention will be described below based on examples. Evaluation of stability of s-TAZ The above formula (1a) belonging to s-TAZ represented by the general formula (1)
S-TAZ1 represented by and s-T represented by formula (1b)
AZ2 and TAZ0 represented by the above formula (2) are each provided with an ITO (indium-tin-oxide) coated glass substrate (manufactured by Asahi Glass Co., Ltd., ITO film thickness 1500 to 1600).
Å), a film is formed by a vacuum evaporation method, and a film thickness of 1000 Å
Thin film was formed. Deposition conditions are ultimate vacuum: 1-2
× 10 -5 Torr, substrate temperature: room temperature, deposition rate: 2-4Å /
It was seconds.
【0094】つぎに上記各サンプルを室温、空気中に放
置し、一定時間経過毎に、段差計を用いて薄膜の表面状
態を測定して、その平滑性を評価した。結果を図7〜図
13に示す。なお各図は放置直後(=0時間、図7)、
24時間後(図8)、48時間後(図9)、96時間後
(図10)、168時間後(図11)、384時間後
(図12)および552時間後(図13)の測定結果を
示している。また各図において上段はTAZ0の薄膜、
中段はs−TAZ1、下段はs−TAZ2の薄膜の測定
結果を示している。Next, each of the above samples was allowed to stand in the air at room temperature, and the surface condition of the thin film was measured with a step meter at regular time intervals to evaluate its smoothness. The results are shown in FIGS. In addition, each figure immediately after leaving (= 0 hours, FIG. 7),
Measurement results after 24 hours (FIG. 8), 48 hours (FIG. 9), 96 hours (FIG. 10), 168 hours (FIG. 11), 384 hours (FIG. 12) and 552 hours (FIG. 13). Is shown. In each figure, the upper row is a thin film of TAZ0,
The middle row shows the measurement results of the s-TAZ1 thin film and the lower row shows the measurement results of the s-TAZ2 thin film.
【0095】これらの図の結果から、TAZ0の薄膜
は、放置後48時間経過した時点で、表面にこれまでに
ない凹凸が生じ、TAZ0の凝集や結晶化が発生したこ
とがわかった。これに対しs−TAZ1の薄膜は、放置
後552時間経過しても新たな凹凸は見られず、またs
−TAZ2の薄膜は、放置後384時間経過するまで新
たな凹凸が見られなかったことから、上記s−TAZ
1、s−TAZ2の薄膜はいずれも、TAZ0の薄膜に
比べて表面の凹凸の経時変化が少なく、熱安定性にすぐ
れており、素子の寿命を飛躍的に向上できることが確認
された。From the results of these figures, it was found that the thin film of TAZ0 had unprecedented irregularities on the surface 48 hours after standing, and TAZ0 aggregated or crystallized. On the other hand, the s-TAZ1 thin film did not show any new irregularities even after 552 hours had passed, and
In the thin film of -TAZ2, no new unevenness was observed until 384 hours after being left.
It was confirmed that the thin films of 1 and s-TAZ2 both have less surface irregularities over time than the thin film of TAZ0, have excellent thermal stability, and can dramatically improve the life of the device.
【0096】実施例1 前記式(3) で表されるPVKと、このPVKに対して5
モル%の、式(4) で表されるTPBと、PVKに対して
0.3モル%の、式(5) で表されるクマリン6と、PV
Kに対して0.2モル%の、式(7) で表されるDCMと
をジクロロメタンで溶解して塗布液を作製した。そして
この塗布液を、シート抵抗15Ω/□のITO(インジ
ウム−チン−オキサイド)コートガラス基板(旭硝子社
製、ITO膜厚1500〜1600Å)上に、ディップ
コーティング法によって塗布し、乾燥させてホール輸送
性発光層を成膜した。 Example 1 PVK represented by the above formula (3) and 5 for this PVK
TPB represented by the formula (4) in a mol%, 0.3 mol% of coumarin 6 represented by the formula (5) with respect to PVK, and PV
A coating liquid was prepared by dissolving 0.2 mol% of K and DCM represented by the formula (7) with K in dichloromethane. Then, this coating solution is applied onto an ITO (indium-tin-oxide) coated glass substrate (manufactured by Asahi Glass Co., Ltd., ITO film thickness 1500 to 1600Å) having a sheet resistance of 15 Ω / □ by a dip coating method, dried and then transported by holes. A light-emitting layer was formed.
【0097】次いでこのホール輸送性発光層上に、電子
輸送材料としての、前記式(2) で表されるTAZ0、お
よび式(9) で表されるAlqを、この順に、真空蒸着法
によって成膜して2層構造の電子輸送層を形成した。発
光領域の寸法は縦0.5cm、横0.5cmの正方形状であ
った。またTAZ層、Alq層蒸着の条件は、到達真空
度:1〜2×10-5Torr、基板温度:室温、蒸着速度:
2〜4Å/秒であり、各層の膜厚は、ホール輸送性発光
層=400〜500Å、TAZ層=200Å、Alq層
=300Åであった。Next, TAZ0 represented by the above formula (2) and Alq represented by the above formula (9) as electron transport materials were formed on this hole transporting light emitting layer in this order by a vacuum deposition method. The film was formed into an electron transport layer having a two-layer structure. The light emitting region had a square shape with a length of 0.5 cm and a width of 0.5 cm. The conditions for vapor deposition of the TAZ layer and the Alq layer are as follows: ultimate vacuum: 1-2 × 10 −5 Torr, substrate temperature: room temperature, vapor deposition rate:
It was 2 to 4Å / sec, and the film thickness of each layer was as follows: hole transporting light emitting layer = 400 to 500Å, TAZ layer = 200Å, Alq layer = 300Å.
【0098】つぎに上記Alq層の上に、マグネシウム
と銀を共蒸着して膜厚2000Å、Mg/Ag=10/1
(モル比)のMg/Ag電極層を形成した後、その上に銀を
単独蒸着して膜厚1000Åの保護層を形成して、図1
(a) に示す層構成の有機エレクトロルミネッセンス素子
を得た。電極層の蒸着速度は11Å/秒、保護層の蒸着
速度は10Å/秒であった。Next, magnesium and silver were co-evaporated on the above Alq layer to obtain a film thickness of 2000Å and Mg / Ag = 10/1.
After forming the Mg / Ag electrode layer (molar ratio), silver was vapor-deposited on the electrode layer to form a protective layer having a film thickness of 1000Å.
An organic electroluminescence device having the layer structure shown in (a) was obtained. The electrode layer had a deposition rate of 11Å / sec, and the protective layer had a deposition rate of 10Å / sec.
【0099】上記のようにして作製した有機エレクトロ
ルミネッセンス素子のITO膜を陽極、Mg/Ag電極層を
陰極として、室温、大気中で両電極間に直流電場を印加
して発光層を発光させ、その発光輝度を、輝度計(ミノ
ルタ社製のLS−100)を用いて測定したところ、1
6Vの駆動電圧、250mA/cm2 の電流密度で輝度33
52cd/m2 の白色発光が観測された。またこの白色発
光を、室温下、蛍光光度計(日立社製のF4010)を
用いて測定したところ、図14に示すように、波長40
0〜700nmの可視光領域全体に亘る発光スペクトルが
得られた。さらにこの素子を室温で数日間保持しても外
観に変化はみられず、また製造直後と同レベルの発光輝
度で発光させることができた。Using the ITO film of the organic electroluminescent device produced as described above as an anode and the Mg / Ag electrode layer as a cathode, a direct current electric field was applied between the two electrodes at room temperature and in the atmosphere to cause the light emitting layer to emit light. The emission luminance was measured using a luminance meter (LS-100 manufactured by Minolta Co., Ltd.), and was 1
Brightness 33 at a driving voltage of 6 V and a current density of 250 mA / cm 2.
White light emission of 52 cd / m 2 was observed. Further, when this white light emission was measured at room temperature using a fluorescence photometer (F4010 manufactured by Hitachi, Ltd.), as shown in FIG.
An emission spectrum was obtained over the entire visible light range of 0 to 700 nm. Furthermore, even if this device was kept at room temperature for several days, no change in appearance was observed, and it was possible to emit light with the same level of luminance as immediately after manufacture.
【0100】実施例2 前記TAZ0に代えて、前記式(1a)で表されるs−TA
Z1を電子輸送材料として使用したこと以外は、実施例
1と同様にして有機エレクトロルミネッセンス素子を作
製し、その特性を調べたところ、実施例1と同様の発光
スペクトルを有する白色の発光が得られた。またこの素
子を、室温、不活性ガス雰囲気中で、初期輝度100cd
/m2 で連続発光させたところ、1か月以上、連続発光
させることができた。 Example 2 Instead of TAZ0, s-TA represented by the above formula (1a)
An organic electroluminescence device was produced in the same manner as in Example 1 except that Z1 was used as an electron transport material, and its characteristics were examined. As a result, white light emission having an emission spectrum similar to that in Example 1 was obtained. It was In addition, this device was tested at room temperature in an inert gas atmosphere with an initial luminance of 100 cd.
When continuously emitting light at / m 2 , it was possible to continuously emit light for one month or more.
【0101】実施例3 PVKと、このPVKに対して5モル%のTPBとをジ
クロロメタンで溶解して塗布液を作製したこと以外は、
実施例1と同様にして有機エレクトロルミネッセンス素
子を作製し、その特性を調べたところ、16Vの駆動電
圧、220mA/cm2 の電流密度で輝度1500cd/m2
の青色発光が観測された。またこの青色発光を、前記蛍
光光度計を用いて測定したところ、図15に示すよう
に、波長450nmにピークを有する発光スペクトルが得
られ、TPBからの発光であることが確認された。さら
にこの素子を室温で数日間保持しても外観に変化はみら
れず、また製造直後と同レベルの発光輝度で発光させる
ことができた。 Example 3 PVK and 5 mol% TPB to PVK were dissolved in dichloromethane to prepare a coating solution, except that
Example 1 to fabricate an organic electroluminescent device in the same manner as were examined their characteristics, the driving voltage of 16V, 220 mA / cm luminance 1500 cd / m 2 at a second current density
Blue emission was observed. Further, when this blue light emission was measured using the above-mentioned fluorescence photometer, an emission spectrum having a peak at a wavelength of 450 nm was obtained as shown in FIG. 15, and it was confirmed that the light was emitted from TPB. Furthermore, even if this device was kept at room temperature for several days, no change in appearance was observed, and it was possible to emit light with the same level of luminance as immediately after manufacture.
【0102】実施例4 前記TAZ0に代えて、s−TAZ1を電子輸送材料と
して使用したこと以外は、実施例3と同様にして有機エ
レクトロルミネッセンス素子を作製し、その特性を調べ
たところ、実施例3と同様の発光スペクトルを有する青
色の発光が得られた。またこの素子を、室温、不活性ガ
ス雰囲気中で、初期輝度100cd/m2で連続発光させ
たところ、1か月以上、連続発光させることができた。 Example 4 An organic electroluminescent device was prepared in the same manner as in Example 3 except that s-TAZ1 was used as the electron transport material in place of TAZ0, and the characteristics thereof were investigated. Blue light emission having an emission spectrum similar to that of Example 3 was obtained. When this device was made to continuously emit light at an initial luminance of 100 cd / m 2 in an inert gas atmosphere at room temperature, it was possible to continuously emit light for one month or more.
【0103】実施例5 PVKと、このPVKに対して1モル%のクマリン6と
をジクロロメタンで溶解して塗布液を作製したこと以外
は、実施例1と同様にして有機エレクトロルミネッセン
ス素子を作製し、その特性を調べたところ、16Vの駆
動電圧、340mA/cm2 の電流密度で輝度2200cd/
m2 の緑色発光が観測された。またこの緑色発光を、前
記蛍光光度計を用いて測定したところ、図16に示すよ
うに、波長510nmにピークを有する発光スペクトルが
得られ、クマリン6からの発光であることが確認され
た。さらにこの素子を室温で数日間保持しても外観に変
化はみられず、また製造直後と同レベルの発光輝度で発
光させることができた。 Example 5 An organic electroluminescence device was prepared in the same manner as in Example 1 except that PVK and 1 mol% of coumarin 6 based on this PVK were dissolved in dichloromethane to prepare a coating solution. The characteristics were examined, and a luminance of 2200 cd / at a driving voltage of 16 V and a current density of 340 mA / cm 2.
A green emission of m 2 was observed. Further, when this green light emission was measured using the above-mentioned fluorescence photometer, an emission spectrum having a peak at a wavelength of 510 nm was obtained as shown in FIG. 16, and it was confirmed that the emission was from coumarin 6. Furthermore, even if this device was kept at room temperature for several days, no change in appearance was observed, and it was possible to emit light with the same level of luminance as immediately after manufacture.
【0104】実施例6 前記TAZ0に代えて、s−TAZ1を電子輸送材料と
して使用したこと以外は、実施例5と同様にして有機エ
レクトロルミネッセンス素子を作製し、その特性を調べ
たところ、実施例5と同様の発光スペクトルを有する緑
色の発光が得られた。またこの素子を、室温、不活性ガ
ス雰囲気中で、初期輝度100cd/m2で連続発光させ
たところ、1か月以上、連続発光させることができた。 Example 6 An organic electroluminescence device was prepared in the same manner as in Example 5 except that s-TAZ1 was used as the electron transport material in place of TAZ0, and the characteristics thereof were examined. Green light emission having an emission spectrum similar to that of Example 5 was obtained. When this device was made to continuously emit light at an initial luminance of 100 cd / m 2 in an inert gas atmosphere at room temperature, it was possible to continuously emit light for one month or more.
【0105】実施例7 PVKと、このPVKに対して0.1モル%のDCMと
をジクロロメタンで溶解して塗布液を作製したこと以外
は、実施例1と同様にして有機エレクトロルミネッセン
ス素子を作製し、その特性を調べたところ、16Vの駆
動電圧、210mA/cm2 の電流密度で輝度1100cd/
m2 の白色発光が観測された。またこの白色発光を、前
記蛍光光度計を用いて測定したところ、図17に示すよ
うに、波長410nmのPVKからの発光と、波長550
nmのDCMからの発光であることが確認された。 Example 7 An organic electroluminescence device was prepared in the same manner as in Example 1 except that PVK and 0.1 mol% of DCM with respect to this PVK were dissolved in dichloromethane to prepare a coating solution. Then, when the characteristics were examined, a luminance of 1100 cd / at a driving voltage of 16 V and a current density of 210 mA / cm 2.
White emission of m 2 was observed. Further, when this white light emission was measured using the above-mentioned fluorescence photometer, as shown in FIG. 17, the light emission from PVK having a wavelength of 410 nm and the wavelength of 550
It was confirmed that the light was emitted from the DCM of nm.
【0106】そこで、塗布液における、PVKに対する
DCMの濃度を2モル%にして同様に素子を作製し、そ
の特性を調べたところ、波長550nmのピークが波長4
10nmのピークより大きくなって、発光はオレンジ色と
なった。さらにこれらの素子を室温で数日間保持しても
外観に変化はみられず、また製造直後と同レベルの発光
輝度で発光させることができた。Therefore, when a device was similarly prepared by setting the concentration of DCM to PVK to 2 mol% in the coating liquid and examining its characteristics, the peak at the wavelength of 550 nm was found to be 4 nm.
It became larger than the peak at 10 nm and the emission became orange. Furthermore, even if these devices were kept at room temperature for several days, no change was observed in their appearance, and they were able to emit light with the same level of emission brightness as immediately after manufacture.
【0107】実施例8 前記TAZ0に代えて、s−TAZ1を電子輸送材料と
して使用したこと以外は、実施例7と同様にして有機エ
レクトロルミネッセンス素子を作製し、その特性を調べ
たところ、実施例7と同様の発光スペクトルを有する白
色またはオレンジ色の発光が得られた。またこれらの素
子を、室温、不活性ガス雰囲気中で、初期輝度100cd
/m2 で連続発光させたところ、1か月以上、連続発光
させることができた。 Example 8 An organic electroluminescence device was prepared in the same manner as in Example 7 except that s-TAZ1 was used as the electron transport material in place of TAZ0, and the characteristics thereof were examined. White or orange luminescence with an emission spectrum similar to 7 was obtained. In addition, these elements were subjected to an initial luminance of 100 cd in an inert gas atmosphere at room temperature.
When continuously emitting light at / m 2 , it was possible to continuously emit light for one month or more.
【0108】実施例9 シート抵抗15Ω/□のITO(インジウム−チン−オ
キサイド)コートガラス基板(旭硝子社製、ITO膜厚
1500〜1600Å)上に、ホール輸送性発光材料と
しての、前記式(3) で表されるPVKを、ジクロロエタ
ンを溶媒とするディップコーティング法によって成膜
し、次いでこのPVK層の上に、前記式(1a)で表される
s−TAZ1、および電子輸送材料としての、前記式
(9) で表されるAlqをこの順に、真空蒸着法により成
膜した。発光領域の寸法は縦0.5cm、横0.5cmの正
方形状であった。また蒸着の条件は実施例1と同様であ
り、形成された各層の膜厚は、PVK層(ホール輸送性
発光層)=400Å、s−TAZ層=200Å、Alq
層(電子輸送層)=300Åであった。 Example 9 An ITO (indium-tin-oxide) coated glass substrate having a sheet resistance of 15 Ω / □ (manufactured by Asahi Glass Co., Ltd., ITO film thickness 1500 to 1600Å) was used as a hole transporting light emitting material, and the above formula (3) was used. ) PVK represented by the above formula is formed by a dip coating method using dichloroethane as a solvent, and then s-TAZ1 represented by the above formula (1a) and the above-mentioned s-TAZ1 represented by the above formula (1a) as an electron transport material on the PVK layer formula
Alq represented by (9) was formed in this order by a vacuum evaporation method. The light emitting region had a square shape with a length of 0.5 cm and a width of 0.5 cm. The vapor deposition conditions were the same as in Example 1, and the thickness of each layer formed was PVK layer (hole transporting light emitting layer) = 400Å, s-TAZ layer = 200Å, Alq.
Layer (electron transport layer) = 300Å.
【0109】つぎに上記Alq層の上に、マグネシウム
と銀を共蒸着して膜厚2000Å、Mg/Ag=10/1
(モル比)のMg/Ag電極層を形成した後、その上に銀を
単独蒸着して膜厚1000Åの保護層を形成して、図2
(a) に示す層構造の有機エレクトロルミネッセンス素子
を得た。電極層および保護層の蒸着速度は実施例1と同
様であった。Next, magnesium and silver were co-evaporated on the above Alq layer to obtain a film thickness of 2000Å and Mg / Ag = 10/1.
After forming a Mg / Ag electrode layer (molar ratio), silver is vapor-deposited on the electrode layer to form a protective layer having a film thickness of 1000Å.
An organic electroluminescence device having a layer structure shown in (a) was obtained. The vapor deposition rates of the electrode layer and the protective layer were the same as in Example 1.
【0110】上記のようにして作製した有機エレクトロ
ルミネッセンス素子のITO膜を陽極、Mg/Ag電極層を
陰極として、室温、大気中で両電極間に直流電場を印加
して発光層を発光させ、その発光輝度を、輝度計(ミノ
ルタ社製のLS−100)を用いて測定したところ、4
Vから発光が始まり、最大15V(270mA/cm2 )の
駆動電圧で輝度1500cd/m2 の青色発光が観測され
た。CRTの青色域の発光輝度が20〜30cd/m2 程
度であることを考えると、本実施例の素子の青色発光
は、極めて高輝度であることがわかる。Using the ITO film of the organic electroluminescence device produced as described above as an anode and the Mg / Ag electrode layer as a cathode, a direct current electric field was applied between the two electrodes at room temperature in the air to cause the light emitting layer to emit light. The emission luminance was measured using a luminance meter (LS-100 manufactured by Minolta Co., Ltd.), and was 4
Light emission started from V, and blue light emission with a luminance of 1500 cd / m 2 was observed at a driving voltage of 15 V (270 mA / cm 2 ) at maximum. Considering that the emission brightness in the blue region of the CRT is about 20 to 30 cd / m 2 , it can be seen that the blue emission of the device of this example has extremely high brightness.
【0111】またこの青色発光を室温下、蛍光光度計
(日立社製のF4010)を用いて測定したところ、波
長410nmにピークを有する発光スペクトルが得られ
た。この発光スペクトルは、PVK自体の発光スペクト
ルとほぼ一致することから、実施例9の素子は、PVK
層が発光していることか確認された。またこの素子を、
室温、不活性ガス雰囲気中で、初期輝度100cd/m2
で連続発光させたところ、1か月以上、連続発光させる
ことができた。The blue emission was measured at room temperature using a fluorimeter (F4010 manufactured by Hitachi Ltd.), and an emission spectrum having a peak at a wavelength of 410 nm was obtained. This emission spectrum is almost the same as the emission spectrum of PVK itself. Therefore, the device of Example 9 is PVK.
It was confirmed that the layer was emitting light. In addition, this element
Initial brightness of 100 cd / m 2 in an inert gas atmosphere at room temperature
When it was made to continuously emit light, it could be continuously emitted for one month or more.
【0112】比較例1 s−TAZ1に代えて、TAZ0を電子輸送材料として
使用したこと以外は、実施例9と同様にして有機エレク
トロルミネッセンス素子を作製し、この素子を、室温、
不活性ガス雰囲気中で、初期輝度100cd/m2 で連続
発光させたところ、10時間で発光が停止した。 Comparative Example 1 An organic electroluminescence device was prepared in the same manner as in Example 9 except that TAZ0 was used as an electron transport material instead of s-TAZ1.
When light was continuously emitted at an initial luminance of 100 cd / m 2 in an inert gas atmosphere, the light emission stopped after 10 hours.
【0113】実施例10 Alq層を省略したこと以外は、上記実施例9と同様に
して有機エレクトロルミネッセンス素子を作製し、その
特性を調べたところ、発光開始電圧がやや高くなり、電
流最大値が小さくなったが、実施例9と同様に高輝度の
青色発光が得られた。 Example 10 An organic electroluminescent device was prepared in the same manner as in Example 9 except that the Alq layer was omitted, and its characteristics were examined. As a result, the light emission starting voltage was slightly increased and the maximum current value was increased. Although it was small, high-intensity blue light emission was obtained as in Example 9.
【0114】またこの素子を、室温、不活性ガス雰囲気
中で、初期輝度100cd/m2 で連続発光させたとこ
ろ、1か月以上、連続発光させることができた。実施例11 シート抵抗15Ω/□のITO(インジウム−チン−オ
キサイド)コートガラス基板(旭硝子社製、ITO膜厚
1500〜1600Å)上に、TPD、s−TAZ2、
およびAlqをこの順に、真空蒸着法により成膜した。
発光領域の寸法は縦0.5cm、横0.5cmの正方形状で
あった。また蒸着の条件は実施例1と同様であり、形成
された各層の膜厚は、TPD層(ホール輸送層)=40
0Å、s−TAZ層(キャリヤ輸送制御層)=150
Å、Alq層(電子輸送層)=450Åであった。When this device was made to continuously emit light at an initial luminance of 100 cd / m 2 in an inert gas atmosphere at room temperature, it was possible to continuously emit light for one month or more. Example 11 TPD, s-TAZ2, on an ITO (indium-tin-oxide) coated glass substrate (made by Asahi Glass Co., Ltd., ITO film thickness 1500 to 1600Å) having a sheet resistance of 15 Ω / □.
And Alq were formed in this order by a vacuum evaporation method.
The light emitting region had a square shape with a length of 0.5 cm and a width of 0.5 cm. The vapor deposition conditions were the same as in Example 1, and the thickness of each layer formed was TPD layer (hole transport layer) = 40.
0Å, s-TAZ layer (carrier transport control layer) = 150
Å, Alq layer (electron transport layer) = 450 Å.
【0115】つぎに上記Alq層の上に、マグネシウム
と銀を共蒸着して膜厚2000Å、Mg/Ag=10/1
(モル比)のMg/Ag電極層を形成した後、その上に銀を
単独蒸着して膜厚1000Åの保護層を形成して、図2
(b) に示す層構造の有機エレクトロルミネッセンス素子
を得た。電極層および保護層の蒸着速度は実施例1と同
様であった。Next, magnesium and silver were co-deposited on the Alq layer to obtain a film thickness of 2000Å and Mg / Ag = 10/1.
After forming a Mg / Ag electrode layer (molar ratio), silver is vapor-deposited on the electrode layer to form a protective layer having a film thickness of 1000Å.
An organic electroluminescence device having a layer structure shown in (b) was obtained. The vapor deposition rates of the electrode layer and the protective layer were the same as in Example 1.
【0116】上記のようにして作製した有機エレクトロ
ルミネッセンス素子のITO膜を陽極、Mg/Ag電極層を
陰極として、室温、大気中で両電極間に直流電場を印加
して発光層を発光させ、その発光輝度を、輝度計(ミノ
ルタ社製のLS−100)を用いて測定したところ、最
大15V(200mA/cm2 )の駆動電圧で輝度6000
cd/m2 の青色発光が観測された。Using the ITO film of the organic electroluminescent device produced as described above as an anode and the Mg / Ag electrode layer as a cathode, a direct current electric field was applied between the two electrodes at room temperature and in the atmosphere to cause the light emitting layer to emit light. The emission luminance was measured using a luminance meter (LS-100 manufactured by Minolta Co., Ltd.), and the luminance was 6000 at a maximum driving voltage of 15 V (200 mA / cm 2 ).
A blue emission of cd / m 2 was observed.
【0117】またこの青色発光を室温下、蛍光光度計
(日立社製のF4010)を用いて測定したところ、波
長464nmにピークを有する発光スペクトルが得られ
た。この発光スペクトルは、TPDの単独蒸着膜の発光
スペクトルとほぼ一致することから、実施例11の素子
は、TPD層が発光していることか確認された。またこ
の素子を、室温、不活性ガス雰囲気中で、初期輝度10
0cd/m2 で連続発光させたところ、5日間に亘って連
続発光させることができた。The blue emission was measured at room temperature using a fluorometer (F4010 manufactured by Hitachi Ltd.), and an emission spectrum having a peak at a wavelength of 464 nm was obtained. This emission spectrum is almost the same as the emission spectrum of the single vapor-deposited film of TPD. Therefore, in the device of Example 11, it was confirmed that the TPD layer was emitting light. In addition, this element was subjected to an initial luminance of 10 at room temperature in an inert gas atmosphere.
When continuously emitting light at 0 cd / m 2 , it was possible to continuously emit light for 5 days.
【0118】実施例12,13 キャリヤ輸送制御層としてのs−TAZ層を、s−TA
Z1からなる膜厚50Åの蒸着膜(実施例12)、また
はs−TAZ1からなる膜厚100Åの蒸着膜(実施例
13)としたこと以外は、実施例11と同様にして有機
エレクトロルミネッセンス素子を作製した。 Examples 12 and 13 The s-TAZ layer as the carrier transport control layer was replaced with s-TA.
An organic electroluminescence device was prepared in the same manner as in Example 11, except that a vapor deposition film made of Z1 having a thickness of 50 Å (Example 12) or a vapor deposition film made of s-TAZ1 having a thickness of 100 Å (Example 13) was used. It was made.
【0119】比較例2 s−TAZ層に代えて、TAZ0からなる膜厚100Å
の蒸着膜をキャリヤ輸送制御層としたこと以外は、実施
例11と同様にして有機エレクトロルミネッセンス素子
を作製した。上記実施例12,13および比較例2の素
子の発光スペクトルを、実施例11と同様にして測定し
たところ、実施例12および比較例2の素子は、Alq
層の発光色である緑色発光と、TPD層の発光色である
青色発光の混合した青緑色に発光したが、実施例13の
素子は、TPD層の発光色である青色発光を示し、この
ことから、s−TAZ1からなるs−TAZ層は、TA
Z0からなるものに比べて高いホールブロッキング性を
有することが確認された。 Comparative Example 2 Instead of the s-TAZ layer, a film thickness of 100 Å made of TAZ0.
An organic electroluminescent element was produced in the same manner as in Example 11 except that the vapor-deposited film of 2 was used as the carrier transport control layer. When the emission spectra of the devices of Examples 12 and 13 and Comparative Example 2 were measured in the same manner as in Example 11, the devices of Example 12 and Comparative Example 2 exhibited Alq.
The element of Example 13 emitted blue light, which was the emission color of the TPD layer, although it emitted green light that was the emission color of the layer and blue emission that was the emission color of the TPD layer. Therefore, the s-TAZ layer composed of s-TAZ1 is TA
It was confirmed to have a higher hole blocking property than that of Z0.
【0120】[0120]
【発明の効果】以上、詳述したようにこの発明の第1の
有機エレクトロルミネッセンス素子は、ホール輸送性発
光層が、高分子中に色素を分子分散して構成されるた
め、従来の低分子量の材料からなるホール輸送層等に比
べて耐熱性にすぐれている。またこのホール輸送性発光
層は、ITOガラスやITOフィルム等の基材との密着
性にもすぐれている。このため、素子の発光時の発熱に
よる劣化、凝集、結晶化等が起こりにくいホール輸送性
発光層を形成でき、素子の安定性を向上できる。As described above in detail, in the first organic electroluminescent device of the present invention, since the hole transporting light emitting layer is constituted by dispersing the dye in the polymer, the conventional low molecular weight element is used. It has better heat resistance than the hole transport layer made of the above materials. The hole-transporting light-emitting layer also has excellent adhesion to a substrate such as ITO glass or ITO film. Therefore, it is possible to form a hole-transporting light-emitting layer in which deterioration, aggregation, crystallization and the like due to heat generation during light emission of the element are unlikely to occur, and the stability of the element can be improved.
【0121】またこのホール輸送性発光層を、1,2,
4−トリアゾール誘導体、とくに一般式(1) で表される
s−TAZからなる電子輸送層と組み合わせることによ
り、従来の単層のものに比べてキャリヤの注入効率、と
くに電子の注入効率が向上するので、高効率、高輝度で
の発光が可能となる。しかも上記s−TAZは安定性に
すぐれるため、素子の寿命を飛躍的に向上できる。Further, the hole transporting light emitting layer is
By combining with a 4-triazole derivative, especially an electron transport layer composed of s-TAZ represented by the general formula (1), carrier injection efficiency, particularly electron injection efficiency is improved as compared with a conventional single layer. Therefore, it is possible to emit light with high efficiency and high brightness. Moreover, since the s-TAZ has excellent stability, the life of the device can be dramatically improved.
【0122】さらに、溶液調整により簡単に、高分子中
に色素を分散できることから、多種の色素を同時に分散
することも可能で、色素の種類や組み合わせによって、
R,G,Bの三原色による色純度のよいマルチカラー表
示や白色発光、自然光発光を実現できる。また、この発
明の第2の有機エレクトロルミネッセンス素子によれ
ば、とくにホールブロッキング性にすぐれた上記s−T
AZの層の作用により、電子とホールの結合効率を、従
来よりもさらに向上できるとともに、両者が結合してで
きた励起子を、より有効に、発光層内に閉じ込めること
ができる。また上記s−TAZは安定性にすぐれるた
め、素子の寿命を飛躍的に向上できる。Further, since the dyes can be easily dispersed in the polymer by adjusting the solution, it is possible to simultaneously disperse various dyes. Depending on the kind and combination of the dyes,
It is possible to realize multi-color display with good color purity by the three primary colors of R, G, B, white light emission, and natural light emission. In addition, according to the second organic electroluminescence device of the present invention, the s-T having excellent hole blocking property is excellent.
By the action of the AZ layer, the coupling efficiency of electrons and holes can be further improved as compared with the conventional one, and the excitons formed by the coupling of both can be more effectively confined in the light emitting layer. Further, since the s-TAZ has excellent stability, the life of the device can be dramatically improved.
【0123】このためこの発明の有機エレクトロルミネ
ッセンス素子は、発光効率、発光輝度が高く、かつ安定
性にもすぐれたものとなる。またこの発明の有機エレク
トロルミネッセンス素子においては、上記のようにホー
ルブロッキング性にすぐれたs−TAZの層を、発光効
率が十分でない青色発光の発光層と組み合わせること
で、従来は実用化が困難であった高輝度の青色発光を実
現することも可能である。Therefore, the organic electroluminescence device of the present invention has high luminous efficiency and luminous brightness and is excellent in stability. Further, in the organic electroluminescence device of the present invention, by combining the layer of s-TAZ excellent in hole blocking property with the light emitting layer of blue light emission having insufficient light emission efficiency as described above, it has been difficult to put into practical use in the past. It is also possible to achieve the desired high brightness blue light emission.
【0124】とくに青色発光を示し、かつ高分子である
PVKの層を、上記s−TAZの層とを組み合わせる
と、より一層高効率、高輝度で、かつ安定性にすぐれた
青色発光の有機エレクトロルミネッセンス素子が得られ
る。また上記両者の組み合わせにAlqの層を加えたも
のは、さらに高効率、高輝度で、かつ安定性にすぐれた
ものとなる。By combining a layer of PVK, which is a polymer that emits blue light and is a polymer, with the layer of s-TAZ, a blue-emitting organic electroluminescent device having higher efficiency, higher brightness, and excellent stability can be obtained. A luminescence element is obtained. Further, the combination of the above two with the addition of the Alq layer provides higher efficiency, higher brightness, and excellent stability.
【0125】さらに、この発明の第3の有機エレクトロ
ルミネッセンス素子は、上記s−TAZからなるキャリ
ヤ輸送制御層を、ホール輸送層と電子輸送層の間に介装
したものゆえ、先の発明と同様に、上記キャリヤ輸送制
御層による励起子の封じ込め効果により、ホール輸送層
または電子輸送層を発光層として高輝度、高効率で発光
でき、発光効率、発光輝度の向上とそれにともなう安定
性の向上が可能となるとともに、青色発光の発光効率を
実用的な範囲まで向上することができる。Furthermore, the third organic electroluminescent device of the present invention is the same as the previous invention because the carrier transport control layer made of s-TAZ is interposed between the hole transport layer and the electron transport layer. In addition, due to the exciton confinement effect of the carrier transport control layer, the hole transport layer or the electron transport layer can be used as a light emitting layer to emit light with high brightness and high efficiency, and the light emitting efficiency and the light emitting brightness can be improved and the stability associated therewith can be improved. In addition to being possible, the luminous efficiency of blue light emission can be improved to a practical range.
【0126】また上記s−TAZは安定性にすぐれるた
め、素子の寿命を飛躍的に向上できる。またs−TAZ
の膜厚を選択すると、ホール輸送層および電子輸送層の
いずれか一方または両方を、高輝度、高効率で発光させ
ることができるので、上記ホール輸送層、電子輸送層に
互いに異なる発光スペクトルの材料を用いることによ
り、1つの素子で、2つ以上の互いに異なる発光スペク
トルの発光が可能となり、従来のエレクトロルミネッセ
ンス素子では不可能であった、R,G,Bの三原色によ
るマルチカラー表示や白色発光等の発光を実用化し得る
可能性がある。Since the s-TAZ is excellent in stability, the life of the device can be remarkably improved. Also s-TAZ
When either of the hole transporting layer and the electron transporting layer, or both, can be made to emit light with high brightness and high efficiency by selecting the film thickness of, the hole transporting layer and the electron transporting layer are made of materials having different emission spectra. By using one element, it becomes possible to emit light of two or more emission spectra different from each other with one element, which is impossible with the conventional electroluminescence element, and multi-color display by the three primary colors of R, G, B and white light emission. There is a possibility that light emission such as the above can be put to practical use.
【0127】したがって上記3つのこの発明の有機エレ
クトロルミネッセンス素子は、低電圧で駆動でき、しか
も有機材料からなるため可撓性を有する大面積の発光素
子の製造に有効に利用でき、将来に亘って、表示、照
明、ディスプレイ等の分野での利用可能性が高い。Therefore, the above three organic electroluminescent elements of the present invention can be driven at a low voltage and can be effectively used for manufacturing a large-area light emitting element having flexibility because they are made of an organic material, and will be used for the future. It is highly applicable in the fields of display, lighting, display, etc.
【図1】同図(a) は、この発明の第1の有機エレクトロ
ルミネッセンス素子のうち、電子輸送層が2層構造の素
子を示す断面図、同図(b) は、電子輸送層が単層の素子
を示す断面図である。FIG. 1 (a) is a cross-sectional view showing an element having a two-layer structure of an electron transport layer in the first organic electroluminescent element of the present invention, and FIG. 1 (b) is a single electron transport layer. It is sectional drawing which shows the element of a layer.
【図2】同図(a) は、この発明の第2の有機エレクトロ
ルミネッセンス素子の好適な例としての、3層構造の素
子を示す断面図、同図(b) は、この発明の第3の有機エ
レクトロルミネッセンス素子の一例を示す断面図であ
る。FIG. 2 (a) is a sectional view showing an element having a three-layer structure as a preferred example of the second organic electroluminescence element of the present invention, and FIG. 2 (b) is a sectional view showing the third embodiment of the present invention. It is sectional drawing which shows an example of the organic electroluminescent element of.
【図3】同図(a) 〜(c) は、上記第3の有機エレクトロ
ルミネッセンス素子の3層構造のうち、キャリヤ輸送制
御層としてのs−TAZ層の膜厚が十分に大きい素子の
発光原理を、順を追って説明する図である。FIGS. 3 (a) to 3 (c) show light emission of a device having a sufficiently large s-TAZ layer as a carrier transport control layer in the three-layer structure of the third organic electroluminescence device. It is a figure explaining a principle in order.
【図4】同図(a) 〜(c) は、キャリヤ輸送制御層として
のs−TAZ層の膜厚が十分に小さい素子の発光原理
を、順を追って説明する図である。4 (a) to 4 (c) are diagrams for sequentially explaining the light emission principle of an element in which the film thickness of the s-TAZ layer as a carrier transport control layer is sufficiently small.
【図5】同図(a) 〜(c) は、キャリヤ輸送制御層として
のs−TAZ層の膜厚が、図3および図4の場合の中間
である素子の発光原理を、順を追って説明する図であ
る。5 (a) to 5 (c) show, in order, the light emitting principle of the device in which the film thickness of the s-TAZ layer as the carrier transport control layer is intermediate between those in FIGS. It is a figure explaining.
【図6】同図(a) 〜(c) は、ホール輸送層としてのTP
D層と、電子輸送層としてのAlq層との間にs−TA
Z層を介装しない2層構造の素子の発光原理を、順を追
って説明する図である。6 (a) to (c) show TP as a hole transport layer.
S-TA is formed between the D layer and the Alq layer as the electron transport layer.
It is a figure which explains the light emission principle of the element of 2 layer structure which does not interpose Z layer one by one.
【図7】s−TAZとTAZ0の熱安定性を評価すべ
く、これらの材料からなる蒸着膜を空気中に放置した直
後の段階における、各蒸着膜の表面状態の測定結果を示
すグラフである。FIG. 7 is a graph showing the measurement results of the surface state of each vapor-deposited film immediately after the vapor-deposited film made of these materials was left in the air in order to evaluate the thermal stability of s-TAZ and TAZ0. .
【図8】各蒸着膜を空気中に放置して24時間経過した
段階における、各蒸着膜の表面状態の測定結果を示すグ
ラフである。FIG. 8 is a graph showing the measurement results of the surface state of each vapor-deposited film at the stage where 24 hours have passed after leaving each vapor-deposited film in the air.
【図9】各蒸着膜を空気中に放置して48時間経過した
段階における、各蒸着膜の表面状態の測定結果を示すグ
ラフである。FIG. 9 is a graph showing the measurement results of the surface state of each vapor deposition film at the stage where 48 hours have passed after leaving each vapor deposition film in the air.
【図10】各蒸着膜を空気中に放置して96時間経過し
た段階における、各蒸着膜の表面状態の測定結果を示す
グラフである。FIG. 10 is a graph showing the measurement results of the surface state of each vapor deposition film at the stage where 96 hours have passed after each vapor deposition film was left in the air.
【図11】各蒸着膜を空気中に放置して168時間経過
した段階における、各蒸着膜の表面状態の測定結果を示
すグラフである。FIG. 11 is a graph showing the measurement results of the surface state of each vapor-deposited film at the stage where 168 hours have passed since each vapor-deposited film was left in the air.
【図12】各蒸着膜を空気中に放置して384時間経過
した段階における、各蒸着膜の表面状態の測定結果を示
すグラフである。FIG. 12 is a graph showing the measurement results of the surface state of each vapor-deposited film at the stage where 384 hours have passed after leaving each vapor-deposited film in the air.
【図13】各蒸着膜を空気中に放置して552時間経過
した段階における、各蒸着膜の表面状態の測定結果を示
すグラフである。FIG. 13 is a graph showing the measurement results of the surface state of each vapor-deposited film after 552 hours have passed since the vapor-deposited film was left in the air.
【図14】本発明の実施例1で作製した有機エレクトロ
ルミネッセンス素子の、発光スペクトルを測定した結果
を示すグラフである。FIG. 14 is a graph showing a result of measuring an emission spectrum of the organic electroluminescence device manufactured in Example 1 of the present invention.
【図15】本発明の実施例3で作製した有機エレクトロ
ルミネッセンス素子の、発光スペクトルを測定した結果
を示すグラフである。FIG. 15 is a graph showing a result of measuring an emission spectrum of the organic electroluminescence device produced in Example 3 of the present invention.
【図16】本発明の実施例5で作製した有機エレクトロ
ルミネッセンス素子の、発光スペクトルを測定した結果
を示すグラフである。FIG. 16 is a graph showing a result of measuring an emission spectrum of the organic electroluminescent element produced in Example 5 of the present invention.
【図17】本発明の実施例7で作製した有機エレクトロ
ルミネッセンス素子の、発光スペクトルを測定した結果
を示すグラフである。FIG. 17 is a graph showing a result of measuring an emission spectrum of the organic electroluminescence device manufactured in Example 7 of the present invention.
1 ホール輸送性発光層 2 電子輸送層 3 電子輸送層(Alq層) 10 ホール輸送層 20 s−TAZ層 21 TAZ層 22 Alq層 23 キャリヤ輸送制御層 DESCRIPTION OF SYMBOLS 1 Hole transporting light emitting layer 2 Electron transport layer 3 Electron transport layer (Alq layer) 10 Hole transport layer 20 s-TAZ layer 21 TAZ layer 22 Alq layer 23 Carrier transport control layer
Claims (9)
光層とを備えるとともに、上記ホール輸送性発光層が、
少なくとも1種の色素を高分子中に分子分散して構成さ
れていることを特徴とする有機エレクトロルミネッセン
ス素子。1. An electron-transporting layer and a hole-transporting light-emitting layer are provided at least, and the hole-transporting light-emitting layer comprises:
An organic electroluminescence device comprising at least one dye dispersed in a polymer.
誘導体の層単独で構成されるか、または1,2,4−ト
リアゾール誘導体の層とトリス(8−キノリノラート)
アルミニウム(III) 錯体の層の2層により構成されてい
る請求項1記載の有機エレクトロルミネッセンス素子。2. The electron transport layer comprises a layer of 1,2,4-triazole derivative alone, or a layer of 1,2,4-triazole derivative and tris (8-quinolinolate).
The organic electroluminescent device according to claim 1, wherein the organic electroluminescent device is composed of two layers of an aluminum (III) complex.
式(1) : 【化1】 (式中、R1 ,R2 ,R3 ,R4 およびR5 は、同一ま
たは異なって、水素原子、アルキル基、アルコキシル
基、アリール基またはアラルキル基を示す。但し、基R
1 ,R2 ,R3 ,R4 およびR5 は同時に水素原子では
ない。)で表されるものである請求項2記載の有機エレ
クトロルミネッセンス素子。3. A 1,2,4-triazole derivative has the general formula (1): (In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxyl group, an aryl group or an aralkyl group.
1 , R 2 , R 3 , R 4 and R 5 are not hydrogen atoms at the same time. The organic electroluminescent element of Claim 2 represented by these.
輸送性を有する高分子中に色素を分子分散して構成され
るか、またはキャリヤ輸送性を有しない高分子に、色素
と、低分子のホール輸送材料とを分子分散して構成され
ている請求項1記載の有機エレクトロルミネッセンス素
子。4. A hole-transporting light-emitting layer is formed by molecularly dispersing a dye in a polymer having a carrier-transporting property, or a polymer having no carrier-transporting property, a dye and a low molecular weight compound. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is formed by molecularly dispersing the hole transport material.
波長400〜700nmの可視光領域全体に亘るように、
当該ホール輸送性発光層に分子分散される色素が複数
種、組み合わされている請求項1記載の有機エレクトロ
ルミネッセンス素子。5. The emission spectrum of the hole transporting light emitting layer is:
In order to cover the entire visible light range of wavelength 400-700 nm,
The organic electroluminescent device according to claim 1, wherein a plurality of dyes that are molecularly dispersed in the hole transporting light emitting layer are combined.
1,2,4−トリアゾール誘導体の層を備えることを特
徴とする有機エレクトロルミネッセンス素子。6. An organic electroluminescence device comprising at least a layer of a 1,2,4-triazole derivative represented by the general formula (1).
ール輸送性発光層として備えている請求項5記載の有機
エレクトロルミネッセンス素子。7. The organic electroluminescence device according to claim 5, which comprises a layer of poly-N-vinylcarbazole as a hole transporting light emitting layer.
ム(III) 錯体の層を、電子輸送層として備えている請求
項6記載の有機エレクトロルミネッセンス素子。8. The organic electroluminescence device according to claim 6, further comprising a tris (8-quinolinolato) aluminum (III) complex layer as an electron transport layer.
もに、当該両層の間に、前記一般式(1) で表される1,
2,4−トリアゾール誘導体からなり、ホールおよび電
子のうちの少なくとも一方を選択的に輸送するキャリヤ
輸送制御層が介装されていることを特徴とする有機エレ
クトロルミネッセンス素子。9. A hole-transporting layer and an electron-transporting layer are provided, and a layer represented by the general formula (1) is provided between the layers.
An organic electroluminescence device comprising a carrier transport control layer which is composed of a 2,4-triazole derivative and selectively transports at least one of holes and electrons.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6112502A JP2937015B2 (en) | 1993-07-28 | 1994-05-26 | Organic electroluminescence device |
KR1019960700380A KR100227607B1 (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent elements |
PCT/JP1995/000289 WO1995033014A1 (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent elements |
CA002168236A CA2168236A1 (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent device |
US08/591,432 US5834130A (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent device |
DE69530654T DE69530654T2 (en) | 1994-05-26 | 1995-02-23 | ORGANIC ELECTROLUMINICENT ELEMENTS |
EP95909987A EP0712916B1 (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent elements |
TW084101754A TW421668B (en) | 1994-05-26 | 1995-02-23 | Organic electroluminescent device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18622493 | 1993-07-28 | ||
JP5-186224 | 1993-07-28 | ||
JP6112502A JP2937015B2 (en) | 1993-07-28 | 1994-05-26 | Organic electroluminescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790260A true JPH0790260A (en) | 1995-04-04 |
JP2937015B2 JP2937015B2 (en) | 1999-08-23 |
Family
ID=26451643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6112502A Expired - Lifetime JP2937015B2 (en) | 1993-07-28 | 1994-05-26 | Organic electroluminescence device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2937015B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079297A (en) * | 1996-07-09 | 1998-03-24 | Sony Corp | Electroluminescent element |
JPH10289787A (en) * | 1997-04-11 | 1998-10-27 | Tdk Corp | Organic electroluminescent element |
JPH118069A (en) * | 1997-02-17 | 1999-01-12 | Nippon Steel Corp | Organic electroluminescence device and method of manufacturing the same |
JPH11135261A (en) * | 1997-10-27 | 1999-05-21 | Toyo Ink Mfg Co Ltd | Organic electroluminescent element material, and organic electroluminescent element using it |
WO1999027757A1 (en) * | 1997-11-20 | 1999-06-03 | Zakrytoe Aktsionernoe Obschestvo 'aktsionernyi Institut Mikroelektronnykh Tekhnologii' | ELECTROLUMINESCENT DEVICE CONTAINING OLIGOTRIPHENYLAMINE MIXTURE AND 3-(4-BIPHENYL) -4-(4-tert -BUTYLPHENYL) -5-(4-DIMETHYLAMINOPHENYL) -1,2,4-TRIAZOLE MATERIAL, AND PROCESSES FOR PRODUCING THE MATERIAL |
JP2000068059A (en) * | 1998-08-24 | 2000-03-03 | Toyo Ink Mfg Co Ltd | Organic electroluminescent element material and organic electroluminescent element using the same |
JP2002075645A (en) * | 2000-08-29 | 2002-03-15 | Semiconductor Energy Lab Co Ltd | Light emitting device |
WO2002022760A1 (en) * | 2000-09-12 | 2002-03-21 | Skc Co., Ltd. | Organic electro-luminescence device |
US6436559B1 (en) | 1999-11-12 | 2002-08-20 | Canon Kabushiki Kaisha | Organic luminescence device |
US6461749B2 (en) | 2000-03-31 | 2002-10-08 | Canon Kabushiki Kaisha | Organic boron compound, process for producing the compound and organic luminescence device using the compound |
KR100495407B1 (en) * | 2001-08-20 | 2005-06-14 | 티디케이가부시기가이샤 | Organic EL Device and Preparation Method |
KR100698300B1 (en) * | 2005-12-29 | 2007-03-22 | 엘지전자 주식회사 | Organic EL element and its manufacturing method |
KR100806812B1 (en) * | 2005-07-25 | 2008-02-25 | 엘지.필립스 엘시디 주식회사 | Organic EL element and its manufacturing method |
US7662487B2 (en) | 2005-09-09 | 2010-02-16 | Idemitsu Kosan Co., Ltd. | Azaaromatic compounds having azafluoranthene skeletons and organic electroluminescent devices made by using the same |
US7663149B2 (en) | 2001-02-22 | 2010-02-16 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device and display device using the same |
US10790451B2 (en) | 2007-05-17 | 2020-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1289030A1 (en) * | 2001-09-04 | 2003-03-05 | Sony International (Europe) GmbH | Doping of a hole transporting material |
-
1994
- 1994-05-26 JP JP6112502A patent/JP2937015B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079297A (en) * | 1996-07-09 | 1998-03-24 | Sony Corp | Electroluminescent element |
JPH118069A (en) * | 1997-02-17 | 1999-01-12 | Nippon Steel Corp | Organic electroluminescence device and method of manufacturing the same |
JPH10289787A (en) * | 1997-04-11 | 1998-10-27 | Tdk Corp | Organic electroluminescent element |
JPH11135261A (en) * | 1997-10-27 | 1999-05-21 | Toyo Ink Mfg Co Ltd | Organic electroluminescent element material, and organic electroluminescent element using it |
WO1999027757A1 (en) * | 1997-11-20 | 1999-06-03 | Zakrytoe Aktsionernoe Obschestvo 'aktsionernyi Institut Mikroelektronnykh Tekhnologii' | ELECTROLUMINESCENT DEVICE CONTAINING OLIGOTRIPHENYLAMINE MIXTURE AND 3-(4-BIPHENYL) -4-(4-tert -BUTYLPHENYL) -5-(4-DIMETHYLAMINOPHENYL) -1,2,4-TRIAZOLE MATERIAL, AND PROCESSES FOR PRODUCING THE MATERIAL |
JP2000068059A (en) * | 1998-08-24 | 2000-03-03 | Toyo Ink Mfg Co Ltd | Organic electroluminescent element material and organic electroluminescent element using the same |
US6436559B1 (en) | 1999-11-12 | 2002-08-20 | Canon Kabushiki Kaisha | Organic luminescence device |
US6461749B2 (en) | 2000-03-31 | 2002-10-08 | Canon Kabushiki Kaisha | Organic boron compound, process for producing the compound and organic luminescence device using the compound |
JP2002075645A (en) * | 2000-08-29 | 2002-03-15 | Semiconductor Energy Lab Co Ltd | Light emitting device |
JP4554047B2 (en) * | 2000-08-29 | 2010-09-29 | 株式会社半導体エネルギー研究所 | Light emitting device |
WO2002022760A1 (en) * | 2000-09-12 | 2002-03-21 | Skc Co., Ltd. | Organic electro-luminescence device |
US6821650B2 (en) | 2000-09-12 | 2004-11-23 | Skc Co. Ltd. | Organic electro-luminescence device |
US7663149B2 (en) | 2001-02-22 | 2010-02-16 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device and display device using the same |
KR100495407B1 (en) * | 2001-08-20 | 2005-06-14 | 티디케이가부시기가이샤 | Organic EL Device and Preparation Method |
KR100806812B1 (en) * | 2005-07-25 | 2008-02-25 | 엘지.필립스 엘시디 주식회사 | Organic EL element and its manufacturing method |
US7662487B2 (en) | 2005-09-09 | 2010-02-16 | Idemitsu Kosan Co., Ltd. | Azaaromatic compounds having azafluoranthene skeletons and organic electroluminescent devices made by using the same |
KR100698300B1 (en) * | 2005-12-29 | 2007-03-22 | 엘지전자 주식회사 | Organic EL element and its manufacturing method |
US10790451B2 (en) | 2007-05-17 | 2020-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative |
Also Published As
Publication number | Publication date |
---|---|
JP2937015B2 (en) | 1999-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5869199A (en) | Organic electroluminescent elements comprising triazoles | |
JP2734341B2 (en) | Organic electroluminescence device | |
KR100227607B1 (en) | Organic electroluminescent elements | |
JP3835454B2 (en) | Composition for organic electroluminescent device and organic electroluminescent device using the same | |
US5121029A (en) | Electroluminescence device having an organic electroluminescent element | |
JP4161262B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHT EMITTING OR DISPLAY DEVICE USING THE SAME | |
US5593788A (en) | Organic electroluminescent devices with high operational stability | |
US7736758B2 (en) | Light emitting device having dopants in a light emitting layer | |
JP2937015B2 (en) | Organic electroluminescence device | |
JPH11162643A (en) | Organic electroluminescent element | |
JPH0878163A (en) | Organic electroluminescence device and its manufacturing method | |
WO2003080761A1 (en) | Material for organic electroluminescent element and organic electroluminescent element employing the same | |
JPH09268284A (en) | Material for organic electroluminescence device and organic electroluminescence device using the same | |
KR100254592B1 (en) | Triazole derivative and organic electroluminescent element using same | |
US5821003A (en) | Organic electroluminescent device | |
JPH1060427A (en) | Organic el element produced by using coumarin derivative | |
JP3969300B2 (en) | Composition for organic electroluminescence device and organic electroluminescence device using the same | |
CA2163010A1 (en) | Organic electroluminescent element | |
JP2006066820A (en) | Organic electroluminescence device | |
JP2734338B2 (en) | Organic electroluminescence device | |
KR19990078127A (en) | Organic Electroluminescence Material and Device Using the Same | |
EP1809077A2 (en) | Organic electroluminescent element | |
JPH1140356A (en) | Organic electroluminescent element | |
JPH10294178A (en) | Organic electroluminescence element | |
JP3206741B2 (en) | Organic electroluminescence device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080611 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120611 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140611 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |