[go: up one dir, main page]

JPH0786632B2 - Wonder - Google Patents

Wonder

Info

Publication number
JPH0786632B2
JPH0786632B2 JP2125088A JP2125088A JPH0786632B2 JP H0786632 B2 JPH0786632 B2 JP H0786632B2 JP 2125088 A JP2125088 A JP 2125088A JP 2125088 A JP2125088 A JP 2125088A JP H0786632 B2 JPH0786632 B2 JP H0786632B2
Authority
JP
Japan
Prior art keywords
lens
finder
optical axis
shooting
diopter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2125088A
Other languages
Japanese (ja)
Other versions
JPH01197727A (en
Inventor
寿郎 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP2125088A priority Critical patent/JPH0786632B2/en
Publication of JPH01197727A publication Critical patent/JPH01197727A/en
Publication of JPH0786632B2 publication Critical patent/JPH0786632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Viewfinders (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 撮影距離が無限遠から至近距離までの広い範囲にわたる
カメラに備えられかつ撮影レンズを通さずに空中像を形
成するフアインダーに関するものである。
Description: TECHNICAL FIELD The present invention relates to a finder that is provided in a camera having a wide shooting range from infinity to a close range and that forms an aerial image without passing through a shooting lens.

〔従来の技術〕[Conventional technology]

従来、上記のようなフアインダーは、被写体の遠近によ
る視度の変化が目の調整機能によつて補正されるので、
フアインダーに合焦機能が備えられていなかつた。それ
は、フアインダーの角倍率γが、大きいものでも|γ|
=0.7程度であつて至近撮影距離も、撮影レンズの近距
離性能,合焦機構,フアインダーのパララツクス等の制
約のため、あまり近くなかつたのでフアインダーの視度
の変化が小さかつたためである。
Conventionally, in the finder as described above, since the change in diopter due to the perspective of the subject is corrected by the eye adjustment function,
The finder didn't have a focusing function. Even if the finder has a large angular magnification γ,
This is because the close-up shooting distance is about 0.7 and the close-up shooting distance is too close due to the short-distance performance of the shooting lens, the focusing mechanism, the parallax of the finder, and the change in the diopter of the finder is small.

最近、技術の進歩により、上記のようなフアインダーを
そなえたカメラでも、比較的近距離まで撮影できるよう
になつてきたが、フアインダーの角倍率は|γ|<0.7
程度のままであるので、実公昭56−5072号公報にあるよ
うなパララツクス補正機構のついたフアインダーはある
が、合焦機構のついたフアインダーはまだ存在しない。
Recently, technological advances have made it possible for cameras with the above-mentioned finder to shoot at relatively short distances, but the angular magnification of the finder is | γ | <0.7.
Since there is no change, there is a finder with a parallax correction mechanism as in Japanese Utility Model Publication No. 56-5072, but there is no finder with a focusing mechanism yet.

また特開昭49−88515号公報にあるようなフアインダー
の視度補正法では、補正が距離計付フアインダーの距離
計部分に限定されていて、視野全体にわたつて視度が大
きく変化することは考慮されていないし、又パララツク
ス補正との並用は困難である。
Further, in the finder diopter correction method as disclosed in JP-A-49-88515, the correction is limited to the rangefinder portion of the finder with a rangefinder, and it is possible that the diopter greatly changes over the entire field of view. It is not taken into consideration, and it is difficult to use it in parallel with the parallel correction.

最近では、前述のようなフアインダーを備えたカメラに
もズームレンズが備えられるようになり、そのためフア
インダーにもズームレンズが用いられるようになつた。
ところが、ズームレンズの変倍比が大になるとフアイン
ダーの最大角倍率を大きくする必要がある。つまり例え
ば長焦点側で従来のフアインダー程度の角倍率にすると
短焦点側では角倍率が小になりすぎて、撮影しようとす
る人物の顔の表情等の被写体の細部が見にくくなつてし
まう。特に長焦点側が、望遠効果があるほどの長焦点で
ある場合、フアインダーの角倍率が十分に大きくない
と、被写体の細部が見にくいという問題が生ずる。
Recently, a camera equipped with a finder as described above is also provided with a zoom lens, and thus a zoom lens is also used for the finder.
However, when the zoom ratio of the zoom lens becomes large, it is necessary to increase the maximum angular magnification of the finder. That is, for example, if the angular magnification is set to the conventional finder on the long focus side, the angular magnification becomes too small on the short focus side, and it becomes difficult to see the details of the subject such as the facial expression of the person to be photographed. In particular, in the case where the long focal length side is a long focal length such that there is a telephoto effect, unless the angular magnification of the finder is sufficiently large, it is difficult to see the details of the subject.

合焦機構のないフアインダーは、被写体の遠近による視
度の変化が角倍率の2乗にほぼ比例して大になる。第9
図は2枚の薄肉レンズL1とL2よりなり、無限遠物点に対
して視度が零になるように構成されたフアインダーであ
る。このフアインダーにおいてレンズL1から被写体0ま
での距離をs、瞳Pから被写体の空中像までの距離を
s′、レンズL2から瞳Pまでの距離をeP(いずれも図の
右側を正とし単位はmm)被写体0の視度D(デイオプタ
ー)は次の通りである。
In a finder without a focusing mechanism, the change in diopter due to the perspective of the subject becomes large in proportion to the square of the angular magnification. 9th
The figure shows a finder which is composed of two thin lenses L 1 and L 2 and has a diopter of zero for an object point at infinity. In this finder, the distance from the lens L 1 to the subject 0 is s, the distance from the pupil P to the aerial image of the subject is s ′, and the distance from the lens L 2 to the pupil P is e P (both are positive on the right side of the figure). The unit is mm. The diopter D (day opter) of the subject 0 is as follows.

D=1000γ2/{(1−γ)/−γ2eP+s) (1) ただしはレンズL1のパワー、γはフアインダーの角
倍率でこの例ではγ=−2/である。
D = 1000γ 2 / {(1 -γ) / 1 -γ 2 e P + s) (1) provided that 1 is the lens L 1 of the power, in this example in the angular magnification of gamma is Fuainda gamma = - is 2/1 .

通常の撮影領域では、 |(1−γ)/1|≪|s|、|γ2eP|≪|s|とみなせるの
で式(1)は次のようになる。
In a normal imaging area, | (1-γ) / 1 | << | s |, | γ 2 e P | << | s |, so that the equation (1) is as follows.

D≒1000γ2/s (2) よつて|γ|が1を超えると目の焦点調整能力だけでは
追従が困難になる。
D≈1000γ 2 / s (2) Therefore, when | γ | exceeds 1, it becomes difficult to follow only with the focus adjustment ability of the eyes.

また至近撮影を長焦点側で行なうと撮影倍率が大きくと
れる点で有利なので、至近撮影が長焦点側で行ない得る
ようにする必要がある。しかし前述のようなフアインダ
ーを備えたカメラでは至近撮影時、パララツクス補正を
行なう必要がある。
In addition, it is advantageous to perform close-up photography on the long focus side in that the photographing magnification can be large. Therefore, it is necessary to enable close-up photography on the long focus side. However, in a camera equipped with a finder as described above, it is necessary to correct the parallelism when taking a close-up image.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上のような理由から、フアインダーを備えたカメラ
で、高倍率であつて至近撮影を行なうフアインダーの場
合、合焦とパララツクス補正を同時に行なう必要がある
が、従来の方法の組合わせでは、両者を別々の二つの機
構で行なわなければならず機構がかさばる上にコストア
ツプになる。
For the above reasons, with a camera equipped with a finder, in the case of a finder that performs close-up photography at high magnification, it is necessary to perform focus and parallel correction at the same time, but with the combination of conventional methods, both It must be done in two separate mechanisms, which is bulky and costly.

本発明は、撮影距離が可変であるカメラに備えられ、か
つカメラの撮影レンズを通さずに像を形成するフアイン
ダーで、合焦とパララツクス補正とを同時に行ない得る
ようにしたフアインダーを提供するものである。
The present invention provides a finder that is provided in a camera with a variable shooting distance and that forms an image without passing through the photographic lens of the camera and that can perform focusing and parallel correction at the same time. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明のフアインダーは、撮影距離が可変であるカメラ
に備えられカメラの撮影レンズを通さずに像を形成する
もので、フアインダー中の視野枠,光枠等の撮像範囲を
表示する光学部材よりも被写体側で、かつズームフアイ
ンダーの場合は、その変倍作用を持つ部材よりも被写体
側であり結像作用を有するレンズを光軸に沿つて動かす
と同時に光軸と垂直方向に動かし、これによつてフアイ
ンダーの視度を一定の範囲に保ちかつパララツクスの補
正をも行ない得るものである。
INDUSTRIAL APPLICABILITY The finder of the present invention is provided in a camera having a variable shooting distance to form an image without passing through the photographic lens of the camera, and is more preferable than an optical member for displaying an imaging range such as a field frame and a light frame in the finder. On the subject side and in the case of the zoom finder, the lens having the image-forming action, which is on the subject side of the member having the variable magnification action, is moved along the optical axis, and at the same time, moved in the direction perpendicular to the optical axis. Therefore, it is possible to keep the diopter of the finder within a certain range and to correct the parallax.

又本発明のフアインダーは、フアインダー光軸と撮影レ
ンズの光軸を含む平面内で前記の移動するレンズの移動
を考える時に、このレンズの光軸上の移動量をx、光軸
に垂直な方向の移動量をy、無限遠の被写体に合わせた
状態での前記のレンズの位置を移動の原点とし、移動レ
ンズの焦点距離をf1,移動レンズから被写体までの距離
をs1,移動レンズの結像位置と撮影レンズとの間の距離
をlとするとき、次の関係を満足するようにしたもので
ある。
Further, the finder of the present invention, when considering the movement of the moving lens in a plane including the finder optical axis and the optical axis of the photographing lens, considers the movement amount of the lens on the optical axis as x, and the direction perpendicular to the optical axis. Is the moving amount, the focal length of the moving lens is f 1 , the distance from the moving lens to the subject is s 1 , the moving lens When the distance between the image forming position and the photographing lens is l, the following relationship is satisfied.

x≒−f1 2/s1 (A) y≒lf1/s1 (B) 第1図は、本発明の内容を説明するための概念図であつ
て、本発明のフアインダーは、基本的にはこれら図に示
すレンズ群L1とレンズ群L2にて構成されている。そして
そのうちの最も被写体側の結像作用を持つレンズ群L1
被写体の距離に応じて合焦のために光軸方向へ移動する
と同時にパララツクス補正のために光軸と垂直な方向に
動かすことによつて、撮影レンズTLによつて画面中央に
写される被写体のレンズ群L1による像をフアインダーの
レンズ群L1よりも後側に位置するレンズ群L2に対して一
定の位置に結像させるようにした。つまり撮影レンズTL
の光軸上の無縁遠物点0は、フアインダーのレンズ群
L1によつてI1の位置に結像すると、撮影レンズTLの光軸
上の至近物点0uはフアインダーのレンズ群L1をL1′に移
動させることによつて同じI1の位置に結像させるように
出来る。
x≈−f 1 2 / s 1 (A) y≈lf 1 / s 1 (B) FIG. 1 is a conceptual diagram for explaining the content of the present invention, and the finder of the present invention is basically Is composed of a lens unit L 1 and a lens unit L 2 shown in these figures. Then, among them, the lens group L 1 having the image-forming effect on the most object side is moved in the optical axis direction for focusing according to the distance of the object, and at the same time, is moved in the direction perpendicular to the optical axis for parametric correction. Therefore, the image taken by the lens group L 1 of the subject imaged at the center of the screen by the taking lens TL is formed at a fixed position with respect to the lens group L 2 located behind the finder lens group L 1. I was allowed to. That is, the shooting lens TL
Unrelated far object point 0 on the optical axis of the lens group Fuainda
When the image is formed at the position of I 1 by L 1 , the closest object point 0 u on the optical axis of the taking lens TL is moved to the same position of I 1 by moving the lens group L 1 of the finder to L 1 ′. Can be focused on.

以上のようにレンズ群L1を移動させた時のレンズ群群L1
の主点位置とL1′にある時の主点位置の光軸方向および
光軸と垂直方向の差x,yは次のように表わされる。つま
り前記の式(A),(B)を満足するようにすればよ
い。
When the lens group L 1 is moved as described above, the lens group L 1
Differences x and y between the principal point position of L and the principal point position at L 1 ′ in the optical axis direction and the direction perpendicular to the optical axis are expressed as follows. That is, the above expressions (A) and (B) may be satisfied.

x=−f1 2/(s1+f1)≒−f1 2/s1 y=lf1/(s1−f1)≒lf1/s1 この場合レンズ群L1は連続的に移動させるのが最も望ま
しいが、これを段階的に動かしても段の形状を適当に選
べば十分効果が得られる。
x = −f 1 2 / (s 1 + f 1 ) ≈−f 1 2 / s 1 y = lf 1 / (s 1 −f 1 ) ≈lf 1 / s 1 In this case, the lens group L 1 moves continuously. Although it is most desirable to make it possible, even if it is moved stepwise, a sufficient effect can be obtained if the shape of the step is appropriately selected.

〔実施例〕〔Example〕

次に本発明の一実施例を示す。 Next, an embodiment of the present invention will be described.

下記に示すデーターは、本発明の一実施例のフアインダ
ーの光学系の諸元を示すものである。
The data shown below show the specifications of the finder optical system according to one embodiment of the present invention.

f1=−25.851 γ=−0.46〜−1.17 r1=−69.4200 d1=1.5600 n1=1.49216 ν=57.50 r2=15.6930 d2=D1 r3=22.7820 d3=2.0000 n2=1.72916 ν=54.68 r4=−35.6780 d4=1.2100 r5=−11.9790 d5=1.3400 n3=1.80518 ν=25.43 r6=−50.2760 d6=1.0000 r7=−434.0600 d7=2.9000 n4=1.49216 ν=57.50 r8=−9.7950(非球面) d8=D2 r9=−108.8020 d9=2.5000 n5=1.49216 ν=57.50 r10=−21.6280(非球面) d10=D3 r11=22.6270 d11=43.4000 n6=1.49216 ν=57.50 r12=−22.6270 d12=0.2000 r13=9.9770(非球面) d13=2.7600 n7=1.49216 ν=57.50 r14=12.3320 d14=16.3000 r15 アイポイント W S T D1 21.922 15.395 4.992 D2 13.211 31.439 39.497 D3 12.356 0.656 3.00 非球面係数 E8=0.11634×10-3 E10=−0.17234×10-4、F10=0.30064×10-5 G10=−0.64352×10-7、H10=0.90312×10-9 E13=−0.44249×10-4、F13=−0.36906×10-6 G13=−0.65538×10-8 上記各実施例のデーター中、f1はレンズ群L1の焦点距
離、γは全系の角倍率、r1,r2,・・・はレンズ各面の曲
率半径、d1,d2,・・・は各レンズの肉厚およびレンズ間
隔、n1,n2,・・・は各レンズの屈折率、ν12,・・・
は各レンズのアツベ数である。
f 1 = −25.851 γ = −0.46 to −1.17 r 1 = −69.4200 d 1 = 1.5600 n 1 = 1.49216 ν 1 = 57.50 r 2 = 15.6930 d 2 = D 1 r 3 = 22.7820 d 3 = 2.0000 n 2 = 1.72916 ν 2 = 54.68 r 4 = −35.6780 d 4 = 1.200 r 5 = −11.9790 d 5 = 1.3400 n 3 = 1.80518 ν 3 = 25.43 r 6 = −50.2760 d 6 = 1.0000 r 7 = −434.0600 d 7 = 2.9000 n 4 = 1.49216 ν 4 = 57.50 r 8 = -9.7950 (aspherical surface) d 8 = D 2 r 9 = -108.8020 d 9 = 2.5000 n 5 = 1.49216 ν 5 = 57.50 r 10 = -21.6280 (aspherical surface) d 10 = D 3 r 11 = 22.6270 d 11 = 43.4000 n 6 = 1.49216 ν 6 = 57.50 r 12 = -22.6270 d 12 = 0.2000 r 13 = 9.9770 (aspherical surface) d 13 = 2.7600 n 7 = 1.49216 ν 7 = 57.50 r 14 = 12.3320 d 14 = 16.3000 r 15 Eyepoint WST D 1 21.922 15.395 4.992 D 2 13.211 31.439 39.497 D 3 12.356 0.656 3.00 Aspherical coefficient E 8 = 0.11634 × 10 -3 E 10 = −0.17234 × 10 -4 , F 10 = 0.30064 x 10 -5 G 10 = -0.64352 x 10 -7 , H 10 = 0.90312 x 10 -9 E 13 = -0.4 4249 × 10 −4 , F 13 = −0.36906 × 10 −6 G 13 = −0.65538 × 10 −8 In the data of the above examples, f 1 is the focal length of the lens unit L 1 , and γ is the angular magnification of the entire system. , R 1 , r 2 , ... are the radii of curvature of each lens surface, d 1 , d 2 , ... are the wall thickness and lens spacing of each lens, and n 1 , n 2 , ... Refractive index, ν 1 , ν 2 , ...
Is the Abbe number of each lens.

又、実施例中の第8図,10,13の各面は非球面でその非球
面の形状は光軸方向をy、光軸に垂直な方向をSとした
時次の式にて表わされる。
Each surface of FIGS. 8, 10 and 13 in the embodiment is an aspherical surface, and the shape of the aspherical surface is expressed by the following equation when y is the optical axis direction and S is the direction perpendicular to the optical axis. .

ただしCは非球面頂点での曲率 E,F,G,H・・・は非球面係数である。 Where C is the curvature at the aspherical vertex E, F, G, H ... are aspherical coefficients.

上記実施例のレンズ(r1,r2,d1,n1)が視度並びにパラ
ラツクス調整のために移動するレンズ群L1である。
The lenses (r 1 , r 2 , d 1 , n 1 ) of the above embodiment are the lens group L 1 that moves for adjusting the diopter and the parallax.

この実施例が組込まれるカメラは、例えば撮影レンズと
フアインダーとの光軸間隔lが40mmで、通常撮影領域は
無限遠(S=−∽)からS=−900mm又至近撮影領域
は、S=−900mm〜−500mmに設定されている。更にこの
実施例は、通常撮影と至近撮影を切り換えた時にレンズ
群L1が動くものであり、カメラの仕様に合わせて、通常
撮影状態のS=−3000mmとマクロに切換えたS=−900m
mでパララツクスがないように調整されており、又視度
は、通常撮影状態のS=−∽と至近撮影状態に切換えた
S=−900mmで−0.5デイオプターになるように設定され
ている。又通常撮影状態から至近撮影状態に切換えた時
レンズ群L1の移動量は、光軸と平行に物体側へ0.76mm、
光軸と垂直に撮影レンズから離れる方向へ1.15mmであ
る。尚、この時の−f1 2/s1,lf1/s1の値は夫々0.74,1.15
であり、x,yはこの値にほぼ一致している。
In the camera incorporating this embodiment, for example, the optical axis distance l between the taking lens and the finder is 40 mm, the normal photographing area is from infinity (S = −∽) to S = −900 mm, and the closest photographing area is S = − It is set to 900mm to -500mm. Furthermore, in this embodiment, the lens unit L 1 moves when switching between normal shooting and close-up shooting, and S = -3000 mm in normal shooting and S = -900 m switched to macro in accordance with camera specifications.
It is adjusted so that there is no parallax at m, and the diopter is set to be -0.5 diopter at S = -900 mm when the normal shooting state is switched to S = -∽ and the closest shooting state is switched. When the normal shooting state is switched to the close-up shooting state, the amount of movement of the lens unit L 1 is 0.76 mm toward the object side parallel to the optical axis,
1.15 mm away from the taking lens perpendicular to the optical axis. The values of −f 1 2 / s 1 and lf 1 / s 1 at this time are 0.74 and 1.15, respectively.
And x, y almost agree with this value.

第3図は、この実施例のフアインダーの視度変化を示す
図である。この例でW,Tは夫々ワイド,テレにおける視
度補正を行なつた場合、W′,T′は視度補正を行なわな
い場合のものである。角倍率の小さいワイド状態W,W′
においては視度による変化の差はあまりみられないが、
角倍率の大きいテレ状態においては、TとT′とで大き
く異なり、本発明による発明の効果が大きいことがわか
る。この効果は(2)式からもわかるように角倍率が大
きくなるほど大きくなるので、この実施例よりも角倍率
の大きいフアインダーの場合、切換えポイントを増やす
ことが効果的であり望ましい。
FIG. 3 is a diagram showing the diopter change of the finder of this embodiment. In this example, W and T are for wide and telescopic diopter correction, respectively, and W ′ and T ′ are for no diopter correction. Wide state with small angular magnification W, W ′
In, there is not much difference in the change due to diopter,
In the telephoto state where the angular magnification is large, T and T'are significantly different, and it is understood that the effect of the present invention is great. Since this effect increases as the angular magnification increases, as can be seen from the equation (2), it is effective and desirable to increase the switching points in the case of a finder with a larger angular magnification than this embodiment.

第4図はこの実施例のフアインダーのパララツクスの変
化を示す図である。このグラフに示されている値は、通
常撮影状態のレンズ群L1の後側焦点位置を通り撮影レン
ズの光軸に垂直な平面上で撮影レンズから離れる方向を
正としたもので、S=−3000の時の撮影レンズの光軸上
の1点と通常撮影状態のレンズ群L1の後側主点を通る直
線と上記の平面との交点を原点とした。このように表わ
した場合実際の画面中心とフアインダーの中心とのずれ
量を正接で表わすことになる。又このグラフは、レンズ
群L1の光軸近傍にて発生する歪曲収差が小さいとして無
視して示してある。
FIG. 4 is a diagram showing changes in the pararax of the finder of this embodiment. The values shown in this graph are positive in the direction away from the taking lens on a plane that passes through the rear focal position of the lens unit L 1 in the normal taking state and is perpendicular to the optical axis of the taking lens. The origin is an intersection of a point on the optical axis of the photographing lens at −3000, a straight line passing through the rear principal point of the lens unit L 1 in the normal photographing state, and the above plane. When expressed in this way, the amount of deviation between the actual center of the screen and the center of the finder is expressed by a tangent. Further, this graph is disregarded because the distortion aberration occurring near the optical axis of the lens unit L 1 is small.

このグラフ中で点線は、至近距離領域でパララツクス補
正をしなかつた場合である。この図からレンズ群L1を適
切な点で動かすことによつてパララツクス補正が効果的
に行なわれることがわかる。
In this graph, the dotted line shows the case where the parallel correction was not performed in the very close range. From this figure, it can be seen that the parallel correction is effectively performed by moving the lens unit L 1 at an appropriate point.

尚この実施例よりも角倍率を大きくするためには、レン
ズ群L1の焦点距離の絶対値を大にするかレンズ群L1より
も眼側の系の倍率の絶対値を大きくする必要があり、い
ずれの場合もパララツクスの見かけの変化量は大きくな
り、切換えポイントを増やすことが望ましい。
Note in order to increase the angular magnification than this example, is necessary to increase the absolute value of the magnification of the ocular side of the system than the one lens group L 1 to the absolute value of the focal length of the lens group L 1 in the large In either case, the apparent variation of the pararax becomes large, and it is desirable to increase the switching points.

又、この実施例では至近撮影状態においてレンズ群L1
動かした場合、それを動かさない場合に比べて実視野が
広くなる。それはレンズ群L1の焦点距離が負であるため
で、これは前玉が負のレンズ系の前玉繰出しによる合焦
機能を持つ一般の撮影レンズに共通の現象である。よつ
て前玉が負の前玉繰出し方式の撮影レンズと組合わせる
とレンズ群L1の移動による視野率の変化も補正出来るの
で望ましい。
Further, in this embodiment, when the lens unit L 1 is moved in the close-up photographing state, the actual visual field becomes wider than when the lens unit L 1 is not moved. This is because the focal length of the lens unit L 1 is negative, and this is a phenomenon that is common to general taking lenses that have a focusing function by extending the front lens of a lens system in which the front lens is negative. Therefore, it is desirable to combine it with a taking lens of a front-lens feeding type in which the front lens is a negative lens, because it is possible to correct the change in the field of view due to the movement of the lens unit L 1 .

この実施例の収差状況は第5図乃至第8図に示す通りで
ある。尚これら収差曲線図において、球面収差の縦軸
は、アイポイントの瞳径(半径)、非点収差および歪曲
収差の縦軸は、接眼系の射出角度、球面収差,非点収差
の横軸はデイオプターである。これら収差曲線図のう
ち、第5図はワイド状態で物点無限遠の収差曲線図、第
6図はワイド状態でS=−900mmの物点に対する至近撮
影状態に切換えた時の収差曲線図、第7図はテレ状態で
物点無限遠の収差曲線図、第8図はテレ状態でS=−90
0mmの物点に対し至近撮影状態に切換えたときの収差曲
線図である。これら図のうち第5図,第7図は、偏心が
ないため、収差は瞳の上下、見かけの視野の上下がそれ
ぞれ対称な形になつているが、第6図,第8図ではレン
ズ群L1を偏心させるために収差の対称性はなくなつてい
る。
The aberrations in this example are as shown in FIGS. In these aberration curve diagrams, the vertical axis of spherical aberration is the pupil diameter (radius) of the eye point, the vertical axis of astigmatism and distortion is the exit angle of the eyepiece system, and the horizontal axis of spherical aberration and astigmatism is It is a day opter. Of these aberration curve diagrams, FIG. 5 is an aberration curve diagram of the object point infinity in the wide state, and FIG. 6 is an aberration curve diagram when switching to the close-up shooting state for the object point S = −900 mm in the wide state, FIG. 7 is an aberration curve diagram of the object point at infinity in the tele state, and FIG. 8 is S = −90 in the tele state.
It is an aberration curve figure when it switches to a close-up photography state with respect to an object point of 0 mm. In FIGS. 5 and 7 of these figures, since there is no eccentricity, the aberrations are symmetrical in the upper and lower parts of the pupil and the upper and lower parts of the apparent visual field, but in FIG. 6 and FIG. The symmetry of aberration is eliminated to decenter L 1 .

なお第8図では見かけの視野の下側の端で急激に収差が
発生しているか、これはフアインダー視野では4隅のう
ちの一つの極めて端の角の部分であり実用上は問題がな
い。
It should be noted that in FIG. 8, aberration is suddenly generated at the lower end of the apparent field of view, or this is an extremely extreme corner of one of the four corners in the finder field, and there is no practical problem.

この実施例は、至近撮影状態で収差の発生が比較的大き
いが、それはレンズ群L1が負レンズであるために、至近
撮影状態でパララツクス補正を行なうとレンズ群L1が撮
影レンズの光軸から離れる方向に動き、そのためレンズ
群L1の周辺部をより多く使うためである。そのためレン
ズ群L1を正レンズで構成すれば、至近撮影状態でパララ
ツクス補正を行なうと、レンズ群L1は、撮影レンズの光
軸に近づく方向に動き、レンズ群L1が負レンズの場合に
比べてレンズ群L1の中心部付近を使うことになり、収差
変動は小さくできる。又レンズ群L1を複数枚で構成し、
レンズ群L1が全体として負の屈折力を持つようにすれば
このレンズ群の構成を工夫することによつて、レンズ群
L1を負の単レンズにした場合よりも収差変動を小さくす
ることが出来る。
In this embodiment, the aberration is relatively large in the close-up shooting state, but it is because the lens unit L 1 is a negative lens. Therefore, when the parallax correction is performed in the close-up shooting state, the lens unit L 1 is the optical axis of the shooting lens. This is because the lens moves in a direction away from, and therefore the peripheral portion of the lens unit L 1 is used more. Therefore, if the lens unit L 1 is composed of a positive lens, when the parallax correction is performed in the close-up shooting state, the lens unit L 1 moves toward the optical axis of the shooting lens, and when the lens unit L 1 is a negative lens. Compared with this, the vicinity of the center of the lens unit L 1 is used, and the variation in aberration can be reduced. Moreover, the lens unit L 1 is composed of a plurality of lenses,
If the lens unit L 1 has a negative refracting power as a whole, the lens unit L 1 is devised so that
Aberration variation can be made smaller than when L 1 is a negative single lens.

更にこの実施例は、レンズ群L1を平行移動させるもので
あるが、このレンズ群L1を平行移動と同時に撮影レンズ
の光軸とフアインダーの光軸とを含む平面内で回転させ
ることも可能であり、これによつてレンズ群L1の移動機
構を単純化し得ると共に、軸外収差の調整を行ない得
る。
Further, in this embodiment, the lens unit L 1 is moved in parallel, but it is also possible to rotate the lens unit L 1 in the plane including the optical axis of the photographing lens and the optical axis of the finder simultaneously with the parallel movement. Accordingly, the moving mechanism of the lens unit L 1 can be simplified, and the off-axis aberration can be adjusted.

またレンズ群L1を複数のレンズ又は厚肉のレンズにて構
成してその主点間隔が大きくなる場合や、レンズ群L1
後側主点がレンズ群L1の位置から離れた位置に存在する
場合は、レンズ群L1を撮影レンズの光軸とフアインダー
の光軸とを含む平面内で回転させるだけで後側主点を動
かしてパララツクスの補正が可能である。
Moreover and when the distance between principal points constitute a lens group L 1 by a plurality of lenses or thick lens becomes large, a position rear principal point of the lens group L 1 is a distance from the position of the lens group L 1 If it exists, the rear principal point can be moved to correct the parallelism simply by rotating the lens unit L 1 in a plane including the optical axis of the taking lens and the optical axis of the finder.

〔発明の効果〕〔The invention's effect〕

本発明のフアインダーは、被写体の遠近による視度の変
化とパララツククとをフアインダーの一部分のレンズを
動かすだけ補正が出来、しかもレンズの動きが単純であ
るので簡単な部品で構成でき低コストになし得るもので
ある。
The finder of the present invention can correct the diopter change due to the perspective of the subject and the parallelism by moving a part of the lens of the finder, and since the lens movement is simple, it can be configured with simple parts and can be made at low cost. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の内容を示す概念図、第2図は本発明の
実施例のレンズ構成を示す図、第3図は上記実施例の視
度変化を示す図、第4図は上記実施例のパララツクスの
変化を示す図、第5図乃至第8図は上記実施例の各収差
図、第9図は従来のフアインダーの結像状況等を示す図
である。
FIG. 1 is a conceptual diagram showing the contents of the present invention, FIG. 2 is a diagram showing a lens configuration of an embodiment of the present invention, FIG. 3 is a diagram showing a diopter change of the embodiment, and FIG. FIGS. 5 to 8 are graphs showing various changes in the parallax, FIGS. 5 to 8 are aberration diagrams of the above-described embodiment, and FIG. 9 is a graph showing the image formation state of a conventional finder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】撮影距離が可変であるカメラに備えられ撮
影レンズを通さずに像を形成するファインダーにおい
て、ファインダーを構成するレンズのうち撮影範囲を表
示する光学部材よりも被写体側でかつズームファインダ
ーの場合は変倍作用をもつレンズよりも被写体側のレン
ズで結像作用をもつレンズを光軸に沿って動かすことに
よって視度を一定の範囲に保ち、同時に該レンズを光軸
と垂直方向に動かすことによってパララックス補正を行
なうことを特徴とするフアインダー。
1. A finder provided in a camera having a variable shooting distance to form an image without passing through a shooting lens, the zoom finder being closer to a subject than an optical member for displaying a shooting range among lenses constituting the finder. In the case of, in the case of a lens closer to the subject than the lens having a zoom function, the diopter is moved along the optical axis to keep the diopter within a certain range, and at the same time, the lens is moved in the direction perpendicular to the optical axis. A finder that is characterized by performing parallax correction by moving it.
【請求項2】ファインダーの光軸と撮影レンズの光軸を
含む平面内での前記の移動レンズの光軸上での動き量を
x、光軸と垂直な方向への動き量をy、移動の原点を無
限遠の被写体に合わせた状態とし、移動レンズの焦点距
離をf1、移動レンズから被写体までの距離をs1、移動レ
ンズの結像位置と撮影レンズの距離をlとするとき次の
関係を満足するファインダー。
2. The amount of movement of the movable lens on the optical axis in a plane including the optical axis of the finder and the optical axis of the photographing lens is x, and the amount of movement in a direction perpendicular to the optical axis is y. When the focal point of the moving lens is f 1 , the distance from the moving lens to the subject is s 1 , and the distance between the moving lens imaging position and the shooting lens is 1 Finder that satisfies the relationship of.
JP2125088A 1988-02-02 1988-02-02 Wonder Expired - Fee Related JPH0786632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125088A JPH0786632B2 (en) 1988-02-02 1988-02-02 Wonder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125088A JPH0786632B2 (en) 1988-02-02 1988-02-02 Wonder

Publications (2)

Publication Number Publication Date
JPH01197727A JPH01197727A (en) 1989-08-09
JPH0786632B2 true JPH0786632B2 (en) 1995-09-20

Family

ID=12049822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125088A Expired - Fee Related JPH0786632B2 (en) 1988-02-02 1988-02-02 Wonder

Country Status (1)

Country Link
JP (1) JPH0786632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666809B2 (en) * 1988-09-06 1997-10-22 富士写真フイルム 株式会社 Parallax correction mechanism
JP2647504B2 (en) * 1989-07-26 1997-08-27 オリンパス光学工業株式会社 Real image type zoom finder
JP3143553B2 (en) * 1993-11-29 2001-03-07 キヤノン株式会社 Finder device

Also Published As

Publication number Publication date
JPH01197727A (en) 1989-08-09

Similar Documents

Publication Publication Date Title
JP2538525B2 (en) Variable magnification finder
JP2552861B2 (en) Zoom lens
JP3387524B2 (en) Variable magnification finder optical system
JP2647504B2 (en) Real image type zoom finder
JPH0434125B2 (en)
JPH0658454B2 (en) Variable magnification finder
JP2859275B2 (en) Zoom finder
JP3064337B2 (en) Real image type variable magnification finder optical system
JP3710188B2 (en) Viewfinder optical system
JPH0693072B2 (en) Zoom Finder
JPH0476086B2 (en)
JPH08122857A (en) Optical system of real image type variable power finder
JP2780109B2 (en) Real image type zoom finder
JP2533779B2 (en) Zoom lens
JPH09211547A (en) Real image system zoom finder
JP2899017B2 (en) Real image type magnification finder
JPH0786632B2 (en) Wonder
JPH073503B2 (en) Wide-angle lens with long back focus
JPH08248481A (en) Finder optical system
JP2958124B2 (en) Real image type variable magnification finder optical system
JPH08136806A (en) Real image type zoom finder
JP2542002B2 (en) Variable magnification finder
JP2796819B2 (en) Zoom finder
JPH0425688Y2 (en)
JP3300665B2 (en) Real image finder optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees