[go: up one dir, main page]

JPH0789714B2 - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH0789714B2
JPH0789714B2 JP61212553A JP21255386A JPH0789714B2 JP H0789714 B2 JPH0789714 B2 JP H0789714B2 JP 61212553 A JP61212553 A JP 61212553A JP 21255386 A JP21255386 A JP 21255386A JP H0789714 B2 JPH0789714 B2 JP H0789714B2
Authority
JP
Japan
Prior art keywords
phase
signal
voltage
power supply
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61212553A
Other languages
Japanese (ja)
Other versions
JPS6369432A (en
Inventor
武夫 嶋村
広 内野
良一 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61212553A priority Critical patent/JPH0789714B2/en
Priority to US07/091,666 priority patent/US4755738A/en
Priority to EP87112991A priority patent/EP0259805B1/en
Priority to DE8787112991T priority patent/DE3777026D1/en
Priority to CA000546293A priority patent/CA1300223C/en
Publication of JPS6369432A publication Critical patent/JPS6369432A/en
Publication of JPH0789714B2 publication Critical patent/JPH0789714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は無効電力補償装置に係り、交流電源系統の電圧
変動の抑制や、電圧の不平衡の抑制を行い電源系統の安
定化を計るための、効果的な無効電力補償装置に関す
る。
The present invention relates to a reactive power compensator, and relates to a reactive power compensator, which suppresses voltage fluctuations in an AC power supply system and suppresses voltage imbalance. The present invention relates to an effective var compensator for stabilizing.

(従来の技術) 近年、交流電車等の単相電力を取る負荷が電源系統に接
続されるようになり、これによる不平衡電流と電源系統
のインピーダンスの作用で電源系統の電圧に不平衡を生
じ問題になっており、また、電源系統の無効電力の変化
による電圧の変動が問題になっている。このため、電源
系統に無効電力補償装置を設置し、これにより、電源系
統の無効電力を補償し電圧変動を抑制し、及び、電源系
統の不平衡電流を補償し電圧の不平衡成分を除去する試
みがなされている。
(Prior art) In recent years, loads such as AC trains that take single-phase power have been connected to the power supply system, and the unbalanced current and the impedance of the power supply system cause an unbalanced voltage in the power supply system. It has become a problem, and the fluctuation of the voltage due to the change of the reactive power of the power system has become a problem. Therefore, a reactive power compensator is installed in the power supply system to compensate the reactive power of the power supply system and suppress voltage fluctuations, and to compensate the unbalanced current of the power supply system and remove the unbalanced component of the voltage. Attempts are being made.

このような無効電力補償装置を備えた電力供給システム
については、例えば、昭和60年(1985)7月に電気学会
・電力技術研究会にて発表された論文「デイジタル制御
装置を用いたSVCによる系統安定化のためのシミュレー
タ試験」に詳述されており、その基本的な構成は第5図
に示す構成になる。
As for the power supply system equipped with such a reactive power compensator, for example, a paper “A system using SVC using a digital controller” presented at the Institute of Electrical Engineers and Power Technology Study Group in July 1985. The simulator test for stabilization "is described in detail, and the basic configuration is as shown in FIG.

即ち、同図において、10,11は交流電車等の負荷への支
線の電力供給母線であり、100は無効電力補償装置であ
り、リアクトル部300と進相コンデンサ200で構成され
る。リアクトル部300はリアクトル302U〜302Wとそれに
直列接続された逆並列サイリスタ301U〜301Wと、電圧検
出用トランジスタ70と、その制御回路350よりなり、電
源母線6の電圧を検出しその検出値に応じてサイリスタ
301U〜301Wの導通角が調整され、リアクトル電流が制御
される。3は三相交流電源系統に存在するインピーダン
ス、1は幹線の三相交流電源系統である。ここで無効電
力補償装置100のリアクトル300の電力容量(遅れ容量)
は、通常、進相コンデンサ200の電力容量(進相容量)
の2倍に設定されており、従って、第6図に示すよう
に、リアクトル電流IRを零から最大まで変化させること
により、無効電力補償装置100として発生する電力Qを
進相から遅相まで滑らかに変化することができる。
That is, in the figure, 10 and 11 are power supply buses of branch lines to loads such as AC trains, 100 is a reactive power compensator, and is composed of a reactor unit 300 and a phase advance capacitor 200. Reactor unit 300 is composed of reactors 302U to 302W, anti-parallel thyristors 301U to 301W connected in series thereto, voltage detection transistor 70, and its control circuit 350, detects the voltage of power supply bus bar 6 and responds to the detected value. Thyristor
The conduction angle of 301U to 301W is adjusted to control the reactor current. 3 is an impedance existing in the three-phase AC power supply system, and 1 is a main line three-phase AC power supply system. Here, the power capacity (lag capacity) of the reactor 300 of the reactive power compensator 100
Is usually the power capacity of the phase advancing capacitor 200 (phase advancing capacity)
Therefore, as shown in FIG. 6, by changing the reactor current I R from zero to the maximum, the power Q generated as the reactive power compensator 100 is changed from the advanced phase to the delayed phase. It can change smoothly.

以上の構成の電源系において、母線6の無効電流(又は
無効電力)が変化するとそれとインピーダンス3の作用
で母線6の電圧が変動し、また、電車等の単相負荷によ
って発生される不平衡電流が母線6に流れるとインピー
ダンス3との作用で母線6の電圧に不平衡を生ずる。こ
のような電圧の変動,電圧の不平衡を抑制補償するのに
無効電力補償装置を用いるが、装置の性能は電圧変動を
いかに検出するか、電圧の不平衡をいかに検出するかに
かかっている。この制御回路の一例を第7図に示す。
In the power supply system having the above configuration, when the reactive current (or reactive power) of the bus 6 changes, the voltage of the bus 6 changes due to the action of the impedance and the impedance 3, and the unbalanced current generated by a single-phase load such as an electric train. When the current flows through the bus bar 6, the impedance of the bus bar 6 causes an imbalance in the voltage of the bus bar 6. A reactive power compensator is used to suppress and compensate such voltage fluctuations and voltage imbalances, but the performance of the device depends on how to detect voltage fluctuations and how to detect voltage imbalances. . An example of this control circuit is shown in FIG.

即ち、第7図は前掲文献記載の主旨を示したものであ
り、まず母線電圧を各々の相ごとに個別に検出し(eRS,
eST,eTR)、それを絶対値回路(ABS)を通して整流し、
それをフィルタ回路FILに通して直流信号eDR,eDS,eDT
得る。eDR〜eDTは母線電圧の各線間の電圧値に比例す
る。一方▲V* R▼は交流母線が維持すべき電圧値を指示
する信号であり、これと信号eDR,eDS,eDTを比較器CR,C
S,CTで個別に比較し、偏差を増幅器AMPで増幅しリアク
トルの電流指令▲I* U▼,▲I* V▼,▲I* W▼を作る。
▲I* U▼,▲I* V▼,▲I* W▼に基づいて第5図のリア
クトル回路300の電流を制御すると、交流母線の無効電
力が変化し母線電圧が変化しようとすると、無効電力補
償装置100がそれを補償し電圧を一定に維持し、また、
交流母線が不平衡電流が流れ電圧に不平衡が生じた場合
にはやり無効電力補償装置100がそれを補償し電圧の不
平衡を是正する方向で動作する。
That is, FIG. 7 shows the gist of the description in the above-mentioned document. First, the bus voltage is detected individually for each phase (e RS ,
e ST , e TR ), rectify it through an absolute value circuit (ABS),
It is passed through a filter circuit FIL to obtain DC signals e DR , e DS , e DT . e DR to e DT are proportional to the voltage value between each line of the bus voltage. On the other hand, ▲ V * R ▼ is a signal indicating the voltage value to be maintained by the AC bus, and this signal and signals e DR , e DS , and e DT are compared with comparators CR and C
S, CT are compared individually, and the deviation is amplified by an amplifier AMP to make reactor current commands ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼.
When the current of the reactor circuit 300 of FIG. 5 is controlled based on ▲ I * U ▼, ▲ I * V ▼, and ▲ I * W ▼, when the reactive power of the AC bus changes and the bus voltage changes, it becomes invalid. The power compensator 100 compensates for it and keeps the voltage constant, and
When an unbalanced current flows in the AC bus and an imbalance occurs in the voltage, the reactive power compensator 100 compensates for the imbalance and operates in a direction to correct the imbalance in the voltage.

その他、種々の電圧検出法を備えた無効電力補償装置が
提案されているがその主旨は前掲文献に記載の方法に帰
着できる。
In addition, a reactive power compensator having various voltage detection methods has been proposed, but the gist thereof can be reduced to the method described in the above-mentioned document.

(発明が解決しようとする問題点) 以上が従来の無効電力補償装置の説明であるが、この装
置には次のような欠点がある。即ち、交流母線の電圧変
動には正相電流の変化に起因する成分(正相電圧変動)
と、逆相電流に起因する電圧の不平衡成分(逆相電圧変
動)とが含まれるが、従来の電圧検出法ではこれら正相
電圧変動/逆相電圧変動を明確に分離するという概念が
なく、そのため母線の電圧を、正相/逆相の電圧変動が
渾然一体と混った形の単なる変動分としてのみとらえ、
それに基づいて無効電力補償装置を制御している。その
ため、従来の無効電力補償装置では補償対象を何にする
か、即ち、正相の電圧変動(特に正相の無効電流による
変動)を制御しているのか、または、逆相の電圧変動、
即ち電圧の不平衡成分を制御しているか、の識別が原理
的にできず、より高度な制御への展開が不可能であっ
た。
(Problems to be Solved by the Invention) The above is the description of the conventional reactive power compensating device, but this device has the following drawbacks. That is, the voltage fluctuation of the AC bus is caused by the change of the positive phase current (the positive phase voltage fluctuation).
, And an unbalanced component of voltage (negative phase voltage fluctuation) caused by negative phase current, but the conventional voltage detection method has no concept of clearly separating positive phase voltage fluctuation / negative phase voltage fluctuation. , Therefore, the voltage of the bus bar is regarded as a mere fluctuation component in which the positive and negative phase voltage fluctuations are mixed together.
The reactive power compensator is controlled based on it. Therefore, in the conventional reactive power compensator, what is to be compensated, that is, whether positive phase voltage fluctuation (particularly fluctuation due to positive phase reactive current) is controlled, or negative phase voltage fluctuation,
That is, it is impossible in principle to discriminate whether or not the unbalanced component of the voltage is controlled, and it has been impossible to develop a more advanced control.

近年、交流電力系統の電力品質の向上が強く求められて
おり、より高度な制御が可能な電力系統・安定化対策用
・無効電力補償装置の出現が求められており、これに応
ずるための新規な制御概念に基づく精度の良い電圧検出
法(正相電圧変動検出,逆相電圧変動検出法)を備えた
無効電力補償装置の開発が急がれている。
In recent years, there has been a strong demand for improvement in the power quality of the AC power system, and the emergence of a power system capable of more advanced control, stabilization measures, and reactive power compensators has been sought. There is an urgent need to develop a reactive power compensator equipped with a highly accurate voltage detection method (positive-phase voltage fluctuation detection method, negative-phase voltage fluctuation detection method) based on various control concepts.

本発明は上記従来技術の問題点に鑑みなされたもので、
その目的は交流電源系統の電圧変動、及び、電圧の不平
衡の補償を行う装置において、電源系統の電圧変動を正
相分と逆相分とに分離検出し、それにより補償対象を明
確にして制御を行うことにより、高精度の電圧補償制御
をおこなえるようにした無効電力補償装置を提供するこ
とにある。
The present invention has been made in view of the above-mentioned problems of the prior art,
The purpose is to detect the voltage fluctuations of the power supply system separately in the positive phase component and the negative phase component in the device that compensates the voltage fluctuations of the AC power supply system and the unbalanced voltage, and clarify the compensation target. An object of the present invention is to provide a reactive power compensator capable of performing highly accurate voltage compensation control by performing control.

[発明の構成] (問題点を解決するための手段) 本発明の概要を第1図、第2図により説明する。系統電
圧を検出し、第1図の要素403,406に導く。406では系統
電圧に同期した単位2相電圧信号を発生する。一方、40
3では3相電圧信号を2相信号に変換する。403,406の信
号を要素408,410に導き、瞬時電力信号(P1P,P1N,Q1N
を演算する。要素413,414,415では信号P1P,P1N,Q1Nの中
から直流分をとりだす(P1PD:正相基本波電圧信号,
P1ND,Q1ND:第1相の逆相電圧信号)。要素420Aの内容を
第2図に示す。第2図の412A,424Aでは信号P1ND,Q1ND
用い、それぞれ第2相,第3相の逆相電圧信号(P2ND,Q
2ND),(P3ND,Q3ND)を演算する。437は保持されるべ
き電源系統の電圧値を設定する。430Aでは信号P1PD,P
1ND,Q1ND,P2ND,Q2ND,P3ND,Q3NDを用いて、電圧偏差信号
ΔEU,ΔEV,ΔEWを演算する。増幅器451U,451V,451Wで、
信号ΔEU,ΔEV,ΔEWを増幅するとリアクトルの電流指令
▲I* U▼,▲I* V▼,▲I* W▼が得られ、これに基づい
て無効電力補償装置を制御する。
[Structure of the Invention] (Means for Solving Problems) The outline of the present invention will be described with reference to FIGS. 1 and 2. The system voltage is detected and led to elements 403 and 406 in FIG. At 406, a unit two-phase voltage signal synchronized with the system voltage is generated. On the other hand, 40
At 3, the three-phase voltage signal is converted into a two-phase signal. The signals of 403,406 are led to the elements 408,410, and the instantaneous power signals (P 1P , P 1N , Q 1N )
Is calculated. Elements 413, 414 and 415 extract the DC component from the signals P 1P , P 1N and Q 1N (P 1PD : positive phase fundamental wave voltage signal,
P 1ND , Q 1ND : 1st phase negative phase voltage signal). The contents of element 420A are shown in FIG. In the 412A and 424A of FIG. 2, the signals P 1ND and Q 1ND are used, and the negative phase voltage signals (P 2ND and Q) of the second phase and the third phase, respectively.
2ND ), (P 3ND , Q 3ND ) are calculated. 437 sets the voltage value of the power supply system to be held. Signal P 1PD , P for 430A
The voltage deviation signals ΔE U , ΔE V , and ΔE W are calculated using 1ND , Q 1ND , P 2ND , Q 2ND , P 3ND , and Q 3ND . Amplifier 451U, 451V, 451W,
When the signals ΔE U , ΔE V , and ΔE W are amplified, the reactor current commands ▲ I * U ▼, ▲ I * V ▼, and ▲ I * W ▼ are obtained, and the reactive power compensator is controlled based on these.

(作用) 以上の制御回路を使用すると、系統電圧の情報が正相分
(P1PD),逆相分(P1ND,Q1ND,P2ND,Q2ND,P3ND,Q3ND
の形に明確に分離検出される。従って、これらの信号に
より無効電力補償装置を制御することにより補償の対象
を明確にでき、高精度の装置が実現できる。
(Operation) When the above control circuit is used, the information of the system voltage is the positive phase component (P 1PD ), the negative phase component (P 1ND , Q 1ND , P 2ND , Q 2ND , P 3ND , Q 3ND ).
Are clearly separated and detected. Therefore, by controlling the reactive power compensator by these signals, the object of compensation can be clarified and a highly accurate device can be realized.

[発明の実施例] 本発明の無効電力補償装置を備えた電力供給システム
(以後の説明の便のため、三相系で説明する)は第5図
と同一であり、前述の従来例の説明で言及した要素につ
いては、ここでは説明を省略する。
[Embodiment of the Invention] A power supply system including a reactive power compensator of the present invention (a three-phase system will be described for convenience of the following description) is the same as that shown in FIG. The description of the elements referred to in 1 is omitted here.

第5図において70は電圧検出器であり補償対象の交流母
線6の線間電圧(eRS,eST,eTR)を検出し制御回路350に
導く。300はリアクトル部であり通常はデルタ結線さ
れ、サイリスタ301U〜301Wの点弧角の調整により電流の
大きさが調整される。リアクトル電流は通常基本波の他
に高調波を含んだ歪波形となる。
In FIG. 5, a voltage detector 70 detects the line voltage (e RS , e ST , e TR ) of the AC bus 6 to be compensated and guides it to the control circuit 350. 300 is a reactor part, which is usually delta-connected, and the magnitude of the current is adjusted by adjusting the firing angle of the thyristors 301U to 301W. The reactor current usually has a distorted waveform including harmonics in addition to the fundamental wave.

400は本発明を盛込んだ演算回路であり、電圧信号eRS,e
ST,eTRを入力し種々の演算を行い、リアクトル部300が
流すべき基本波電流を指示するための直流値の電流指令
▲I* U▼,▲I* V▼,▲I* W▼を出力する。
400 is an arithmetic circuit incorporating the present invention, the voltage signal e RS, e
Input ST and e TR , perform various calculations, and set the direct current value command ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼ for instructing the fundamental current that the reactor unit 300 should flow. Output.

500は点弧制御器であり電流指令値▲I* U▼,▲I
* V▼,▲I* W▼を受けて動作し、▲I* U▼,▲I* V▼,
▲I* W▼で指示された電流(基本波成分)をリアクトル
302U,302V,302Wが流すようサイリスタ301U,301V,301Wを
点弧制御する。
Reference numeral 500 denotes an ignition controller, which is a current command value ▲ I * U ▼, ▲ I
Operates in response to * V ▼, ▲ I * W ▼, ▲ I * U ▼, ▲ I * V ▼,
The current (fundamental wave component) indicated by ▲ I * W
The thyristors 301U, 301V, 301W are controlled so that 302U, 302V, 302W will flow.

演算回路400と点弧制御器500を合わせたものを制御回路
350と称しこの回路の詳細を第1図に示す。
The control circuit is a combination of the arithmetic circuit 400 and the ignition controller 500.
Referred to as 350, the details of this circuit are shown in FIG.

次に本発明の主要部を第1図,第2図により説明する。Next, the main part of the present invention will be described with reference to FIGS.

第1図において、第5図の交流母線電圧信号、eRS,eST,
eTRは、2相変換器403と2相信号発生器406に入力され
る。403の2相変換器では電圧信号eRS,eST,eTRを式
(1)の演算により2相電圧信号e1ds,e1qsに変換す
る。406の2相信号発生器はフェイズロックループ回路
で構成されており、電圧信号eRS,eST,eTRを入力し、そ
の出力として、第5図の第1相をR相、第2相をS相、
第3相をT相とすると、第1相と第2相の線間電圧eRS
に同期した単位正弦波信号▲e* 1d▼と、それより90゜
遅れた単位正弦波信号▲e* 1q▼を出力する。
In FIG. 1, the AC bus voltage signals of FIG. 5, e RS , e ST ,
The eTR is input to the two-phase converter 403 and the two-phase signal generator 406. In the two-phase converter 403, the voltage signals e RS , e ST , e TR are converted into two-phase voltage signals e 1ds , e 1qs by the calculation of the equation (1). The two-phase signal generator 406 is composed of a phase lock loop circuit, receives the voltage signals e RS , e ST , e TR, and outputs the first phase of FIG. 5 as the R phase and the second phase. S phase,
If the third phase is the T phase, the line voltage e RS of the first phase and the second phase
The unit sine wave signal ▲ e * 1d ▼ synchronized with and the unit sine wave signal ▲ e * 1q ▼ delayed by 90 ° are output.

▲e* 1d▼,▲e* 1q▼で表わせる。It can be expressed as ▲ e * 1d ▼, ▲ e * 1q ▼.

408は演算器であり、信号e1ds,e1qs及び▲e* 1d▼,▲
* 1q▼を入力し、式(3)により信号P1Pを演算する。
Reference numeral 408 denotes an arithmetic unit, which outputs signals e 1ds , e 1qs and ▲ e * 1d ▼, ▲
Input e * 1q and calculate the signal P 1P by the equation (3).

P1P=▲e* 1d▼・e1ds+▲e* 1q▼・e1qs ……(3) 系統電圧eRS,eST,eTRが正相分/逆相分を含む場合、P1P
は直流分と基本波の2倍で振動する交流分を含んだ脈流
となる。413は直流検出フィルタであり信号P1Pの直流成
分を信号P1PDとして出力する。即ち、P1PDは系統電圧e
RS,eST,eTRが含む正相基本波電圧を表わしている。
P 1P = ▲ e * 1d ▼ ・ e 1ds + ▲ e * 1q ▼ ・ e 1qs …… (3) When the system voltage e RS , e ST , e TR includes positive / negative phase component, P 1P
Is a pulsating flow containing a DC component and an AC component that oscillates at twice the fundamental wave. Reference numeral 413 is a DC detection filter, which outputs the DC component of the signal P 1P as a signal P 1PD . That is, P 1PD is the system voltage e
It represents the positive-phase fundamental wave voltage included in RS , e ST , and e TR .

410は演算器であり信号e1ds,e1qs及び▲e* 1d▼,▲e*
1q▼を入力し、式(4)により信号Q1N,P1Nを演算す
る。
410 is a computing unit, which is used for signals e 1ds , e 1qs and ▲ e * 1d ▼, ▲ e *
Input 1q and calculate the signals Q 1N and P 1N by the equation (4).

系統電圧eRS,eST,eTRに正相分/逆相分を含む場合、
P1N,Q1Nは脈動信号となり、この信号P1N,Q1Nを直流検出
フィルタ414,415に通し、それぞれ直流成分信号P1ND,Q
1NDを検出する。こうして得られたP1ND,Q1NDは系統の第
1相・第2相の線間電圧eRSが含む逆相電圧を、第1相
と第2相の線間電圧の正相基本波成分に同相の成分(P
1ND)とそれと90゜位相の異なる成分(Q1ND)に分解し
た時の各成分の電圧を表わしており、ここではP1NDを第
1相の同相逆相電圧信号、Q1NDを第1相の90゜逆相電圧
信号と呼ぶことにする。
When the system voltage e RS , e ST , e TR includes positive / negative phase component,
P 1N and Q 1N become pulsation signals, and these signals P 1N and Q 1N are passed through DC detection filters 414 and 415, respectively, and DC component signals P 1ND and Q 1
Detect 1ND . The P 1ND and Q 1ND obtained in this way are the reverse-phase voltage included in the line voltage e RS of the first and second phases of the system as the positive-phase fundamental wave component of the line voltage of the first and second phases. In-phase component (P
1ND ) and the voltage of each component when it is decomposed into 90 ° phase difference component (Q 1ND ), where P 1ND is the first phase in-phase negative phase voltage signal and Q 1ND is the first phase It is called a 90 ° anti-phase voltage signal.

420Aは分配器であり信号P1PD,P1ND,Q1NDを受けて演算を
行い、第5図のリアクトル部300が流す電流を指示する
ための電流指令値▲I* U▼,▲I* V▼,▲I* W▼を出力
する。分配器420Aの詳細を第2図に示す。
Reference numeral 420A denotes a distributor, which receives signals P 1PD , P 1ND , Q 1ND to perform calculation, and current command values ▲ I * U ▼, ▲ I * V for instructing the current flowing through the reactor unit 300 shown in FIG. Output ▼ and ▲ I * W ▼. The details of the distributor 420A are shown in FIG.

500は点弧制御器であり、電流指令値▲I* U▼,▲I* V
▼,▲I* W▼を受けて動作し、▲I* U▼,▲I* V▼,▲
* W▼で指示された電流(基本波成分)をリアクトル部
300が流すようサイリスタ301U,301V,301Wを点弧制御す
る。
500 is an ignition controller, which is a current command value ▲ I * U ▼, ▲ I * V
Operates in response to ▼, ▲ I * W ▼, ▲ I * U ▼, ▲ I * V ▼, ▲
The current (fundamental wave component) indicated by I * W
Ignition control of thyristors 301U, 301V, 301W so that 300 flows.

次に第2図により分配器420Aを説明する。第1図と第2
図の同一記号の信号は信号に合わせて接続される。第2
図において、421A,424Aは演算器であり、第1相の90゜
逆相電圧信号Q1NDと第1相の同相逆相電圧信号P1NDを入
力し、それぞれ式(5),(6)の演算を通して第2相
の90゜逆相電圧信号Q2ND,第2相の同相逆相電圧信号P
2ND,及び第3相の90゜逆相電圧信号Q3ND,第3相の同相
逆相電圧信号P3NDを出力する。
Next, the distributor 420A will be described with reference to FIG. Figure 1 and 2
Signals with the same symbols in the figure are connected according to the signals. Second
In the figure, 421A and 424A are arithmetic units, which input the first-phase 90 ° anti-phase voltage signal Q 1ND and the first-phase in-phase anti-phase voltage signal P 1ND , respectively, in equations (5) and (6). 2nd phase 90 ° negative phase voltage signal Q 2ND , 2nd phase common phase negative phase voltage signal P through calculation
2ND , third-phase 90 ° negative-phase voltage signal Q 3ND , and third-phase in-phase negative-phase voltage signal P 3ND are output.

ここで、P2ND,Q2NDは第2相と第3相の線間電圧eSTの逆
相成分を、第2相,第3相の線間電圧の正相基本波成分
に同相の成分とそれと90゜位相の異なる成分に分解した
時の同相成分電圧(P2ND),90゜位相の異なる電圧成分
(Q2ND)を表わしている。
Here, P 2ND and Q 2ND are the in-phase components of the line voltage e ST of the second and third phases and the in-phase component of the positive phase fundamental wave component of the line voltage of the second and third phases. It shows the in-phase component voltage (P 2ND ), when decomposed into 90 ° phase different components, and the 90 ° different phase voltage components (Q 2ND ).

同様に、P3ND,Q3NDは第3相と第1相の線間電圧eTRの逆
相成分を、第3相・第1相の線間電圧の正相基本波成分
に同相の成分とそれと90゜位相の異なる成分に分解した
時の同相成分電圧(P3ND),90゜位相の異なる電圧成分
(Q3ND)を表わしている。
Similarly, P 3ND and Q 3ND are the in-phase components of the third-phase and first-phase line voltage e TR and the in-phase component of the positive-phase fundamental wave component of the third-phase and first-phase line voltage, respectively. It shows the in-phase component voltage (P 3ND ) when decomposed into 90 ° phase different components, and the 90 ° different phase voltage components (Q 3ND ).

437は設定器であり第5図の交流母線6の維持されるべ
き電圧を指示するための電圧設定信号▲E* REF▼を出力
する。
Reference numeral 437 denotes a setter which outputs a voltage setting signal ▲ E * REF ▼ for instructing a voltage to be maintained on the AC bus 6 in FIG.

430Aは振分器であり、この中では交流母線電圧から検出
された正相基本波電圧信号P1PD,第1相、第2相、第3
相の90゜逆相電圧信号Q1ND,Q2ND,Q3NDと同相逆相電圧信
号P1ND,P2ND,P3ND及び電圧設定信号▲E* REF▼を入力
し、これらの信号に基づいて式(7)の演算を行い電圧
偏差信号ΔEU,ΔEV,ΔEWを出力する。
430A is a distributor, in which the positive phase fundamental wave voltage signal P 1PD detected from the AC bus voltage, the first phase, the second phase, the third phase
Input the 90 ° reverse phase voltage signal Q 1ND , Q 2ND , Q 3ND of the phase and the reverse phase voltage signal P 1ND , P 2ND , P 3ND of the same phase and the voltage setting signal ▲ E * REF ▼, and formula based on these signals. The calculation of (7) is performed and the voltage deviation signals ΔE U , ΔE V , and ΔE W are output.

451U,451V,451Wは比例・積分器等で構成された増幅器で
あり偏差ΔEU,ΔEV,ΔEWを増幅し、その結果を信号▲I
* U▼,▲I* V▼,▲I* W▼として出力する。ここで得ら
れた信号▲I* U▼,▲I* V▼,▲I* W▼はそれぞれ第5
図のリアクトル部300の第1相のリアクトル302Uの発生
すべき電流を指示するための第1相の電流指令▲I
* U▼,及び同様リアクトル302Vのための第2相の電流指
令▲I* V▼,及びリアクトル302Wのための第3相の電流
指令▲I* W▼である。ここで振分器430Aを構成するもの
として次の要素がある。即ち、431A,432A,433Aは係数器
であり入力信号 して出力する。434A,435A,436Aは加算器であり係数器43
1A,432A,433Aの出力を図示の極性で加算する。加算器43
4A,435A,436Aの出力は式(7)の第3項の演算に相当す
る。438Aは加算器であり設定信号▲E* REF▼と信号P1PD
を図示極性で演算する。即ち、加算器438Aの出力は式
(7)の第1項の演算に相当する。439A,440A,441Aは加
算器であり信号P1ND,P2ND,P3NDと加算器438Aの出力信号
及び係数器434A,435A,436Aの出力信号を図示の極性で加
算する。
451U, 451V, 451W are amplifiers composed of a proportional / integrator, etc., which amplify the deviations ΔE U , ΔE V , ΔE W , and output the result as a signal ▲ I
Output as * U ▼, ▲ I * V ▼, ▲ I * W ▼. The signals ▲ I * U ▼, ▲ I * V ▼, and ▲ I * W ▼ obtained here are the fifth signals respectively.
First-phase current command ▲ I for instructing the current to be generated by the first-phase reactor 302U of the reactor unit 300 in the figure
* U ▼, and similarly a second-phase current command ▲ I * V ▼ for the reactor 302V, and a third-phase current command ▲ I * W ▼ for the reactor 302W. Here, the following elements are included in the distributor 430A. That is, 431A, 432A, 433A are coefficient multipliers And output. 434A, 435A, 436A are adders and coefficient units 43
Add the outputs of 1A, 432A, and 433A with the polarities shown. Adder 43
The outputs of 4A, 435A, and 436A correspond to the calculation of the third term of the equation (7). 438A is an adder, which is a setting signal ▲ E * REF ▼ and signal P 1PD
Is calculated with the polarity shown. That is, the output of the adder 438A corresponds to the calculation of the first term of Expression (7). Reference numerals 439A, 440A and 441A denote adders which add the signals P 1ND , P 2ND and P 3ND , the output signal of the adder 438A and the output signals of the coefficient units 434A, 435A and 436A with the polarities shown.

以上の演算で得られた信号▲I* U▼,▲I* V▼,▲I* W
▼は直流量の信号となり、この信号の中には正相電圧に
関する情報及び逆相電圧に関する情報が全て含まれてい
る。従って、この▲I* U▼,▲I* V▼,▲I* W▼に基づ
いて第5図のリアクトル部300を制御することにより、
第5図の支線給電系統10,11の発生する正相無効電流と
母線インピーダンス3とに起因して生ずる母線6の電圧
変動、及び、給電系統10,11の発生する逆相電流と母線
インピーダンス3に起因して生ずる母線6の電圧の不平
衡を、自在に安定化,平衡化できる。
Signals obtained by the above calculation ▲ I * U ▼, ▲ I * V ▼, ▲ I * W
The black triangle represents a DC amount signal, and this signal includes all the information about the positive phase voltage and the information about the negative phase voltage. Therefore, by controlling the reactor unit 300 of FIG. 5 based on these ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼,
The voltage fluctuation of the bus bar 6 caused by the positive-phase reactive current and the bus line impedance 3 generated by the branch line power supply systems 10 and 11 and the anti-phase current and the bus line impedance 3 generated by the power supply systems 10 and 11 in FIG. It is possible to freely stabilize and balance the imbalance of the voltage of the bus bar 6 caused by the.

以上が本発明の代表的構成である。The above is a typical configuration of the present invention.

第5図において交流母線の電圧が信号eRS,eST,eTRとし
て検出されるが、この電圧は通常、正相分と逆相分を含
んだ不平衡電圧となっている。
In FIG. 5, the voltage of the AC bus is detected as signals e RS , e ST , e TR , but this voltage is usually an unbalanced voltage including a positive phase component and a negative phase component.

この電圧は、まず、2相発生器406に導入され式(2)
に基づく2相信号▲e* 1d▼,▲e* 1q▼が出力される。
ここで、2相発生器406は電圧信号eRS,eST,eTRの正相基
本波成分のみに応動するよう調整されており、従って、
2相信号▲e* 1d▼,▲e* 1q▼には電圧の正相基本波に
関する情報だけが含まれている。
This voltage is first introduced into the two-phase generator 406 and is given by equation (2).
Two-phase signals ▲ e * 1d ▼, ▲ e * 1q ▼ based on the above are output.
Here, the two-phase generator 406 is adjusted so as to respond only to the positive-phase fundamental wave component of the voltage signals e RS , e ST , and e TR .
The two-phase signals ▲ e * 1d ▼, ▲ e * 1q ▼ contain only information about the positive-phase fundamental wave of the voltage.

一方、電圧信号eRS,eST,eTRは2相変換器403に導入さ
れ、式(1)による変換が行われ、2相信号e1ds,e1qs
が得られる。次に演算器408の中で式(3)の演算を行
い信号P1Pを得て、これを直流検出フィルタ413に通して
直流成分の信号P1PDを取出す。こうして取出された信号
P1PDは系統電圧eRS,eST,eTRの中に含まれる正相基本波
電圧を表わしてる。一方、演算器410の中で式(4)の
演算を行い信号P1N,Q1Nを得て、これを直流検出フィル
タ417,418に通して直流成分の信号P1ND,Q1NDを取出す。
こうして得られた信号P1ND,Q1NDは、第1相・第2相の
線間電圧eRSが含む逆相電圧成分を、第1相と第2相の
線間電圧の正相基本波成分と同相の成分と、90゜位相の
異なる成分に分解した場合の、各成分の電圧、即ち、同
相電圧成分(P1ND)及び90゜位相の異なる電圧成分(Q
1ND)を表わしている。(P1ND:第1相の同相逆相電圧、
Q1ND:第1相の90゜逆相電圧と呼ぶことにする)。
On the other hand, the voltage signals e RS , e ST , e TR are introduced into the two-phase converter 403, converted by the equation (1), and the two-phase signals e 1ds , e 1qs
Is obtained. Next, the arithmetic operation of the equation (3) is performed in the arithmetic unit 408 to obtain the signal P 1P , which is passed through the DC detection filter 413 to take out the DC component signal P 1PD . The signal thus extracted
P 1PD represents the positive-phase fundamental wave voltage included in the system voltages e RS , e ST , and e TR . On the other hand, the arithmetic operation of the equation (4) is performed in the arithmetic unit 410 to obtain the signals P 1N and Q 1N , which are passed through the DC detection filters 417 and 418 to extract the DC component signals P 1ND and Q 1ND .
The signals P 1ND and Q 1ND obtained in this manner are the positive-phase fundamental wave components of the line voltages of the first phase and the second phase, which are the reverse-phase voltage components included in the line voltages e RS of the first and second phases. The voltage of each component when it is decomposed into the in-phase component and the 90 ° phase difference component, that is, the in-phase voltage component (P 1ND ), and the 90 ° phase difference voltage component (Q
1ND ). (P 1ND : In-phase and out-of-phase voltage of the first phase,
Q 1ND : It is called the 90 ° negative phase voltage of the first phase).

次に第2図の分配器420Aの中では演算器421A,424Aの中
で式(5),(6)の演算を行って、第2相の同相逆相
電圧P2ND,90゜位相電圧Q2ND,第3相の同相逆相電圧
P3ND,90゜逆相電圧Q3NDが得られる。
Next, in the distributor 420A of FIG. 2, the arithmetic operations of the equations (5) and (6) are performed in the arithmetic units 421A and 424A, and the in-phase negative phase voltage P 2ND of the second phase and the 90 ° phase voltage Q 2ND , in-phase and out-of-phase voltage of the third phase
P 3ND , 90 ° reverse phase voltage Q 3ND is obtained.

以上のようにして得られた信号P1PDは系統電圧eRS,eST,
eTRの中に含まれる正相基本波電圧だけに関係する信号
であり、さらに言えば正相基本波電圧と同相の成分だけ
に関係する信号である。なお、電圧の正相分に関する諸
量の演算、例えば式(3)等の変換では、どの相に基準
を合わせて演算を行っても全く同じ量が演算される。従
って正相分に関する演算は1つの相について行えばよ
い。
The signal P 1PD obtained as described above is the system voltage e RS , e ST ,
It is a signal related only to the positive-phase fundamental wave voltage contained in eTR , and more specifically, a signal related to only the component in phase with the positive-phase fundamental wave voltage. In the calculation of various quantities related to the positive phase of the voltage, for example, the conversion of the equation (3), the same quantity is calculated regardless of which phase the calculation is performed. Therefore, the calculation for the positive phase component may be performed for one phase.

また、信号P1ND,Q1ND及びP2ND,Q2ND及びP3ND,Q3NDに着
目すると、これらの信号は系統電圧eRS,eST,eTRの中に
含まれる逆相分電圧だけに関係する信号であり、さらに
言えばP1ND,Q1NDは電圧eRSの逆相分のみに、P2ND,Q2ND
はeSTの逆相分のみに、P3ND,Q3NDは電圧eTRの逆相分の
みに関係する信号であり、さらに詳しく言えばP1ND,Q
1NDを例にすると、P1NDは電圧eRSの逆相分の中の線間電
圧の正相基本波成分と同相の電圧成分であり、Q1NDは正
相基本波電圧と90゜位相のずれた電圧成分のみに関係す
る信号である。
Also, focusing on the signals P 1ND , Q 1ND and P 2ND , Q 2ND and P 3ND , Q 3ND , these signals are related only to the negative phase component voltage contained in the system voltages e RS , e ST , e TR. In addition, P 1ND , Q 1ND is a signal for P 2ND , Q 2ND only in the opposite phase of voltage e RS.
Is a signal related only to the anti-phase component of e ST , and P 3ND , Q 3ND is a signal related only to the anti-phase component of voltage e TR , and more specifically, P 1ND , Q
Taking 1ND as an example, P 1ND is the voltage component in phase with the positive-phase fundamental wave component of the line voltage in the negative-phase component of the voltage e RS , and Q 1ND is 90 ° out of phase with the positive-phase fundamental wave voltage. It is a signal related only to the voltage component.

以上、系統電圧eRS,eST,eTRのあらゆる情報が直流の信
号P1PD,P1ND,P2ND,P3ND,Q1ND,Q2ND,Q3NDの形で独立して
分離検出されていることが明らかであろう。
As mentioned above, all the information of the system voltages e RS , e ST , e TR are separately detected in the form of DC signals P 1PD , P 1ND , P 2ND , P 3ND , Q 1ND , Q 2ND , Q 3ND . It will be clear.

こうして得られた信号を第2図の振分器430Aの中で式
(7)に沿って演算し電圧偏差信号ΔEU,ΔEV,ΔEWを作
り、それを増幅すると▲I* U▼,▲I* V▼,▲I* W▼が
得られる。
The signal thus obtained is calculated along the equation (7) in the distributor 430A shown in FIG. 2 to generate voltage deviation signals ΔE U , ΔE V , ΔE W , which are amplified to obtain ▲ I * U ▼, ▲ I * V ▼ and ▲ I * W ▼ are obtained.

この電流指令▲I* U▼,▲I* V▼,▲I* W▼に基づいて
第5図のリアクトル電流を制御すると無効電力補償装置
100は次のように作動する。
If the reactor current of FIG. 5 is controlled based on the current commands ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼, the reactive power compensator
The 100 works as follows.

例えば、系統に逆相電流が流れて電圧の不平衡が発生す
ると、それが制御回路で検出され(第2図のP1ND,Q1ND,
P2ND,Q2ND,P3ND,Q3ND),それに基づいてリアクトル部3
00がこれを打消すような補償の逆相電流(負荷から系統
に注入された逆相電流と丁度位相が逆になるよう発生さ
れる)を発生するから、従って第5図のインピータンス
3の所には見かけ上逆相電流が流れなくなり逆相電流に
よる電圧の不平衡は除去される。なおこの補償作用は第
2図の制御回路が比例積分器からなる増幅器451U,451V,
451Wを含んでいるため、系統の逆相電圧が完全に零にな
るまで実行される。
For example, when a reverse-phase current flows in the system and voltage imbalance occurs, it is detected by the control circuit (P 1ND , Q 1ND ,
P 2ND , Q 2ND , P 3ND , Q 3ND ), based on which the reactor part 3
00 generates a compensating anti-phase current (which is generated so that the phase is exactly opposite to the anti-phase current injected from the load to the system) so as to cancel this, and therefore the impedance 3 of FIG. The reverse-phase current apparently does not flow there, and the voltage imbalance due to the reverse-phase current is eliminated. Note that this compensation function is achieved by the amplifiers 451U, 451V, whose control circuit in FIG.
Since it includes 451W, it is executed until the reverse phase voltage of the grid becomes completely zero.

次に、系統に無効電流が流れて系統の電圧が変化した場
合にはそれが制御回路で検出され(第2図の信号
P1PD)、それと電圧設定値▲E* REF▼の比較の結果に基
づいてリアクトル部300の電流が調整される。例えば系
統の電圧が低下した場合にはリアクトル電流が小さくな
り、従って第6図の説明からも分るように無効電流補償
装置100の発生する電流が進相的となり系統6の電圧が
引き上げられ(インダクタンスに進相電流を流すと電圧
が上がる)設定値に維持される。また電圧が上昇しよう
とした場合には無効電力補償装置100が遅れ電流を発生
し系統電圧引き下げるよう作用し、従って系統電圧は設
定値に維持されることとなる。
Next, when the reactive current flows through the system and the voltage of the system changes, it is detected by the control circuit (signal of FIG. 2).
P 1PD ), and the current of the reactor unit 300 is adjusted based on the result of comparison between it and the voltage setting value ▲ E * REF ▼. For example, when the voltage of the system drops, the reactor current becomes small. Therefore, as can be seen from the explanation of FIG. 6, the current generated by the reactive current compensating device 100 becomes a phase advance and the voltage of the system 6 is raised ( The voltage rises when a phase-advancing current is passed through the inductance). When the voltage is about to rise, the reactive power compensator 100 acts to generate a delay current and lower the system voltage, so that the system voltage is maintained at the set value.

以上の説明から明らかなように、本発明の無効電力補償
装置を備えた電力供給システムでは、負荷の無効電力変
動が原因して生ずる電圧変動が発生しようとしても、ま
た、逆相電流に起因する電圧不平衡が発生しようとして
も、それらが無効電力補償装置によって補償されるた
め、従って電圧変動が少なく電圧が平衡化された品質の
良い電力を供給できる。
As is apparent from the above description, in the power supply system including the reactive power compensating device of the present invention, even if the voltage fluctuation caused by the fluctuation of the reactive power of the load is about to occur, it is also caused by the negative phase current. Even if voltage imbalances are about to occur, they are compensated by the reactive power compensator, so that it is possible to supply high-quality power with a small voltage fluctuation and a balanced voltage.

以上が本発明の代表的な実施例である。The above is a typical embodiment of the present invention.

次に本発明の他の実施例を第3図により説明する。即
ち、第3図は前述した発明の第2図の分配器420Aの変形
例であり、第3図は第1図の分配器420Aの中に挿入され
使用される。従って、本変形例は前に説明した発明と重
複する部分が多多あり、重複する部分については説明を
省略する。第3図と第1図の同一記号カ所は記号に合わ
せて接続される。
Next, another embodiment of the present invention will be described with reference to FIG. That is, FIG. 3 is a modification of the distributor 420A of FIG. 2 of the above-described invention, and FIG. 3 is inserted and used in the distributor 420A of FIG. Therefore, this modified example has many parts that overlap with the invention described above, and a description of the parts that overlap will be omitted. The same symbols in FIGS. 3 and 1 are connected according to the symbols.

第3図において、421B,424Bは演算器であり、前記した
第1相の90゜逆相電圧信号Q1NDと第1相の同相逆相電流
信号P1NDを入力し、それぞれ式(8),(9)の演算を
通して第2相の同相逆相電圧信号P2ND,第3相の同相逆
相電圧信号P3NDを出力する。このP2ND,P3NDは前記説明
の式(5),(6)で得られた信号P2ND,P3NDと同じも
のである。
In FIG. 3, 421B and 424B are arithmetic units, which input the above-mentioned first-phase 90 ° negative-phase voltage signal Q 1ND and the first-phase in-phase negative-phase current signal P 1ND , respectively, and use equations (8), Through the calculation of (9), the second-phase in-phase and anti-phase voltage signal P 2ND and the third-phase in-phase and anti-phase voltage signal P 3ND are output. The P 2ND and P 3ND are the same as the signals P 2ND and P 3ND obtained by the equations (5) and (6) described above.

437は設定器であり、電圧設定信号▲E* REF▼を出力す
る。430Bは振分器であり、正相基本波電圧信号P1PD,第
1相、第2相、第3相の同相逆相電圧P1ND,P2ND,P3ND
び電圧設定信号▲E* REF▼を入力し、これらの信号に基
づいて式(10)の演算を行い電圧偏差信号ΔEU,ΔEV
EWを出力する。
Reference numeral 437 denotes a setting device that outputs a voltage setting signal ▲ E * REF ▼. 430B is a distributor, which is a positive-phase fundamental wave voltage signal P 1PD , first-phase, second-phase, and third-phase in-phase negative-phase voltages P 1ND , P 2ND , P 3ND, and a voltage setting signal ▲ E * REF ▼ Input, and calculate the equation (10) based on these signals. Voltage deviation signals ΔE U , ΔE V , Δ
Outputs E W.

451U,451V,451Wは比例・積分器等で構成された増幅器で
あり偏差ΔEU,ΔEV,ΔEWを増幅し、第1相、第2相、第
3相の電流指令▲I* U▼,▲I* V▼,▲I* W▼を出力す
る。ここで、446B,447B,448Bは係数器であり入力信号を
2倍して出力する。また438A,439B,440B,441Bは加算器
であり図示の信号を図示の極性で加算する。
451U, 451V, 451W are amplifiers composed of a proportional / integrator, etc., which amplify the deviations ΔE U , ΔE V , ΔE W, and current commands ▲ I * U ▼ for the first phase, the second phase, and the third phase. , ▲ I * V ▼, ▲ I * W ▼ are output. Here, 446B, 447B and 448B are coefficient multipliers that double the input signal and output it. Reference numerals 438A, 439B, 440B, and 441B are adders that add the illustrated signals with the illustrated polarities.

電流指令▲I* U▼,▲I* V▼,▲I* W▼は前述した図2
で得られる電流指令値と全く同一のものであり、従って
この▲I* U▼,▲I* V▼,▲I* W▼に基づいて第5図の
リアクトル部300の電流を制御すると、前述した第1
図、第2図による発明と全く同じ補償効果が得られる。
The current commands ▲ I * U ▼, ▲ I * V ▼, and ▲ I * W ▼ are shown in FIG.
It is exactly the same as the current command value obtained in step 1. Therefore, if the current of the reactor part 300 in FIG. 5 is controlled based on these ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼, Done first
The same compensation effect as the invention according to FIGS. 2 and 3 can be obtained.

以上、本実施例では第3図の演算器421B,424Bの演算が
第2図の演算器421A,424Aより簡略化できる。
As described above, in this embodiment, the arithmetic operations of the arithmetic units 421B and 424B in FIG. 3 can be simplified as compared with the arithmetic units 421A and 424A in FIG.

次に本発明のもう1つの実施例を第4図により説明す
る。本実施例もやはり前述した発明の第2図の変形例に
関するものであり、第4図は第1図の分配器420Aに挿入
され使用される。従って前述した発明と重複する部分は
その説明を省略する。
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment also relates to the modification of the above-mentioned invention shown in FIG. 2, and FIG. 4 is used by being inserted into the distributor 420A shown in FIG. Therefore, the description of the same parts as those of the above-mentioned invention will be omitted.

第4図において、421C,424Cは演算器であり、前記した
第1相の90゜逆相電圧信号Q1NDと第1相の同相逆相電圧
信号P1NDを入力し、それぞれ式(11),(12)の演算を
通して第2相の90゜逆相電圧信号Q2ND,第3相の90゜逆
相電圧信号Q3NDを出力する。このQ2ND,Q3NDは前記説明
の式(5),(6)で得られた信号Q2ND,Q3NDと同じも
のである。
In FIG. 4, reference numerals 421C and 424C are arithmetic units, which input the above-mentioned first-phase 90 ° negative-phase voltage signal Q 1ND and the first-phase in-phase negative-phase voltage signal P 1ND , respectively, and use equations (11), Through the calculation of (12), the 90 ° negative phase voltage signal Q 2ND of the second phase and the 90 ° negative phase voltage signal Q 3ND of the third phase are output. These Q 2ND and Q 3ND are the same as the signals Q 2ND and Q 3ND obtained by the equations (5) and (6) described above.

437は設定器であり、電圧設定信号▲E* REF▼を出力す
る。430Cは振分器であり、正相基本波電圧信号P1PD,第
1相、第2相、第3相の90゜逆相電圧信号Q1ND,Q2ND,Q
3ND及び電圧設定信号▲E* REF▼を入力し、これらの信
号に基づいて式(13)の演算を行い、電圧偏差信号Δ
EU,ΔEV,ΔEWを出力する。
Reference numeral 437 denotes a setting device that outputs a voltage setting signal ▲ E * REF ▼. 430C is a distributor, which is a positive-phase fundamental wave voltage signal P 1PD , first-phase, second-phase, and third-phase 90 ° negative-phase voltage signals Q 1ND , Q 2ND , Q
Input 3ND and voltage setting signal ▲ E * REF ▼, calculate equation (13) based on these signals, and input voltage deviation signal Δ
Outputs E U , ΔE V , and ΔE W.

451U,451V,451Wは比例・積分器等で構成された増幅器で
あり偏差ΔEU,ΔEV,ΔEWを増幅し、第1相、第2相、第
3相の電流指令▲I* U▼,▲I* V▼,▲I* W▼を出力す
る。ここで、431A,432A,433Aは係数器であり入力信号を して出力する。446B,447B,448Bも係数器であり入力信号
を2倍して出力する。
451U, 451V, 451W are amplifiers composed of a proportional / integrator, etc., which amplify the deviations ΔE U , ΔE V , ΔE W, and current commands ▲ I * U ▼ for the first phase, the second phase, and the third phase. , ▲ I * V ▼, ▲ I * W ▼ are output. Here, 431A, 432A, 433A are coefficient multipliers, And output. The 446B, 447B, and 448B are also coefficient units, which double the input signal and output it.

また、438A,439B,440B441B,434A,435A,436Aは加算器で
あり図示の信号を図示の極性で加算する。
Further, 438A, 439B, 440B441B, 434A, 435A, 436A are adders, which add the illustrated signals with the illustrated polarities.

電流指令▲I* U▼,▲I* V▼,▲I* W▼は前述の図2で
得た電流指令値と全く同一のものであり、従ってこの▲
* U▼,▲I* V▼,▲I* W▼に基づいて第5図のリアク
トル部300の電流を制御すると、前述した第1図、第2
図による発明と全く同じ補償効果が得られる。
The current commands ▲ I * U ▼, ▲ I * V ▼, ▲ I * W ▼ are exactly the same as the current command values obtained in FIG.
If the current of the reactor part 300 of FIG. 5 is controlled based on I * U ▼, ▲ I * V ▼, and ▲ I * W ▼, the above-mentioned FIG. 1 and FIG.
The same compensation effect as the invention according to the figure can be obtained.

以上、本実施例では第4図の演算器421C,424Cの演算が
第2図の演算器421A,424Aより簡略化できる。
As described above, in the present embodiment, the arithmetic operations of the arithmetic units 421C and 424C in FIG. 4 can be simplified as compared with the arithmetic units 421A and 424A in FIG.

[発明の効果] 以上の説明から明らかなように、本発明の無効電力補償
装置では次のような効果が得られる。
[Effects of the Invention] As is clear from the above description, the reactive power compensator of the present invention has the following effects.

即ち、 (1)交流電源系統に変動負荷や不平衡負荷が接続され
ると、交流母線の電圧変動及び電圧の不平衡が問題にな
るが、本発明ではこれらの変動を正相分によるものか逆
相分によるものかを明確に分離検出できることから、無
効電力補償装置の補償対象が何であるか明確になり、従
って、系統の電圧変動だけに着目した制御(電圧変動制
御)、系統の不平衡電圧だけに着目した制御(電圧平衡
化制御)、及び両者に着目した制御等々の制御が自在に
構成でき、従来のものに比しより高度な電圧補償制御が
簡単に実現できる。
That is, (1) When a fluctuating load or an unbalanced load is connected to the AC power supply system, voltage fluctuations and voltage imbalances on the AC bus become a problem. In the present invention, these fluctuations are due to the positive phase component. Since it is possible to clearly detect whether it is due to the negative phase component, it becomes clear what the reactive power compensator is to compensate for. Therefore, control focusing only on the voltage fluctuation of the system (voltage fluctuation control), unbalance of the system The control focusing only on the voltage (voltage balancing control), the control focusing on both of them, and the like can be freely configured, and more sophisticated voltage compensation control can be easily realized as compared with the conventional control.

(2)系統電圧の正相分・逆相分を直流信号の形で連続
的に検出でき、従って制御に不連続性が入り込まないこ
とから安定な制御が実現できる。
(2) The positive-phase component and the negative-phase component of the system voltage can be continuously detected in the form of a DC signal, and therefore discontinuity does not enter the control, so that stable control can be realized.

(3)また、制御回路においては電圧の正相分・逆相分
を検出する場合、信号処理手段として係数器、加算器、
乗算器等々の簡単な素子を用い、単純な演算を行って所
用の信号を得るだけであり、検出信号にあいまいさが入
り込まず、正確で高精度の信号(正相分,逆相分に関す
る)を得ることができる。また回路が簡単なため、コス
トも安くなる。
(3) Further, in the control circuit, when detecting a positive phase component / a negative phase component of the voltage, a coefficient unit, an adder, a signal processing unit,
Accurate and high-precision signals (regarding positive-phase components and negative-phase components) without any ambiguity in the detection signals, because simple signals such as multipliers are used for simple calculation to obtain the desired signal. Can be obtained. Moreover, the cost is low because the circuit is simple.

以上述べたように本発明の無効電力補償装置では、従来
の制御には無い、“正相分と逆相分を分離検出しそれに
基づいて補償制御を行う”という全く新しい制御概念が
取入れられているため、よって今後の複雑・高度化する
無効電力補償制御への要求にも充分、答えることができ
る。
As described above, the reactive power compensator of the present invention incorporates a completely new control concept that "the positive phase component and the negative phase component are separately detected and the compensation control is performed based on them" which is not in the conventional control. Therefore, the demand for reactive power compensation control, which will become more complex and sophisticated in the future, can be sufficiently satisfied.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図乃
至第4図は本発明のそれぞれ異る他の実施例を示すブロ
ック図、第5図は、本発明が適用される無効電力補償装
置の主回路図、第6図は無効電力補償装置の動作説明
図、第7図は従来の無効電力補償装置に採用されている
電圧制御回路のブロック図である。 1……幹線の交流電源系統、3……系統インピーダン
ス、10、11……支線の交流電源系統、100……無効電力
補償装置、200……進相コンデンサ、300……リアクトル
部、350……制御回路、400……演算回路、500……点弧
制御回路、403……2相変換器、408,410……演算器、40
6……2相発生器、413〜415……直流検出フィルタ、420
A……分配器、500……点弧制御器、421A,424A,421B,424
B,421C,424C……演算器、430A,430B,430C……振分器、4
37……設定器、431A〜433A,446B〜448B……係数器、434
A〜436A,438A〜441A,439B〜441B……加算器,451U,451V,
451W……増幅器。
1 is a block diagram showing an embodiment of the present invention, FIGS. 2 to 4 are block diagrams showing other embodiments of the present invention, and FIG. 5 is an invalidity to which the present invention is applied. FIG. 6 is a main circuit diagram of the power compensator, FIG. 6 is an operation explanatory diagram of the reactive power compensator, and FIG. 7 is a block diagram of a voltage control circuit adopted in a conventional reactive power compensator. 1 ... Main line AC power supply system, 3 ... System impedance, 10, 11 ... Branch AC power supply system, 100 ... Reactive power compensator, 200 ... Advancing capacitor, 300 ... Reactor section, 350 ... Control circuit, 400 ... Operation circuit, 500 ... Firing control circuit, 403 ... Two-phase converter, 408, 410 ... Operation unit, 40
6 …… 2-phase generator, 413 ~ 415 …… DC detection filter, 420
A …… Distributor, 500 …… Ignition controller, 421A, 424A, 421B, 424
B, 421C, 424C …… Calculator, 430A, 430B, 430C …… Distributor, 4
37: Setting device, 431A to 433A, 446B to 448B: Coefficient device, 434
A ~ 436A, 438A ~ 441A, 439B ~ 441B ... Adder, 451U, 451V,
451W …… Amplifier.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−60012(JP,A) 特開 昭62−60013(JP,A) 特開 昭62−60014(JP,A) 特開 昭62−60015(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 6260012 (JP, A) JP 6260013 (JP, A) JP 6260014 (JP, A) JP 62- 60015 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】N相多相交流電源の不平衡電圧及び電圧変
動を補償する無効電力補償装置において、 N相交流電源の第1相の電圧に同期した単位正弦波信号
e1d とそれより90度位相が遅れた単位正弦波信号e1q
を得る手段と、 N相交流電源の各線間電圧e1S,e2S…eNSを検出し、前記
第1相の電圧e1Sに合わせてd軸をとりそれより90度位
相が遅れた方向にq軸をとり、前記各々の線間電圧e1S,
e2S…eNSを前記d軸に投影し合成して信号e1dsを得、前
記各々の線間電圧e1S,e2S…eNSを前記q軸に投影し合成
して信号e1qsを得る手段、即ちN相交流電源が三相の場
合を例にすると各線間電圧e1S,e2S,e3Sを検出しこの検
出信号を用いて の演算値e1ds,e1qsを得る手段と、 前記信号e1d ,e1q とe1ds,e1qsを用いて P1P=e1d ・e1ds+e1q ・e1qs P1N=e1d ・e1ds−e1q ・e1qs Q1N=e1d ・e1qs+e1q ・e1ds の演算値P1P,P1N,Q1Nを得る手段と、 前記信号P1Pの直流成分、即ち前記N相交流電源の各線
間電圧e1S,e2S…eNSが含む正相基本波電圧を表す信号P
1PDを得る手段と、 前記信号P1N,Q1Nの直流成分、即ち前記N相交流電源の
第1相の線間電圧e1Sの含む逆相電圧を前記第1相の線
間電圧e1Sの正相基本波成分と同相の成分に分解した信
号P1NDと、それと90度位相の異なる成分に分解した信号
Q1NDを得る手段と、 維持すべき電源系統の電圧値を指示するための電圧設定
信号EREF を設定する手段、並びに、EREF ,P1PD,
P1ND,Q1NDを入力信号として演算を行い電圧偏差信号を
作成する手段と、および該信号を増幅しN相の電流指令
を作成する手段とを備え、 該手段により得られた電流指令に基づいて前記無効電力
補償装置を制御することを特徴とする無効電力補償装
置。
1. A unit sine wave signal synchronized with a first phase voltage of an N-phase AC power supply in a reactive power compensator for compensating an unbalanced voltage and a voltage fluctuation of an N-phase multi-phase AC power supply.
e 1d * and unit sine wave signal e 1q * with a 90 degree phase delay
And a line voltage of the N-phase AC power supply, e 1S , e 2S ... e NS are detected, the d axis is taken in accordance with the first phase voltage e 1S, and the phase is delayed by 90 degrees. Taking the q-axis, each of the line voltages e 1S ,
Signals e 1ds are obtained by projecting and combining e 2S ... e NS on the d-axis, and projecting and combining the respective line voltages e 1S , e 2S ... e NS on the q-axis to obtain a signal e 1qs . In the case of the means, that is, the case where the N-phase AC power supply has three phases, the line voltages e 1S , e 2S , e 3S are detected and the detected signals are used. P 1P = e 1d *・ e 1ds + e 1q *・ e 1qs P 1N = e using the means for obtaining the calculated values e 1ds , e 1qs of E 1d * , e 1q * and e 1ds , e 1qs 1d *・ e 1ds −e 1q *・ e 1qs Q 1N = e 1d *・ e 1qs + e 1q *・ e 1ds means for obtaining the calculated values P 1P , P 1N , Q 1N and the DC component of the signal P 1P , that is, the N-phase AC power supply line voltages e 1S of the signal representative of the positive-phase fundamental voltages included in the e 2S ... e NS P
Means for obtaining 1PD , and a direct-current component of the signals P 1N , Q 1N , that is, a reverse-phase voltage including the first-phase line voltage e 1S of the N-phase AC power supply, of the first-phase line voltage e 1S Signal P 1ND decomposed into the in-phase component and the in-phase fundamental wave component, and the signal decomposed into components with a 90 degree phase difference from it
Means for obtaining Q 1ND , means for setting a voltage setting signal E REF * for indicating the voltage value of the power supply system to be maintained, and E REF * , P 1PD ,
P 1ND , Q 1ND are used as input signals to perform a calculation to create a voltage deviation signal, and means for amplifying the signal to create an N-phase current command, based on the current command obtained by the means. Controlling the reactive power compensator.
【請求項2】前記電流指令を作成する手段が、 無効電力補償装置の作用で維持すべき電源系統の電圧値
を指示するための系統電圧設定信号EREF を設定する手
段と、 前記信号P1ND,Q1NDに基づいて の演算を行い、前記N相交流電源の第2相の線間電圧e
2Sの含む逆相電圧を前記第2相の線間電圧e2Sの正相基
本波成分と同相の成分に分解した信号P2NDとそれと90度
位相の異なる成分に分解した信号Q2NDと、 前記N相交流電源の第3相の線間電圧e3Sの含む逆相電
圧を前記第3相の線間電圧e3Sの正相基本波成分と同相
の成分に分解した信号P3NDとそれと90度位相の異なる成
分に分解した信号Q3NDを得る手段と、 前記信号EREF ,P1PD,Q1ND,Q2ND,Q3ND,P1ND,P2ND,P3ND
に基づいて の演算をし、前記電圧設定信号EREF と前記N相交流電
源の第1相の線間電圧e1Sとの偏差である信号ΔEUと、 前記電圧設定信号EREF と前記N相交流電源の第2相の
線間電圧e2Sとの偏差である信号ΔEVと、 前記電圧設定信号EREF と前記N相交流電源の第3相の
線間電圧e3Sとの偏差である信号ΔEWとを作成する手段
と、 前記信号ΔEU,ΔEV,ΔEWを増幅し、 N相交流電源の第1相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IU と、 N相交流電源の第2相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IV と、 N相交流電源の第3相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IW を作
成する手段とから成ることを特徴とする特許請求の範囲
第1項記載の無効電力補償装置。
2. A means for generating the current command, means for setting a system voltage setting signal E REF * for indicating a voltage value of a power supply system to be maintained by the action of the reactive power compensator, and the signal P. Based on 1ND , Q 1ND And the line voltage e of the second phase of the N-phase AC power supply is calculated.
And a signal Q 2ND reverse phase voltage decomposed into different components of the positive phase fundamental wave component and the signal decomposed into components in-phase P 2ND and therewith 90 degree phase of the second phase line voltage e 2S, including the 2S, said A signal P 3ND obtained by decomposing the negative phase voltage included in the third-phase line voltage e 3S of the N-phase AC power supply into a component in phase with the positive-phase fundamental wave component of the third-phase line voltage e 3S , and 90 ° with it Means for obtaining a signal Q 3ND decomposed into components having different phases, and the signals E REF * , P 1PD , Q 1ND , Q 2ND , Q 3ND , P 1ND , P 2ND , P 3ND
On the basis of And the signal ΔE U which is the deviation between the voltage setting signal E REF * and the first-phase line voltage e 1S of the N-phase AC power supply, the voltage setting signal E REF * and the N-phase AC a signal Delta] E V is the difference between the line voltage e 2S of the second phase of the power supply, the voltage setting signal E REF * and the deviation in a signal of the line voltage e 3S of the third phase of the N-phase AC power supply Means for creating ΔE W, and a current that amplifies the signals ΔE U , ΔE V , and ΔE W and indicates a current to be generated by the power unit of the reactive power compensator corresponding to the first phase of the N-phase AC power supply. The command signal I U * , the current command signal I V * for instructing the current to be generated by the power section of the reactive power compensator corresponding to the second phase of the N-phase AC power supply, and the third phase of the N-phase AC power supply A means for producing a current command signal I W * for instructing a current to be generated by the power section of the corresponding reactive power compensator. 2. A reactive power compensator according to claim 1.
【請求項3】前記電流指令を作成する手段が、 無効電力補償装置の作用で維持すべき電源系統の電圧値
を指示するための系統電圧設定信号EREF を設定する手
段と、 前記信号P1ND,Q1NDに基づいて の演算を行い、前記N相交流電源の第2相の線間電圧e
2Sの含む逆相電圧を前記第2相の線間電圧e2Sの正相基
本波成分と同相の成分に分解した信号P2NDと、 前記N相交流電源の第3相の線間電圧e3Sの含む逆相電
圧を前記第3相の線間電圧e3Sの正相基本波成分と同相
の成分に分解した信号P3NDを得る手段と、 前記信号EREF ,P1PD,P1ND,P2ND,P3NDに基づいて ΔEU=−EREF +P1PD+2P1ND ΔEV=−EREF +P1PD+2P2ND ΔEW=−EREF +P1PD+2P3ND の演算をし、前記電圧設定信号EREF と前記N相交流電
源の第1相の線間電圧e1Sとの偏差である信号ΔEUと、 前記電圧設定信号EREF と前記N相交流電源の第2相の
線間電圧e2Sとの偏差である信号ΔEVと、 前記電圧設定信号EREF と前記N相交流電源の第3相の
線間電圧e3Sとの偏差である信号ΔEWとを作成する手段
と、 前記信号ΔEU,ΔEV,ΔEWを増幅し、 N相交流電源の第1相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IU と、 N相交流電源の第2相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IV と、 N相交流電源の第3相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IW を作
成する手段とから成ることを特徴とする特許請求の範囲
第1項記載の無効電力補償装置。
3. A means for generating the current command, means for setting a system voltage setting signal E REF * for indicating the voltage value of the power system to be maintained by the action of the reactive power compensator, and the signal P Based on 1ND , Q 1ND And the line voltage e of the second phase of the N-phase AC power supply is calculated.
A signal P 2ND of the reverse-phase voltage is decomposed into positive phase fundamental wave component and a phase component of the line voltage e 2S of the second phase containing the 2S, line voltage of the third phase of the N-phase AC power source e 3S Means for obtaining a signal P 3ND by decomposing the negative-phase voltage included in the signal into a component in phase with the positive-phase fundamental wave component of the line voltage e 3S of the third phase, and the signal E REF * , P 1PD , P 1ND , P Based on 2ND and P 3ND , ΔE U = -E REF * + P 1PD + 2P 1ND ΔE V = -E REF * + P 1PD + 2P 2ND ΔE W = -E REF * + P 1PD + 2P 3ND and calculate the voltage setting signal E REF * and the signal Delta] E U is a deviation between the line voltage e 1S N-phase alternating current first phase of the power supply, the voltage setting signal E REF * and the line voltage of the N-phase AC second phase of the power source e Means for generating a signal ΔE V which is a deviation from 2S, and a signal ΔE W which is a deviation between the voltage setting signal E REF * and the line voltage e 3S of the third phase of the N-phase AC power supply; Amplifies the signals ΔE U , ΔE V , ΔE W , A current command signal I U * instructing a current to be generated by the power section of the reactive power compensator corresponding to the first phase of the N-phase AC power supply, and a reactive power compensator corresponding to the second phase of the N-phase AC power supply Current command signal I V * for instructing the current to be generated by the power section of the power supply and the current command signal I W for instructing the current to be generated by the power section of the reactive power compensator corresponding to the third phase of the N-phase AC power supply The reactive power compensator according to claim 1, further comprising means for creating * .
【請求項4】前記電流指令を作成する手段が、 無効電力補償装置の作用で維持すべき電源系統の電圧値
を指示するための系統電圧設定信号EREF を設定する手
段と、 前記信号P1ND,Q1NDに基づいて の演算を行い、前記N相交流電源の第2相の線間電圧e
2Sの含む逆相電圧を前記第2相の線間電圧e2Sの正相基
本波成分と90度位相の異なる成分に分解した信号Q
2NDと、 前記N相交流電源の第3相の線間電圧e3Sの含む逆相電
圧を前記第3相の線間電圧e3Sの正相基本波成分と90度
位相の異なる成分に分解した信号Q3NDを得る手段と、 前記信号EREF ,P1PD,Q1ND,Q2ND,Q3NDに基づいて の演算をし、前記電圧設定信号EREF と前記N相交流電
源の第1相の線間電圧e1Sとの偏差である信号ΔEUと、 前記電圧設定信号EREF と前記N相交流電源の第2相の
線間電圧e2Sとの偏差である信号ΔEVと、 前記電圧設定信号EREF と前記N相交流電源の第3相の
線間電圧e3Sとの偏差である信号ΔEWとを作成する手段
と、 前記信号ΔEU,ΔEV,ΔEWを増幅し、 N相交流電源の第1相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IU と、 N相交流電源の第2相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IV と、 N相交流電源の第3相に対応する無効電力補償装置の電
力部が発生すべき電流を指示する電流指令信号IW を作
成する手段とから成ることを特徴とする特許請求の範囲
第1項記載の無効電力補償装置。
4. A means for generating the current command, a means for setting a system voltage setting signal E REF * for instructing a voltage value of a power system to be maintained by the action of the reactive power compensator, and the signal P. Based on 1ND , Q 1ND And the line voltage e of the second phase of the N-phase AC power supply is calculated.
Signal Q obtained by decomposing the inverse phase voltages including the 2S to different components of the positive phase fundamental wave component and a 90-degree phase of the line voltage e 2S of the second phase
2ND, and a negative phase voltage included in the third-phase line voltage e 3S of the N-phase AC power supply is decomposed into a positive phase fundamental wave component of the third phase line voltage e 3S and a component having a phase difference of 90 degrees. Means for obtaining a signal Q 3ND , based on said signals E REF * , P 1PD , Q 1ND , Q 2ND , Q 3ND And the signal ΔE U which is the deviation between the voltage setting signal E REF * and the first-phase line voltage e 1S of the N-phase AC power supply, the voltage setting signal E REF * and the N-phase AC a signal Delta] E V is the difference between the line voltage e 2S of the second phase of the power supply, the voltage setting signal E REF * and the deviation in a signal of the line voltage e 3S of the third phase of the N-phase AC power supply Means for creating ΔE W, and a current that amplifies the signals ΔE U , ΔE V , and ΔE W and indicates a current to be generated by the power unit of the reactive power compensator corresponding to the first phase of the N-phase AC power supply. The command signal I U * , the current command signal I V * for instructing the current to be generated by the power section of the reactive power compensator corresponding to the second phase of the N-phase AC power supply, and the third phase of the N-phase AC power supply A means for producing a current command signal I W * for instructing a current to be generated by the power section of the corresponding reactive power compensator. 2. A reactive power compensator according to claim 1.
JP61212553A 1986-09-11 1986-09-11 Reactive power compensator Expired - Lifetime JPH0789714B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61212553A JPH0789714B2 (en) 1986-09-11 1986-09-11 Reactive power compensator
US07/091,666 US4755738A (en) 1986-09-11 1987-09-01 Reactive power compensation apparatus
EP87112991A EP0259805B1 (en) 1986-09-11 1987-09-04 Reactive power compensation apparatus
DE8787112991T DE3777026D1 (en) 1986-09-11 1987-09-04 BLIND POWER COMPENSATOR.
CA000546293A CA1300223C (en) 1986-09-11 1987-09-08 Reactive power compensation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212553A JPH0789714B2 (en) 1986-09-11 1986-09-11 Reactive power compensator

Publications (2)

Publication Number Publication Date
JPS6369432A JPS6369432A (en) 1988-03-29
JPH0789714B2 true JPH0789714B2 (en) 1995-09-27

Family

ID=16624591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212553A Expired - Lifetime JPH0789714B2 (en) 1986-09-11 1986-09-11 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0789714B2 (en)

Also Published As

Publication number Publication date
JPS6369432A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
US4698581A (en) Reactive power compensation apparatus
US8560136B2 (en) System stabilizing device
US4755738A (en) Reactive power compensation apparatus
US5065304A (en) Controller for AC power converter
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JPH09233701A (en) Active filter control device
JP2708648B2 (en) Parallel operation control device
JPH0789714B2 (en) Reactive power compensator
JPH0789715B2 (en) Reactive power compensator
JPH0625951B2 (en) Reactive power compensator
KR20210047622A (en) SYSTEM PHASE DETECTING METHOD and GRID CONNECTED CONVERTER
JP3793788B2 (en) Constant voltage control method for induction generator
JP2674402B2 (en) Parallel operation control device for AC output converter
JP3343711B2 (en) Static var compensator
JP3104492B2 (en) Power harmonic / reactive power compensator
JPH0682494A (en) Current detection device
JPH0625949B2 (en) Reactive power compensator
JP3322983B2 (en) Fault current suppression device
JP2575682B2 (en) Reactive power compensator
JPH03135389A (en) Method and device for controlling voltage type inverter
JPH0767255A (en) Control circuit of reactive power compensator
JP3321248B2 (en) Fault current suppression device
JP3249307B2 (en) NPC inverter
JPH0748949B2 (en) Circulating current type triangular connection cycloconverter control method
JPH0625950B2 (en) Reactive power compensator