[go: up one dir, main page]

JPH0787990B2 - Submerged arc welding method for high strength Cr-Mo steel - Google Patents

Submerged arc welding method for high strength Cr-Mo steel

Info

Publication number
JPH0787990B2
JPH0787990B2 JP117289A JP117289A JPH0787990B2 JP H0787990 B2 JPH0787990 B2 JP H0787990B2 JP 117289 A JP117289 A JP 117289A JP 117289 A JP117289 A JP 117289A JP H0787990 B2 JPH0787990 B2 JP H0787990B2
Authority
JP
Japan
Prior art keywords
less
welding
strength
weld metal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP117289A
Other languages
Japanese (ja)
Other versions
JPH02182378A (en
Inventor
晃央 山浦
順治 立石
隼也 松山
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP117289A priority Critical patent/JPH0787990B2/en
Publication of JPH02182378A publication Critical patent/JPH02182378A/en
Publication of JPH0787990B2 publication Critical patent/JPH0787990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高温、高圧の圧力容器に用いられる高強度
Cr−Mo鋼のサブマージアーク溶接施工法に関し、とくに
耐水素割れ性をはじめとして、クリープ強度、じん性お
よび耐使用中ぜい化特性に優れた溶接金属を得ようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a high-strength, high-strength pressure vessel used for
The present invention relates to a submerged arc welding method for Cr-Mo steel, and particularly to obtain a weld metal excellent in creep strength, toughness, and resistance to embrittlement during use, including hydrogen cracking resistance.

(従来の技術) 近年、石油精製の分野において、従来の操業条件をより
高めて効率を上げたり、プラントを軽量化して建設コス
トを低減しようとする動きが高まっていて、そのため用
いられる材料も従来より一層高強度化される傾向にあ
る。特に重質油分解装置や脱硫装置に用いられるCr−Mo
鋼については、従来鋼に比較してより過酷な条件に耐え
得る、すなわち高強度のみならず優れクリープ強度およ
び耐水素アタック性をそなえた改良鋼(例えば特開昭61
−223163号公報)が開発されている。
(Prior Art) In recent years, in the field of oil refining, there has been an increasing trend to further improve the conventional operating conditions to increase the efficiency, and to reduce the weight of the plant to reduce the construction cost. The strength tends to be further increased. Cr-Mo used in heavy oil crackers and desulfurizers
As for steel, an improved steel capable of withstanding more severe conditions than conventional steels, that is, not only high strength but also excellent creep strength and hydrogen attack resistance (for example, JP-A-61
-223163) has been developed.

ところでかような用途に用いられるCr−Mo鋼板を溶接す
る際には、鋼板の板厚が300mm程度にも達する場合もあ
り、おもに狭開先のサブマージアーク溶接法やガスシー
ルドアーク溶接法が用いられてきたが、上記したような
新しく開発された高強度Cr−Mo鋼を溶接するための溶接
材料で鋼板と同等の特性を有するものは未だ開発されて
いないのが現状である。
By the way, when welding Cr-Mo steel plates used for such applications, the plate thickness of the steel plates may reach up to about 300 mm, and the narrow merged submerged arc welding method and gas shield arc welding method are mainly used. However, the present situation is that the welding material for welding the newly developed high-strength Cr—Mo steel having the same characteristics as the steel sheet has not yet been developed.

このような溶接金属に要求される特性としては、強度面
においては、母材と同等のクリープ破断強度を有し、か
つ常温での引張強さが母材と同レベルの引張強さとはな
ること、すなわち極端なオーバーマッチ継手とならない
こと、一方じん性面においては、溶接後熱処理(PWHT)
後のじん性およびぜい化処理(ステップクリーニング処
理)後のじん性が良好であり、しかもステップクリーニ
ング後のじん性値とPWHTままのじん性値との差、いわゆ
るぜい化量が小さいこと、さらには高温高圧水素環境下
で長時間暴露した後のじん性ぜい化量が小さいこと等が
あげられる。
In terms of strength, the weld metal must have the same creep rupture strength as the base metal, and the tensile strength at room temperature should be the same level as the base metal. That is, it does not result in an extreme overmatched joint. On the other hand, in toughness, heat treatment after welding (PWHT)
Good toughness after and after toughening treatment (step cleaning treatment), and small difference between toughness value after step cleaning and toughness value as PWHT, so-called embrittlement amount Furthermore, the amount of toughness embrittlement after exposure for a long time in a high temperature and high pressure hydrogen environment is small.

さらに脱硫リアクター等では、高温、高水素分圧下で重
油中の硫黄分をH2Sとして除去するため、容器内は高H2S
環境下にあることから、かかるH2Sによって材料への水
素侵入が助長されシャットダウン時に割れを生じるいわ
ゆる水素割れの問題がある。かかる水素割れは、この割
れを起点としてぜい性破壊を生じ容器の破壊的損傷に至
る場合もあり大きな問題となる。この水素割れを防止す
る方法として、たとえばNACE(National Associationof
corrosion Engineering)等においては、低合金鋼に対
して材料の硬さをHRCで22以下(ビッカース硬さに換算
するとHv248以下)にすることを提唱している。この値
はおもにラインパイプ材料に適用されているものである
が、発明者らは、後述するように4点曲げSSC試験をCr
−Mo鋼溶接継手において実施し、耐水素割れ性について
調査したところ、Cr−Mo鋼溶接金属においてもHvで248
が水素割れ防止のための限界値として採用し得ることを
みいだした。
Furthermore, in a desulfurization reactor, etc., the sulfur content in heavy oil is removed as H 2 S under high temperature and high hydrogen partial pressure, so the inside of the container is high in H 2 S.
Since it is in the environment, there is a problem of so-called hydrogen cracking in which H 2 S promotes hydrogen penetration into the material and causes cracking at shutdown. Such hydrogen cracking causes a brittle fracture starting from this crack and may cause destructive damage to the container, which is a serious problem. As a method of preventing this hydrogen cracking, for example, NACE (National Association of
Corrosion Engineering) has proposed that the hardness of the material should be 22 or less in H R C for low alloy steel (Hv 248 or less when converted to Vickers hardness). Although this value is mainly applied to the line pipe material, the inventors conducted a 4-point bending SSC test as described below.
-Mo steel welded joints were investigated and hydrogen crack resistance was investigated.
Have found that it can be adopted as a limit value for preventing hydrogen cracking.

しかるに現状のCr−Mo鋼溶接材料においては溶接金属の
硬さに言及したものは皆無であり、例えば特開昭62−25
9695号公報にみられる如く、V,Nb,B等の添加により高強
度化を図ったワイヤが開示されてはいるものの、常温強
度の過剰な上昇により溶接金属の硬さはHv248をはるか
に超えていると考えられる。
However, in the current Cr-Mo steel welding materials, there is no reference to the hardness of the weld metal. For example, JP-A-62-25
As can be seen in Japanese Patent No. 9695, although wires that have been strengthened by adding V, Nb, B, etc. are disclosed, the hardness of the weld metal far exceeds Hv248 due to excessive increase in room temperature strength. It is thought that

さらに水素割れは、溶接金属において、1点でもHv248
を超えていると生じるおそれがあるため、溶接金属の最
高硬さをHv248以下にすることが必要である。このよう
な溶接金属を得るためには、鋼板による希釈を考慮し
て、使用される鋼板および溶接ワイヤの組成を限定する
のはいうまでもなく、溶接パス間温度、溶接入熱を限定
し、さらには溶接後熱処理条件を限定することが肝要で
ある。
Furthermore, hydrogen cracking is Hv248 even at one point in weld metal.
The maximum hardness of the weld metal must be Hv248 or less because it may occur when the value exceeds. In order to obtain such a weld metal, it goes without saying that the composition of the steel plate and welding wire to be used is limited in consideration of dilution by the steel plate, the temperature between welding passes and the heat input for welding are limited, Furthermore, it is important to limit the heat treatment conditions after welding.

(発明が解決しようとする課題) この発明は、Cr−Mo鋼をサブマージアーク溶接する際
に、溶接金属のクリープ強度を母材と同等に保ちつつ、
溶接金属のじん性および耐使用中ぜい化特性に優れさら
には耐水素割れ特性にも優れた溶接金属を得るための溶
接施工法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention, when submerged arc welding Cr-Mo steel, while maintaining the creep strength of the weld metal equal to the base metal,
It is an object of the present invention to propose a welding construction method for obtaining a weld metal which has excellent toughness and embrittlement resistance during use as well as hydrogen cracking resistance.

(課題を解決するための手段) この発明の要旨は、C:0.09〜0.18wt%(以下単に%で示
す)、Si:0.13%以下、Mn:0.25〜0.65%、Cr:1.85〜3.2
5%、Mo:0.85〜1.15%、V:0.23〜0.37%、S:0.015%以
下、P:0.020%以下を含む組成になり、 引張強さ:60〜77.5kgf/mm2、 0.2%耐力≧42kgf/mm2 の強度を有する鋼板をサブマージアーク溶接するに際
し、 フィラワイヤとしてC:0.07〜0.15%、Si:0.30%以下、M
n:0.50%〜1.00%、Cr:2.25〜3.25%、Mo:0.85〜1.15
%、V:0.20〜0.35%、Nb:0.03%以下、Ti:0.005〜0.02
%、Ni:0.60%以下、N:0.005%以上、0.01%未満を含有
し、残部は実質的にFeの組成になるワイヤを用いると共
に、フラックスとして MgO−BaO−SiO2−CaF2系高塩基性焼成型フラックスを用
いて、 予熱およびパス間温度:175〜250℃、 溶接入熱:20〜50kJ/cm の条件下に溶接し、ついで溶接部に対し、670℃以上の
温度範囲において少なくとも1回、下記(1)式で示さ
れるTPが20.20〜20.50を満足する溶接後熱処理を施すこ
とにより、溶接金属の最高硬さをビッカース硬さ試験に
おいてHv248以下とすることにより、溶接金属の耐水素
割れ性に優れしかも母材と同等のクリープ強度、さらに
はじん性および耐使用中ぜい化特性にもすぐれた溶接金
属を得るところにある。
(Means for Solving the Problems) The gist of the present invention is C: 0.09 to 0.18 wt% (hereinafter simply referred to as%), Si: 0.13% or less, Mn: 0.25 to 0.65%, Cr: 1.85 to 3.2.
5%, Mo: 0.85 to 1.15%, V: 0.23 to 0.37%, S: 0.015% or less, P: 0.020% or less, tensile strength: 60 to 77.5 kgf / mm 2 , 0.2% proof stress ≥ When submerged arc welding of steel plate with strength of 42 kgf / mm 2 , C: 0.07 ~ 0.15%, Si: 0.30% or less as filler wire, M
n: 0.50% to 1.00%, Cr: 2.25 to 3.25%, Mo: 0.85 to 1.15
%, V: 0.20 to 0.35%, Nb: 0.03% or less, Ti: 0.005 to 0.02
% Ni: 0.60% or less, N: 0.005% or more, and contains less than 0.01%, the balance being substantially with use of wire made of the composition of Fe, MgO-BaO-SiO 2 -CaF 2 based high base as flux Welding is carried out under the conditions of preheating and interpass temperature: 175-250 ℃, welding heat input: 20-50kJ / cm, and then at least 670 ℃ in the temperature range of 670 ℃ or more for the welded part. The maximum hardness of the weld metal is set to Hv248 or less in the Vickers hardness test by subjecting the weld metal to post-weld heat treatment satisfying TP of 20.20 to 20.50, which is represented by the following formula (1). The purpose is to obtain a weld metal that is excellent in crackability, has the same creep strength as the base metal, and has excellent toughness and embrittlement characteristics during use.

記 TP=(T+273)×(20+logt)×10-3 …(1) ここでT:溶接後熱処理温度(℃) t:溶接後熱処理時間(h) 以下この発明を具体的に説明する。Note TP = (T + 273) × (20 + logt) × 10 −3 (1) where T: heat treatment temperature after welding (° C.) t: heat treatment time after welding (h) The present invention will be described in detail below.

さて発明者らは、種々のワイヤ成分系、フラックス組
成、溶接条件を詳細に検討し、さらには溶接後熱処理条
件の溶接金属の最高硬さにおよぼす影響を調査し、それ
ら溶接金属の引張強さ、じん性、使用中ぜい化量、クリ
ープ破断強度及び耐水素われ性について調査した。それ
らについて以下具体的な作用について述べる。
Now, the inventors have studied various wire component systems, flux compositions, and welding conditions in detail, and further investigated the effect of post-weld heat treatment conditions on the maximum hardness of the weld metal, and determined the tensile strength of these weld metals. , Toughness, amount of embrittlement during use, creep rupture strength and hydrogen crack resistance were investigated. The specific actions of these will be described below.

(作 用) まずこの発明では、C:0.09〜0.18%、Si:0.13%以下、M
n:0.25〜0.65%、Cr:1.85〜3.25%、Mo:0.85〜1.15%、
V:0.23〜0.37%、S:0.015%以下、P:0.020%以下を含む
組成になるCr−Mo鋼を対象とする。とういのはこの発明
は、従来鋼であるASTM A387 Gr21,Gr.22やA336 F21,F22
等に規定される材料では適用し得ない、より高温、高水
素圧環境で用いられる材料を対象としており、従来鋼の
Cr,Mo等の組成に加えVを添加して著しくクリープ強度
と耐水素侵食特性を改良した上記規定範囲の網材がこの
発明を構成する上で不可欠なためである。
(Operation) First, in this invention, C: 0.09 to 0.18%, Si: 0.13% or less, M
n: 0.25 to 0.65%, Cr: 1.85 to 3.25%, Mo: 0.85 to 1.15%,
The target is Cr-Mo steel having a composition containing V: 0.23 to 0.37%, S: 0.015% or less, and P: 0.020% or less. The present invention is based on the conventional steels ASTM A387 Gr21, Gr.22 and A336 F21, F22.
It is intended for materials used in higher temperature and high hydrogen pressure environments that cannot be applied with the materials specified by
This is because a net material in the above specified range in which V is added to the composition of Cr, Mo and the like to remarkably improve creep strength and hydrogen erosion resistance is indispensable for constituting the present invention.

次にワイヤ組成について説明する。Next, the wire composition will be described.

Cは、強度向上に有効な有用成分であるが、0.07%未満
ではクリーブ強度向上のために有効なV,Nb等の微細炭化
物が十分でなく、クリープ強度が不足する。しかしなが
ら過剰に添加すると強度、硬さが著しく増加し、また高
温われの原因ともなるので、上限は0.15%に限定した。
C is a useful component effective for improving the strength, but if it is less than 0.07%, the fine carbides such as V and Nb effective for improving the cleave strength are not sufficient, and the creep strength is insufficient. However, if added excessively, the strength and hardness will remarkably increase, and it may cause high temperature cracking, so the upper limit was set to 0.15%.

Siは、焼戻しぜい化に対して影響を与える元素であり、
ぜい化の観点から0.30%以下に限定する必要がある。
Si is an element that affects temper embrittlement,
From the viewpoint of embrittlement, it should be limited to 0.30% or less.

Mnは、じん性および強度の向上に有効に寄与するけれど
も、0.50%未満ではその添加効果に乏しく、一方1.00%
を超えるとじん性劣化とくに使用中ぜい化を引き起こす
おそれが大きいので、0.50〜1.00%の範囲に限定した。
Mn effectively contributes to the improvement of toughness and strength, but if it is less than 0.50%, its addition effect is poor, while 1.00%
If it exceeds the range, toughness deterioration, especially embrittlement during use, is likely to occur, so the range was limited to 0.50 to 1.00%.

CrおよびMoは、耐酸化性、高温強度の面から添加されて
いる元素であり、この発明で対象としているCr−Mo鋼の
基本となる成分である。従って溶接金属においても、母
材と同等の成分となるようにCrは2.25〜3.25%、またMo
においては0.85〜1.15%の範囲で添加するものとした。
Cr and Mo are elements added in terms of oxidation resistance and high temperature strength, and are basic components of the Cr-Mo steel targeted by the present invention. Therefore, even in the weld metal, Cr should be 2.25 to 3.25%, and Mo should be the same as that of the base metal.
In addition, in the range of 0.85 to 1.15%.

Vは、この発明で対象とするCr−Mo鋼において、そのク
リープ強度および耐水素アタック性の面から不可欠の元
素として母材に添加されているものである。従って溶接
金属においても、クリープ強度および耐水素アタック性
の点から母材と同等程度添加されることが望ましいが、
母材との希釈を考慮にいれると、溶接ワイヤ組成として
は0.20%以上あれば溶接金属のクリープ強度および耐水
素アタック性とも良好なものとなる。一方、Vを過剰に
添加すると、常温における引張強さが高くなりすぎて母
材の強度範囲を超えてしまうだけでなく溶接金属の最高
硬さを高くなってしまい、さらにじん性も損なうため、
溶接ワイヤにおいてはその上限を0.35%に限定した。
V is added to the base material as an indispensable element from the viewpoint of creep strength and hydrogen attack resistance in the Cr-Mo steel targeted by the present invention. Therefore, in the weld metal as well, from the viewpoint of creep strength and hydrogen attack resistance, it is desirable to add the same amount as the base metal,
Taking into consideration the dilution with the base metal, if the composition of the welding wire is 0.20% or more, the creep strength and the hydrogen attack resistance of the weld metal will be good. On the other hand, if V is added excessively, not only the tensile strength at room temperature becomes too high and the strength range of the base metal is exceeded, but also the maximum hardness of the weld metal becomes high, and further the toughness is impaired.
For welding wires, the upper limit was limited to 0.35%.

Nbは、クリープ強度の向上に対し、少量の添加でもその
効果があるが、0.03%を超えて添加すると、常温におけ
る引張強さのみならず硬さも高くなりすぎ、さらにはじ
ん性も損うので0.03%以下に限定した。
Nb has the effect of improving the creep strength even if added in a small amount, but if added in excess of 0.03%, not only the tensile strength at room temperature but also the hardness becomes too high, and further the toughness is impaired. Limited to 0.03% or less.

Tiは、Nbと同様、少量の添加でクリープ強度の向上に有
効に寄与するが、その効果を得るためには少なくとも0.
005%を含有させる必要がある。しかしながら、0.02%
を超えて添加すると、やはり常温における引張強さや硬
さが高くなりすぎ、またじん性も損われるので0.02%以
下に限定した。
Ti, like Nb, effectively contributes to the improvement of creep strength with a small amount of addition, but in order to obtain that effect, it is at least 0.
It is necessary to contain 005%. However, 0.02%
If added in excess of 10%, the tensile strength and hardness at room temperature will be too high, and the toughness will be impaired, so the content was limited to 0.02% or less.

Niは、SR後のじん性の改善に効果のある有用元素である
が、過剰に添加すると高温高圧水素環境下においてぜい
化を引き起こすので、0.60%以下に限定した。
Ni is a useful element that is effective in improving toughness after SR, but if added in excess, it causes embrittlement in a high temperature and high pressure hydrogen environment, so it was limited to 0.60% or less.

Nは、V,Nb等と結合し微細な窒化物もしくは炭窒化物を
生成する。これらはクリープ強度の向上に著しい効果が
あるが、かかる効果を得るためには溶接ワイヤ中にNを
0.005%以上添加することが必要である。しかしながら
0.01%以上添加すると、常温における引張強さが高くな
りすぎ、また硬さも上昇しすぎ、さらにはじん性も損わ
れるので、0.005%以上、0.01%未満の範囲で添加する
ものとした。
N combines with V, Nb, etc. to form fine nitrides or carbonitrides. These have a remarkable effect on the improvement of creep strength, but in order to obtain such an effect, N is added to the welding wire.
It is necessary to add 0.005% or more. However
If it is added in an amount of 0.01% or more, the tensile strength at room temperature becomes too high, the hardness becomes too high, and the toughness is impaired. Therefore, the addition amount should be 0.005% or more and less than 0.01%.

次にフラックスについて述べると、この発明において
は、フラックスとしてMgO−BaO−SiO2−CaF2系高塩基性
焼成型フラックスを用いる必要があり、塩基度としては
例えば次式(2)に示される塩基度BLの式においてBL:
2.3〜4.5であることが望ましい。
Now described flux, bases in the present invention, it is necessary to use a MgO-BaO-SiO 2 -CaF 2 based highly basic firing type flux as the flux, as the basicity is indicated, for example, the following equation (2) In the formula of degree BL, BL:
It is preferably 2.3 to 4.5.

BL=(%MgO+%BaO+%CaO+%CaF2)/(%SiO2+%A
l2O3+%TiO2+%MnO+%ZrO2) …(2) というのはBLが2.3より小さいとスラグがガラス質とな
りやすく溶接金属中の酸素量が高くなってじん性の劣化
を招き、一方4.5より大きいとスラグの融点が上昇しス
ラグはく離性が悪くなり特に狭開先においては溶接欠陥
を生じるおそれがあるからである。また焼成型フラック
スはガス発生成分である金属炭素塩および金属粉の添加
が容易なので溶接金属中の酸素量を低くコントロールで
き、しかも水素量も低減し得るため溶接低温割れ性にも
優れる利点がある。
BL = (% MgO +% BaO +% CaO +% CaF 2 ) / (% SiO 2 +% A
l 2 O 3 +% TiO 2 +% MnO +% ZrO 2 ) (2) When BL is less than 2.3, the slag tends to become vitreous and the amount of oxygen in the weld metal increases, leading to deterioration of toughness. On the other hand, if it is more than 4.5, the melting point of the slag is increased and the slag peeling property is deteriorated, and there is a possibility that welding defects may occur especially in a narrow groove. In addition, since the firing type flux can easily add metal carbon salts and metal powders, which are gas generating components, it is possible to control the oxygen content in the weld metal to a low level, and also the hydrogen content can be reduced. .

溶接入熱は、溶接金属のじん性、強度及び硬さに大きく
影響を与える。20kJ/cm未満では狭開先溶接において欠
陥が発生するおそれが大きく、また作業能率の面からも
20kJ/cm以上とする。一方50kJ/cmを超えると、一層当り
の積層量が多くなって次層以降のパスによる再熱に依存
したテンパ効果が得られなくなり、硬さが上昇し、また
じん性も損われるため50kJ/cm以下に限定した。
The welding heat input greatly affects the toughness, strength and hardness of the weld metal. If it is less than 20 kJ / cm, defects are likely to occur in narrow groove welding, and also in terms of work efficiency.
20kJ / cm or more. On the other hand, if it exceeds 50 kJ / cm, the stacking amount per layer increases and the tempering effect depending on the reheating by the passes of the next and subsequent layers cannot be obtained, the hardness increases, and the toughness also deteriorates, so 50 kJ / cm Limited to cm or less.

パス間温度は、低温割れ防止のためおよび溶接金属の硬
さの過大な上昇を防止するため、175℃以上とする。一
方250℃を超えると溶接金属の冷却速度が速くなり、焼
入れ不足によってじん性が損われるので、250℃以下に
限定した。
The interpass temperature is 175 ° C or higher to prevent cold cracking and to prevent the hardness of the weld metal from rising excessively. On the other hand, if the temperature exceeds 250 ° C, the cooling rate of the weld metal increases and the toughness is impaired due to insufficient quenching, so the temperature was limited to 250 ° C or less.

溶接後熱処理は、後述するような種々の処理温度、時間
により溶接金属の特性を調査したところ、下記(1)式
であらわされるTPが20.20未満では溶接金属の最高硬さ
がHv248を超えて耐水素割れ性が劣化することが判明し
たのでTP≧20.20とする。しかしながら容器の溶接施工
時には数回の溶接後熱処理が施される場合があり、強度
の低下が問題となることから、上限はTP20.50に定め
た。なお上記の溶接後熱処理において処理温度が670℃
未満ではTPが上記範囲を満たすために長時間を要し実施
工には適さないので、溶接後熱処理は670℃以上の温度
で行うものとした。
In the post-welding heat treatment, when the characteristics of the weld metal were investigated at various treatment temperatures and times as described below, the maximum hardness of the weld metal exceeded Hv248 when the TP expressed by the following formula (1) was less than 20.20. Since it was found that the hydrogen cracking property deteriorates, TP ≧ 20.20. However, there are cases where post-weld heat treatment is performed several times during the welding process of the container, and the decrease in strength poses a problem, so the upper limit was set to TP20.50. In the above heat treatment after welding, the processing temperature was 670 ° C.
If it is less than TP, it takes a long time to satisfy the above range and is not suitable for practical work. Therefore, the post-weld heat treatment is performed at a temperature of 670 ° C or higher.

記 TP=(T+273)×(20+logt)×10-3 …(1) ここでT:溶接後熱処理温度(℃) t:溶接後熱処理時間(h) すなわち670℃以上の温度範囲においてTPが20.20〜20.5
0の溶接後熱処理を少なくとも1回施すことにより、溶
接金属の最高硬さをHv248以下とすることができ、しか
もかような溶接後熱処理を数回施した場合であっても強
度の低下を生じないのである。
Note TP = (T + 273) × (20 + logt) × 10 −3 (1) where T: post-weld heat treatment temperature (° C) t: post-weld heat treatment time (h) That is, TP is 20.20 to 670 ° C or higher in the temperature range. 20.5
By performing the post-weld heat treatment of 0 at least once, the maximum hardness of the weld metal can be set to Hv248 or less, and even if such post-weld heat treatment is performed several times, the strength decreases. There is no.

(実施例) 表1に示す化学組成および表2に示す機械的性質を有す
る鋼板に対し、表3に示すワイヤおよび表4に示すフラ
ックスを用い、第1図の開先形状で、表5に示す溶接条
件下に狭開先サブマージアーク溶接を行った。
(Example) For steel plates having the chemical composition shown in Table 1 and the mechanical properties shown in Table 2, the wire shown in Table 3 and the flux shown in Table 4 were used, and the groove shape shown in FIG. Narrow groove submerged arc welding was performed under the welding conditions shown.

溶接後の熱処理条件は表6に示したとおりである。The heat treatment conditions after welding are as shown in Table 6.

得られた溶接金属に表6に示す溶接後熱処理を付与した
ままのもの、および溶接後熱処理後に第2図に示すステ
ップクーリング処理をさらに付与したものに対し、以下
に示す試験を実施した。
The following tests were performed on the obtained weld metal as it was after the post-welding heat treatment shown in Table 6 and on the post-weld heat treatment that was further subjected to the step cooling treatment shown in FIG.

引張試験は室温および480℃で実施し、室温強度は60〜7
7.5kgf/mm2のものを、480℃強度は52kgf/mm2以上のもの
を良好とした。
Tensile test is performed at room temperature and 480 ℃, and room temperature strength is 60 ~ 7
Those with 7.5 kgf / mm 2 and those with a strength of 480 ° C of 52 kgf / mm 2 or more were considered good.

クリープ破断強度は、480℃、10万時間強度に相当する5
50℃、800時間強度を内挿により求め、この値が24kgf/m
m2以上のものを良好と判定した。
Creep rupture strength is equivalent to 100,000 hours at 480 ℃ 5
The strength at 50 ° C for 800 hours was calculated by interpolation, and this value was 24 kgf / m.
Those with m 2 or more were judged as good.

またPWHTままのじん性は、−18℃においてシャルピー吸
収エネルギーの最低値が10kgf・m以上のものを良好と
した。ステップクーリング後のじん性は、次式(2)を
満足できたときに良好と判定した。
As for the toughness of PWHT, the minimum Charpy absorbed energy at −18 ° C. was 10 kgf · m or more. The toughness after step cooling was judged to be good when the following expression (2) was satisfied.

vTr5.5+3・ΔvTr5.5≦10℃ …(2) ここでΔvTr5.5=vTr′5.5−vTr5.5 vTr5.5:PWHTままの溶接金属の吸収エネルギーが5.5kgf
・mとなる温度 vTr′5.5:ステップクーリング処理後の溶接金属の吸収
エネルギーが5.5kgf・mとなる温度 さらに耐水素侵食性の評価は、温度550℃、水素圧力500
kgf/mm2に保持したオートクレーブ中に溶接金属から採
取したシャルピー試験片を一定時間暴露後、0℃におい
てシャルピー試験を実施し、吸収エネルギーの暴露時間
依存性を調査し、水素侵食により吸収エネルギーの低下
を開始する時間を潜状期とし、この潜状期が150時間以
上のものを良好と判定した。
vTr 5.5 +3 ・ ΔvTr 5.5 ≦ 10 ℃… (2) where ΔvTr 5.5 = vTr ′ 5.5 −vTr 5.5 vTr 5.5 : The absorbed energy of the weld metal as it is PWHT is 5.5kgf
・ Temperature at which m reaches vTr ' 5.5 : The temperature at which the absorbed energy of the weld metal after the step cooling treatment becomes 5.5 kgf ・ m. Further, the evaluation of hydrogen corrosion resistance is at a temperature of 550 ° C and a hydrogen pressure of 500
A Charpy test piece taken from the weld metal was exposed in an autoclave maintained at kgf / mm 2 for a certain period of time, and then a Charpy test was performed at 0 ° C to investigate the exposure time dependence of the absorbed energy, and the absorbed energy The time when the decrease started was defined as the latent period, and those with a latent period of 150 hours or more were judged to be good.

溶接金属の硬さは荷重10kgによるビッカース試験を第3
図に示すような2mm間隔の碁盤の目状に2mmピッチで実施
し、それらのうちの最高硬さを溶接金属の最高硬さとし
た。
The hardness of the weld metal is 3rd in the Vickers test under a load of 10kg.
As shown in the figure, it was carried out at a 2 mm pitch in a grid pattern of 2 mm intervals, and the maximum hardness of them was the maximum hardness of the weld metal.

またさらに耐水素割れ性の判定には、硬さ試験において
最高硬さを示した断面近傍から採取した試験片を用い、
0.2%耐力の80%の応力を負荷した状態でNACE液(25℃
の飽和H2S+0.5%CH3COOH+5%NaCl溶液)に1000時間
浸漬して4点曲げSSC試験を行い、割れ発生のないもの
を良好とした。
Furthermore, for the determination of hydrogen cracking resistance, a test piece taken from the vicinity of the cross section showing the highest hardness in the hardness test is used,
NACE liquid (25 ° C) with 80% stress of 0.2% proof stress
Of saturated H 2 S + 0.5% CH 3 COOH + 5% NaCl solution) for 1000 hours, and a 4-point bending SSC test was performed.

実施例1 鋼Aに対し、表3に示す種々のワイヤおよびフラックF2
を用い、溶接条件WC1により狭開先1層1パス多層盛り
溶接を行った。
Example 1 Various wires and flakes F2 shown in Table 3 for steel A
Narrow groove 1 layer 1 pass multilayer welding was performed under the welding condition WC1.

得られた溶接金属の化学成分を表7にまとめて示す。The chemical composition of the obtained weld metal is summarized in Table 7.

ついで上記の各溶接金属に対し表6に示すHT2の熱処理
を施したのち、各種試験を行って得た結果を表8に示
す。
Table 8 shows the results obtained by subjecting each of the above weld metals to the heat treatment of HT2 shown in Table 6 and then conducting various tests.

表8より明らかなように、適合例であるNo.1においては
強度、じん性、耐使用中ぜん化特性、水素アタック特性
および硬さ特性、耐水素割れ特性何れもが良好である。
これに対しNo.2〜13は、条件のいずれかがこの発明の適
正範囲からはずれているので表8の備考に示すごとく必
ずしも全ての特性が満足のいくものではなかった。
As is clear from Table 8, in No. 1 which is a conforming example, strength, toughness, aging resistance during use, hydrogen attack characteristics and hardness characteristics, and hydrogen cracking resistance characteristics are all good.
On the other hand, in Nos. 2 to 13, any one of the conditions is out of the proper range of the present invention, and therefore, as shown in the remarks of Table 8, not all the characteristics are necessarily satisfactory.

実施例2 鋼Aに対しワイヤWR1、フラックスF1を用い、溶接条件W
C2により狭開先1層1パス多層盛り溶接を行った。
Example 2 Welding condition W using wire WR1 and flux F1 for steel A
Narrow groove 1 layer 1 pass multilayer welding was performed by C2.

得られた溶接金属の化学成分を表9に示す。Table 9 shows the chemical composition of the obtained weld metal.

ついでこの溶接金属に対し、表6に示す種々の条件下に
熱処理を行ったのち、各種試験を実施して得た結果を表
10に示す。
Then, the weld metal was heat-treated under various conditions shown in Table 6, and various tests were carried out.
Shown in 10.

表10より明らかなように、適合例であるNo.14〜16にお
いては強度、じん性、耐使用中ぜい化特性、水素アタッ
ク特性および硬さ特性、耐水素割れ特性とも何れも良好
な結果が得られたが、熱処理条件がこの発明の範囲外で
あるNo.17,18ではいずれも満足のいく特性値は得られな
かった。
As is clear from Table 10, in No. 14 to 16 which are conforming examples, all of the results are good in strength, toughness, embrittlement resistance during use, hydrogen attack characteristics and hardness characteristics, and hydrogen cracking resistance characteristics. However, in Nos. 17 and 18 in which the heat treatment conditions are out of the range of the present invention, satisfactory characteristic values were not obtained.

実施例3 鋼Bに対しワイヤWR3、フラックスF3を用い、表5に示
す種々の溶接条件下に狭開先1層1パス多層盛り溶接を
行った。
Example 3 Steel B was subjected to narrow groove 1-layer 1-pass multilayer welding under various welding conditions shown in Table 5 using wire WR3 and flux F3.

得られた溶接金属の化学成分を表11に示す。Table 11 shows the chemical composition of the obtained weld metal.

ついで上記の各溶接金属WM15〜19に対して、熱処理HT1
を施したのち、各種試験を実施して得た結果を表12に示
す。
Next, heat-treat HT1 for each of the above weld metals WM15-19
Table 12 shows the results obtained by carrying out various tests after carrying out.

表12より明らかなように、適合例であるNo.19において
は強度、じん性、耐使用中ぜい化特性、水素アタック特
性および硬さ特性、耐水素割れ特性とも満足いくものが
得られた。
As is clear from Table 12, in No. 19 which is a conformity example, satisfactory strength, toughness, embrittlement characteristics during use, hydrogen attack characteristics and hardness characteristics, and hydrogen crack resistance characteristics were obtained. .

これに対し、No.20はパス間温度が下限値以下でありHAZ
部に遅れ割れを生じたため機械的特性調査は行わなかっ
た。またNo.21〜23はいずれも、この発明の範囲外であ
り表12の備考に示すように良好な特性は得られなかっ
た。
On the other hand, in No. 20, the temperature between passes is below the lower limit and HAZ
No mechanical property investigation was conducted because delayed cracking occurred in the part. Further, Nos. 21 to 23 were all outside the scope of the present invention, and as shown in the remarks of Table 12, good characteristics were not obtained.

実施例4 鋼Aに対し、ワイヤWR4および表4に示す種々のフラッ
クスを用い、溶接条件WC2の下に狭開先1層1パス多層
盛り溶接を行った。
Example 4 Steel A was subjected to narrow groove 1-layer 1-pass multilayer welding under welding conditions WC2 using wire WR4 and various fluxes shown in Table 4.

得られた溶接金属の化学成分を表13に示す。Table 13 shows the chemical composition of the obtained weld metal.

ついで得られた溶接金属に対し、表6に示す熱処理HT3
を施したのち、各種試験を実施して得た結果を表14に示
す。
Then, for the weld metal obtained, heat treatment HT3 shown in Table 6
Table 14 shows the results obtained by carrying out various tests after carrying out.

表14より明らかなように、適合例であるNo.24において
は強度、じん性、使用中ぜい化特性、水素アタック特性
および硬さ特性、耐水素割れ特性とも何れも良好な結果
が得られたが、No.25はフラックスの塩基度が低いため
溶接金属の酸素量が高くなり(WM20;280ppm,WM21;410pp
m)じん性の面で劣っていた。
As is clear from Table 14, in No. 24, which is a conforming example, good results were obtained in all of strength, toughness, embrittlement characteristics during use, hydrogen attack characteristics and hardness characteristics, and hydrogen cracking resistance characteristics. However, in No. 25, the basicity of the flux is low, so the oxygen content of the weld metal is high (WM20; 280ppm, WM21; 410pp
m) It was inferior in toughness.

(発明の効果) かくしてこの発明によれば、高強度Cr−Mo鋼のサブマー
ジアーク溶接に際し、クリープ強度をはじめとして、じ
ん性および耐使用中ぜい化特性、さらには耐水素割れ性
に優れた溶接金属を得ることができる。
(Effects of the Invention) Thus, according to the present invention, in submerged arc welding of high strength Cr-Mo steel, not only creep strength but also toughness and in-use embrittlement characteristics, and further excellent in hydrogen crack resistance. Weld metal can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例における開先形状を示した図、 第2図は、ステップクーリング処理の模式図、 第3図は、硬さの測定位置を示す溶接金属断面図であ
る。
FIG. 1 is a view showing a groove shape in the embodiment, FIG. 2 is a schematic view of step cooling treatment, and FIG. 3 is a weld metal cross-sectional view showing hardness measurement positions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.09〜0.18wt%、Si:0.13wt%以下、 Mn:0.25〜0.65wt%、Cr:1.85〜3.25wt%、 Mo:0.85〜1.15wt%、V:0.23〜0.37wt%、 S:0.015wt%以下、P:0.020wt%以下 を含む組成になり、 引張強さ:60〜77.5kgf/mm2、 0.2%耐力≧42kgf/mm2 の強度を有する鋼板をサブマージアーク溶接するに際
し、 フィラワイヤとして C:0.07〜0.15wt%、Si:0.30wt%以下、 Mn:0.50〜1.00%%、Cr:2.25〜3.25wt%、 Mo:0.85〜1.15wt%、V:0.20〜0.35wt%、 Nb:0.03wt%以下、Ti:0.005〜0.02wt%、 Ni:0.60wt%以下、N:0.005〜0.01wt未満 を含有し、残部は実質的にFeの組成になるワイヤを用い
ると共に、フラックスとして MgO−BaO−SiO2−CaF2系高塩基性焼成型フラックスを用
いて、 予熱およびパス間温度:175〜250℃、 溶接入熱:20〜50kJ/cm の条件下に溶接し、ついで溶接部に対し、670℃以上の
温度範囲において少なくとも1回、下記(1)式で示さ
れるTPが20.20〜20.50を満足する溶接後熱処理を施すこ
とを特徴とする高強度Cr−Mo鋼のサブマージアーク溶接
施工法。 記 TP=(T+273)×(20+logt)×10-3 …(1) ここでT:溶接後熱処理温度(℃) t:溶接後熱処理時間(h)
1. C: 0.09 to 0.18 wt%, Si: 0.13 wt% or less, Mn: 0.25 to 0.65 wt%, Cr: 1.85 to 3.25 wt%, Mo: 0.85 to 1.15 wt%, V: 0.23 to 0.37 wt% %, S: 0.015 wt% or less, P: 0.020 wt% or less, tensile strength: 60 to 77.5 kgf / mm 2 , 0.2% yield strength Steel plate with strength of 42 kgf / mm 2 submerged arc welding As a filler wire, C: 0.07 to 0.15 wt%, Si: 0.30 wt% or less, Mn: 0.50 to 1.00 %%, Cr: 2.25 to 3.25 wt%, Mo: 0.85 to 1.15 wt%, V: 0.20 to 0.35 wt %, Nb: 0.03 wt% or less, Ti: 0.005 to 0.02 wt%, Ni: 0.60 wt% or less, N: 0.005 to less than 0.01 wt%, and the balance is a wire having a composition of substantially Fe. using MgO-BaO-SiO 2 -CaF 2 based highly basic firing type flux as the flux, preheat and interpass temperature: 175 to 250 ° C., heat input: welded under the conditions of 20~50kJ / cm, followed At least once in the temperature range of 670 ° C or higher for the welded part (1) TP is the submerged arc welding method for high strength Cr-Mo steel characterized by applying heat treatment after welding to meet the 20.20 to 20.50 of formula. Note TP = (T + 273) x (20 + logt) x 10 -3 (1) where T: heat treatment temperature after welding (° C) t: heat treatment time after welding (h)
JP117289A 1989-01-09 1989-01-09 Submerged arc welding method for high strength Cr-Mo steel Expired - Fee Related JPH0787990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP117289A JPH0787990B2 (en) 1989-01-09 1989-01-09 Submerged arc welding method for high strength Cr-Mo steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP117289A JPH0787990B2 (en) 1989-01-09 1989-01-09 Submerged arc welding method for high strength Cr-Mo steel

Publications (2)

Publication Number Publication Date
JPH02182378A JPH02182378A (en) 1990-07-17
JPH0787990B2 true JPH0787990B2 (en) 1995-09-27

Family

ID=11494015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP117289A Expired - Fee Related JPH0787990B2 (en) 1989-01-09 1989-01-09 Submerged arc welding method for high strength Cr-Mo steel

Country Status (1)

Country Link
JP (1) JPH0787990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464926A (en) * 2013-09-25 2013-12-25 张盘 High-performance submerged-arc welding wire, welding seam metal and application of high-performance submerged-arc welding wire and welding seam metal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258135B2 (en) * 1993-05-24 2002-02-18 株式会社神戸製鋼所 Submerged arc welding method for high strength Cr-Mo steel
JP5671364B2 (en) 2011-02-09 2015-02-18 株式会社神戸製鋼所 Weld metal with excellent creep properties
JP5685116B2 (en) 2011-03-11 2015-03-18 株式会社神戸製鋼所 Weld metal with excellent tempering embrittlement resistance
JP5798060B2 (en) 2011-11-21 2015-10-21 株式会社神戸製鋼所 Weld metal with excellent tempering embrittlement resistance
JP2013193124A (en) * 2012-03-22 2013-09-30 Hitachi Zosen Corp Welding method of structural steel, and welded steel structure
JP6084475B2 (en) 2013-02-04 2017-02-22 株式会社神戸製鋼所 Weld metal and welded structures
JP6181947B2 (en) 2013-03-07 2017-08-16 株式会社神戸製鋼所 Weld metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464926A (en) * 2013-09-25 2013-12-25 张盘 High-performance submerged-arc welding wire, welding seam metal and application of high-performance submerged-arc welding wire and welding seam metal

Also Published As

Publication number Publication date
JPH02182378A (en) 1990-07-17

Similar Documents

Publication Publication Date Title
JP4780189B2 (en) Austenitic heat-resistant alloy
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
KR101764040B1 (en) Coated electrode
JPH09168891A (en) Low hydrogen covered electrode for high strength cr-mo steel
JP2017047472A (en) Wire for submerged arc welding
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JPH0787990B2 (en) Submerged arc welding method for high strength Cr-Mo steel
JP2021105204A (en) Austenitic heat-resistant steel
JPH0787989B2 (en) Gas shield arc welding method for high strength Cr-Mo steel
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
KR20160078846A (en) Flux cored arc weld material having excellent low temperature toughness, thermostability and crack resistance
JP3418884B2 (en) High Cr ferritic heat resistant steel
JPS58391A (en) Submerged welding method for high temperature steel
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JPH09122972A (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPH08337813A (en) Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JPH0231631B2 (en)
WO2017038975A1 (en) Wire for submerged arc welding
JPH0636996B2 (en) Submerged arc welding wire for 9Cr-Mo steel
JPH0314549B2 (en)
JPH07155988A (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees