[go: up one dir, main page]

JPH0784605B2 - Method for producing fine copper powder - Google Patents

Method for producing fine copper powder

Info

Publication number
JPH0784605B2
JPH0784605B2 JP12036188A JP12036188A JPH0784605B2 JP H0784605 B2 JPH0784605 B2 JP H0784605B2 JP 12036188 A JP12036188 A JP 12036188A JP 12036188 A JP12036188 A JP 12036188A JP H0784605 B2 JPH0784605 B2 JP H0784605B2
Authority
JP
Japan
Prior art keywords
copper
powder
particle size
hydrazine
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12036188A
Other languages
Japanese (ja)
Other versions
JPH01290706A (en
Inventor
正義 吉武
豊彦 杉戸
茂 木藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP12036188A priority Critical patent/JPH0784605B2/en
Publication of JPH01290706A publication Critical patent/JPH01290706A/en
Publication of JPH0784605B2 publication Critical patent/JPH0784605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子回路の厚膜導体を成形するための銅塗料
として、特に有用な粒子が単分散した球状の銅微粉末の
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing spherical copper fine powder in which particles are monodispersed, which is particularly useful as a copper coating material for forming a thick film conductor of an electronic circuit. It is a thing.

〔従来の技術〕[Conventional technology]

銅塗料は、電子回路の厚膜導体を形成するのに現在使用
されている銀あるいはパラジウム塗料の代替品として、
最近注目され始めている。この銅塗料には通常0.2μm
〜10μmの銅微粉末が用いられているが、塗料を焼付け
たとき緻密な銅の導体膜を得るためには粒子が単分散し
た凝集のない、不純物の少ない球状銅微粉末が望まれて
いる。また、緻密な銅の導体膜を得るため、最密充てん
となるように、2種〜3種の粒度分布巾の狭い粉末を混
合して用いることも行われ、これに用いる銅粉は、球状
であるとともに粒径の揃った単分散した粉末であること
が要求される。
Copper paint is an alternative to the silver or palladium paints currently used to form thick film conductors in electronic circuits.
Recently, it has begun to attract attention. This copper paint is usually 0.2 μm
Copper fine powder having a particle size of up to 10 μm is used, but spherical copper fine powder containing monodispersed particles and less agglomerates and less impurities is desired in order to obtain a dense copper conductor film when a paint is baked. . Further, in order to obtain a dense copper conductor film, two or three kinds of powders having a narrow particle size distribution width may be mixed and used so as to be the closest packing, and the copper powder used for this is spherical. In addition, the powder is required to be a monodispersed powder having a uniform particle size.

従来、銅微粉末の製造方法としては種々提案されている
が、0.2μm〜10μmの粒径の銅粉末を製造できる方法
としては、 炭酸銅を含む銅含有溶液とヒドラジンあるいはヒドラ
ジン化合物と混合し、これを加熱することにより銅粉末
を還元析出せしめる方法。(特開昭57−155302号) 酸化銅を保護コロイドを含む水性媒体中でヒドラジン
及び/又はヒドラジン化合物で還元する方法。(特公昭
61−55562号) 還元剤としてヒドラジンを用いて硫酸銅水溶液を還元
して銅微粒子を製造する方法において、反応溶液中に界
面活性剤を添加することによって単分散した銅微粒子を
得る方法。(特開昭62−27508号,特開昭62−40302号,
特開昭62−77407号,特開昭62−77408号) 等がある。しかしながら、これら従来の方法では(a)
粒径が揃っている、(b)単分散している、(c)不純
物が少ない、(d)球状である、の条件を全て満足する
銅粉末は得られない。
Conventionally, various methods have been proposed as a method for producing fine copper powder, but as a method capable of producing a copper powder having a particle size of 0.2 μm to 10 μm, a copper-containing solution containing copper carbonate is mixed with hydrazine or a hydrazine compound, A method in which copper powder is reduced and precipitated by heating this. (JP-A-57-155302) A method of reducing copper oxide with hydrazine and / or a hydrazine compound in an aqueous medium containing a protective colloid. (Special public relations
61-55562) A method for producing copper fine particles by reducing an aqueous solution of copper sulfate using hydrazine as a reducing agent, which is a method of obtaining monodispersed copper fine particles by adding a surfactant to a reaction solution. (JP-A-62-27508, JP-A-62-40302,
JP-A-62-77407 and JP-A-62-77408). However, in these conventional methods (a)
A copper powder that satisfies all the conditions of uniform particle size, (b) monodispersed, (c) few impurities, and (d) spherical shape cannot be obtained.

即ち、前記の炭酸銅をヒドラジンで還元する方法で
は、析出中に銅粉が凝集するため形状が不規則となる。
また、の酸化銅を保護コロイドを含む水性媒体中で還
元する方法では、保護コロイドにより銅粉の凝集につい
てある程度防止されるものの満足できるものではない。
本発明者等の実験では、平均粒径1.5μmの粉末をこの
方法で製造した場合、0.7μm〜8μmの範囲の粒径を
有する粉末が得られる。さらにこの方法で問題となるの
は保護コロイド、即ちアラビアゴム等の水溶性高分子化
合物が銅粉中に残留すると、厚膜導体の焼成時に銅粉同
志の結合を妨害することがあり好ましくないことであ
る。またの硫酸銅水溶液を界面活性剤の存在下にヒド
ラジンで還元する方法では水溶液から銅を析出させるた
めの、析出時の粒径にばらつきを生じ、例えば平均粒径
が2.5μmのもので0.5μm〜8μmまでの粒径の粉末が
混入している。
That is, in the above-mentioned method of reducing copper carbonate with hydrazine, the copper powder agglomerates during precipitation, resulting in an irregular shape.
Further, the method of reducing copper oxide in an aqueous medium containing a protective colloid can prevent aggregation of copper powder to some extent by the protective colloid, but is not satisfactory.
In the experiments conducted by the present inventors, when a powder having an average particle size of 1.5 μm was produced by this method, a powder having a particle size in the range of 0.7 μm to 8 μm was obtained. Further, a problem with this method is that if a protective colloid, that is, a water-soluble polymer compound such as gum arabic remains in the copper powder, it may interfere with the bonding of the copper powders during firing of the thick film conductor, which is not preferable. Is. Further, in the method of reducing an aqueous solution of copper sulfate with hydrazine in the presence of a surfactant, the particle size at the time of precipitation varies for precipitating copper from the aqueous solution. For example, if the average particle size is 2.5 μm, 0.5 μm Powder having a particle size of up to 8 μm is mixed.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

本発明は、まず製造コストの有利性から水溶液中で銅化
合物を還元する製造方法であって、反応時間によって粒
形が影響させることなく短時間でも単分散した球状銅微
粉末が得られ、さらに粒度分布巾が狭く、かつ粒度もあ
る程度自由に変えられる銅微粉末の製造方法を種々研究
した結果、酸化銅をあらかじめ多価アルコールで表面処
理してヒドラジンを含む水溶液で還元すれば解決するこ
とを見出し本発明を完成したものである。
The present invention is a production method of reducing a copper compound in an aqueous solution from the advantage of production cost, and a spherical copper fine powder monodispersed even in a short time can be obtained without affecting the particle shape by the reaction time. As a result of various researches on a method for producing a fine copper powder having a narrow particle size distribution range and a particle size that can be freely changed to some extent, it is possible to solve the problem by pre-treating copper oxide with a polyhydric alcohol and reducing it with an aqueous solution containing hydrazine. Heading The present invention has been completed.

〔問題点を解決するための手段〕 即ち、本発明は、酸化銅粉末の表面を多価アルコールで
被覆した後、該酸化銅粉末をヒドラジンにより還元する
ことを特徴とする銅微粉末の製造方法である。
[Means for Solving the Problems] That is, the present invention is a method for producing a fine copper powder, which comprises coating the surface of a copper oxide powder with a polyhydric alcohol and then reducing the copper oxide powder with hydrazine. Is.

〔作用〕[Action]

本発明の出発原料の銅化合物は酸化銅であることが必要
であり、酸化銅としては酸化第一銅、酸化第二銅のいず
れも使用でき、ほとんど同じ結果を与える。
The starting copper compound of the present invention must be copper oxide, and as the copper oxide, either cuprous oxide or cupric oxide can be used, and almost the same results are obtained.

酸化銅以外の硫酸銅、硝酸銅、酢酸銅などの銅塩を出発
原料とすると、球状でない銅微粉末が多く析出しよくな
い。また、水酸化銅、炭酸銅を出発原料とすると銅塩を
用いたものより球状化するが、酸化銅を用いた場合より
も不規則状粉を多く含み粒度分布巾も広いものとなりよ
くない。
If a copper salt other than copper oxide, such as copper sulfate, copper nitrate, or copper acetate, is used as a starting material, a large amount of non-spherical fine copper powder is deposited, which is not good. Further, when copper hydroxide or copper carbonate is used as a starting material, it is more spheroidized than that using a copper salt, but it contains a lot of irregular powder and has a wider particle size distribution range than when copper oxide is used.

粒度分布巾の狭い球状銅微粉末を製造するためには出発
原料として酸化銅を用いる必要があるが、さらに酸化銅
を用いると銅微粉末の粒度(平均粒径とも言う)もある
程度自由に変えることができる。すなわち酸化銅の粉末
の粒度と析出する銅微粉末の粒度はある程度相関性があ
り、酸化銅の粉末粒度が大きいと銅微粉末も大きくな
り、酸化銅の粉末粒度を小さくすると銅微粉末も小さく
なる。
In order to produce spherical copper fine powder with a narrow particle size distribution, it is necessary to use copper oxide as a starting material, but if copper oxide is further used, the particle size of copper fine powder (also called average particle size) can be changed to some extent. be able to. That is, there is a certain degree of correlation between the particle size of the copper oxide powder and the particle size of the precipitated copper fine powder.If the copper oxide powder particle size is large, the copper fine powder also becomes large, and if the copper oxide powder particle size is made small, the copper fine powder also becomes small. Become.

さらに、酸化銅は他の銅化合物に比べ化合物中の銅含有
量が大であり、銅粉を析出する原料としては安価である
特徴も有する。
Further, copper oxide has a large copper content in the compound as compared with other copper compounds, and is also inexpensive as a raw material for depositing copper powder.

本発明では、酸化銅粉末の表面を多価アルコールで被覆
する工程を経るが、この工程を経ることにより、酸化銅
の粉末粒度を大きくしても粗大凝集物がなく、また小さ
い酸化銅の粉末を用いても微細なコロイド状とならず、
粒度の揃った銅微粉末が得られる。
In the present invention, through the step of coating the surface of the copper oxide powder with a polyhydric alcohol, by going through this step, there is no coarse agglomerates even if the powder particle size of the copper oxide is increased, and a small copper oxide powder Does not produce a fine colloidal form,
A fine copper powder having a uniform particle size is obtained.

多価アルコールとしては、エチレングリコール、ジエチ
レングリコール、トリエチレングリコール、ポリエチレ
ングリコール、グリセリンなどが適する。多価アルコー
ルの添加量は酸化銅に対して重量で0.5wt%から効果が
あり、20wt%までが適量であり、これ以上の添加は効果
も少なく経済的でない。
Suitable polyhydric alcohols are ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol and glycerin. The amount of polyhydric alcohol added is effective from 0.5 wt% to copper oxide by weight, and up to 20 wt% is an appropriate amount, and addition of more than this is not economical and is not economical.

なお、1価のアルコールでは単分散した球状銅微粉末を
得ることができない。
It should be noted that monodispersed spherical copper fine powder cannot be obtained with monohydric alcohol.

酸化銅を多価アルコールで被覆する方法は、酸化銅に多
価アルコールを加え、攪拌混合あるいは粉砕すればよ
い。
As a method of coating the copper oxide with the polyhydric alcohol, the polyhydric alcohol may be added to the copper oxide and mixed by stirring or pulverized.

攪拌混合の場合の混合機としては、通常のミキサー、ニ
ーダなどが使用できる。粉砕しながら行う場合は、ボー
ルミル、アトライター、振動ミルなどボールを粉砕媒体
とする、粉砕機を用いると効率よく粉砕、被覆処理をす
ることができる。
As a mixer in the case of stirring and mixing, an ordinary mixer, kneader or the like can be used. When the crushing is performed while crushing, a ball mill, an attritor, a vibration mill, or the like is used as a crushing medium. If a crusher is used, the crushing and coating treatment can be efficiently performed.

本発明において粉砕しながら酸化銅表面に多価アルコー
ルの被覆を形成することは、粒度の小さい銅微粉末を製
造する場合に重要である。
In the present invention, forming a coating of a polyhydric alcohol on the surface of copper oxide while pulverizing is important when producing a fine copper powder having a small particle size.

酸化銅の粉末が小さくなると均一に多価アルコールの被
覆を形成することが難しくなり、本発明の効果が十分得
られない場合がある。特に、小さい酸化銅の粉末を用い
て小さい銅微粉末を得ようとする場合は、大きい酸化銅
に多価アルコールを加え、粉砕しながら均一に被覆処理
した小さい酸化銅の粉末にしたものを用いる方が粒度の
揃った均一な球状銅微粉末が容易に得られるよい方法で
ある。
When the copper oxide powder becomes small, it becomes difficult to uniformly form a coating of polyhydric alcohol, and the effect of the present invention may not be sufficiently obtained. In particular, when a small copper fine powder is to be obtained using a small copper oxide powder, a polyhydric alcohol is added to the large copper oxide, and a small copper oxide powder uniformly coated while being crushed is used. This is a better method because it is easy to obtain a uniform spherical copper fine powder having a uniform particle size.

本発明に用いる還元剤はヒドラジン及びヒドラジン水化
物が適し、塩酸ヒドラジン、硫酸ヒドラジンなどのヒド
ラジン化合物も使用できるが、洗浄に問題があり、好ま
しくない。
As the reducing agent used in the present invention, hydrazine and hydrazine hydrate are suitable, and hydrazine compounds such as hydrazine hydrochloride and hydrazine sulfate can also be used, but they are not preferred because of problems in washing.

ヒドラジン以外の還元剤としてホルムアルデヒド、ブド
ウ糖、次亜リン酸、水素化ホウ素ナトリウムなどがある
が、還元力が弱く酸化銅を金属銅に還元出来なかった
り、例え還元析出しても粒度分布の広い不規則形状の銅
粉しか得られない。
Other reducing agents than hydrazine include formaldehyde, glucose, hypophosphorous acid, sodium borohydride, etc., but their reducing power is weak and copper oxide cannot be reduced to metallic copper. Only regular shaped copper powder can be obtained.

還元剤としてのヒドラジンの量は水溶液の量とも関係す
るが、基本的には酸化銅の量によって決定される。酸化
銅に対するヒドラジン量は重量で10wt%から還元反応が
認められるが50wt%以上加えた方が早く反応が進み短時
間に反応が終了する。なお、ヒドラジン量は多く加える
ほど早く反応が進むが200wt%以上加えても同じとなり
経済的でない。
The amount of hydrazine as a reducing agent is also related to the amount of aqueous solution, but it is basically determined by the amount of copper oxide. The amount of hydrazine with respect to copper oxide by weight shows a reduction reaction from 10 wt%, but the reaction proceeds faster and the reaction is completed in a short time when 50 wt% or more is added. It should be noted that the reaction proceeds faster as the amount of hydrazine added increases, but it becomes the same even if 200 wt% or more is added, which is not economical.

多価アルコールで被覆処理した酸化銅を分散、懸濁させ
る水溶液の量は酸化銅がうまく攪拌できる量であればよ
く、酸化銅容積の約50倍程度が好ましいが、攪拌操作を
行わない場合には、特に限定されるものではない。
The amount of the aqueous solution for dispersing and suspending the copper oxide coated with the polyhydric alcohol may be an amount that allows the copper oxide to be well stirred, and is preferably about 50 times the copper oxide volume, but when the stirring operation is not performed. Is not particularly limited.

還元反応が開始する温度は約40℃からであるが反応が終
了するまで長時間必要なため60℃以上に加温した方がよ
い。なお、70℃以上に加温すると反応熱により自然に約
100℃まで昇温するので、70℃以上になると加温しなく
てもよい。
The temperature at which the reduction reaction starts is from about 40 ° C, but since it takes a long time to complete the reaction, it is better to heat it to 60 ° C or higher. When heated above 70 ° C, the reaction heat will naturally
Since the temperature rises to 100 ° C, it is not necessary to heat at 70 ° C or higher.

短時間に銅微粉末を得るためにはヒドラジン量を多く
し、70℃まで加温する方法がよく、これによって得られ
る銅微粉末が不規則形状になることはない。
In order to obtain the copper fine powder in a short time, it is preferable to increase the amount of hydrazine and heat up to 70 ° C, and the copper fine powder obtained by this does not have an irregular shape.

なお、本発明を実施するために使用する反応槽は、攪拌
装置のついたものが好ましく、反応容器は不純物溶出防
止のためガラス製が好ましいが、ステンレス製あるいは
テフロンなどでコーティングした容器でもよい。
The reaction vessel used for carrying out the present invention is preferably equipped with a stirrer, and the reaction vessel is preferably made of glass to prevent elution of impurities, but may be made of stainless steel or a vessel coated with Teflon.

本発明の方法における銅微粉末の還元過程を説明すれ
ば、多価アルコールで被覆処理した酸化銅を水溶液に分
散、懸濁し、攪拌しながらヒドラジンを添加し、還元反
応温度まで徐々に加温すると黒色あるいは赤褐色の懸濁
液がしだいに赤色となり、銅色に変化する。これを放置
すると下部に銅微粉末が沈降し、上部は無色透明の液と
なる。沈降した銅微粉末を取り出し、アルコールあるい
はアセトンなどの有機溶剤で洗浄し、通常の方法で乾燥
すると粒度の揃った10μm以下の単分散した球状銅微粉
末が得られる。
Explaining the reduction process of the copper fine powder in the method of the present invention, copper oxide coated with a polyhydric alcohol is dispersed and suspended in an aqueous solution, hydrazine is added with stirring, and the mixture is gradually heated to the reduction reaction temperature. The black or reddish brown suspension gradually becomes red and changes to copper color. When this is left to stand, fine copper powder settles in the lower part, and the upper part becomes a colorless and transparent liquid. The precipitated fine copper powder is taken out, washed with an organic solvent such as alcohol or acetone, and dried by an ordinary method to obtain monodispersed spherical fine copper powder having a particle size of 10 μm or less.

多価アルコールで被覆処理した酸化銅を用いると反応速
度を早くしても単分散した球状銅微粉末が得られること
については充分解明されていないが、次のように考えら
れる。
It has not been fully clarified that monodispersed spherical fine copper powder can be obtained even if the reaction rate is increased by using copper oxide coated with a polyhydric alcohol, but it is considered as follows.

酸化銅粉末の表面に被覆された多価アルコールは、酸化
銅との間で銅化合物を形成し、これを水に分散させても
直ちに多価アルコールが水に溶解分散しないものと推定
される。従って、ヒドラジンにより還元され析出する銅
は近接する多価アルコールにより、他の析出銅との接触
が妨害され、単分散した球状銅微粉末が得られるものと
考えられる。
It is presumed that the polyhydric alcohol coated on the surface of the copper oxide powder forms a copper compound with the copper oxide and the polyhydric alcohol is not immediately dissolved and dispersed in water even when the copper compound is dispersed in water. Therefore, it is considered that the copper that is reduced and precipitated by hydrazine is prevented from coming into contact with other precipitated copper by the polyhydric alcohol in the vicinity, and a monodispersed spherical copper fine powder is obtained.

このことは多価アルコールを水溶液中に銅粉量と同量加
えても凝集した不規則形状の銅粉しか得られないことか
らも推測される。
This is presumed from the fact that even if the polyhydric alcohol is added to the aqueous solution in the same amount as the amount of copper powder, only aggregated irregularly shaped copper powder is obtained.

単分散した球状銅微粉末を得るためには、銅イオン濃度
を少なくしてゆっくり析出させる方法しかなかったが、
多価アルコール中では、高い銅イオン濃度であっても、
銅イオンの移動が遅いため銅の核が一定間隔でしか析出
しないため、その後の銅の還元析出においてくっつき合
わず、反応速度が早くても単分散した、球状銅微粉末が
得られるのであろう。
In order to obtain monodispersed spherical copper fine powder, there was only a method of decreasing the copper ion concentration and slowly precipitating,
In polyhydric alcohol, even with high copper ion concentration,
Since copper nuclei are deposited only at regular intervals due to slow migration of copper ions, they will not stick to each other in subsequent reduction and deposition of copper, and monodispersed spherical copper fine powder will be obtained even if the reaction rate is fast. .

〔実施例〕〔Example〕

以下に、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例(1) 平均粒径10μmの酸化第二銅50gにエチレングリコール
を5g加え、ミキサーで10分間攪拌混合し、しかる後に全
量を500ccの水溶液に分散、懸濁し、次いで攪拌しなが
らヒドラジン1水和物を50g添加し、15分後に70℃にな
るように徐々に加温した。懸濁液が70℃近くになると急
激な反応が生じ、10分後に液温が90℃に昇温すると同時
に反応が終了し、銅微粉末が析出した。
Example (1) 5 g of ethylene glycol was added to 50 g of cupric oxide having an average particle size of 10 μm, and the mixture was stirred and mixed with a mixer for 10 minutes, and then the whole amount was dispersed and suspended in an aqueous solution of 500 cc, and then hydrazine 1 water was added with stirring. 50 g of the Japanese product was added, and after 15 minutes, the mixture was gradually heated to 70 ° C. When the suspension temperature was close to 70 ° C., a rapid reaction occurred, and after 10 minutes, the liquid temperature was raised to 90 ° C. and, at the same time, the reaction was completed and copper fine powder was deposited.

アスピレータでろ過後、アセトンで洗浄し、その後20℃
で自然乾燥した。
After filtering with an aspirator, washing with acetone, then at 20 ℃
And dried naturally.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜2μmの揃った凝集のない単分散
した球状粉末であった。不純物として酸素量を測定した
結果、0.13%と非常に少ないものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 2 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.13%.

実施例(2) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみジエチレングリコールに
変えた以外は実施例(1)と同様にして銅微粉末を得
た。
Example (2) Copper fine powder was prepared in the same manner as in Example (1) except that the same cupric oxide as in Example (1) was used and only the polyhydric alcohol for surface treatment of cupric oxide was changed to diethylene glycol. Obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜2μmの揃った凝集のない単分散
した球状粉末であり、酸素量も0.14%と非常に少ないも
のであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 2 μm and no aggregation, and the oxygen content was 0.14%, which was very small.

実施例(3) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみトリエチレングリコール
に変えた以外は実施例(1)と同様にして銅微粉末を得
た。
Example (3) The same copper as in Example (1) was used except that the same cupric oxide as in Example (1) was used and only the polyhydric alcohol for surface treatment of cupric oxide was changed to triethylene glycol. A powder was obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜2μmの揃った凝集のない単分散
した球状粉末であり、酸素量も0.15%と非常に少ないも
のであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, the particles were 1 μm to 2 μm and were a uniform monodispersed spherical powder without agglomeration, and the oxygen content was very small at 0.15%.

実施例(4) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみポリエチレングリコール
#300に変えた以外は実施例(1)と同様にして銅微粉
末を得た。
Example (4) Copper was used in the same manner as in Example (1) except that the same cupric oxide as in Example (1) was used and only the polyhydric alcohol for surface treatment of cupric oxide was changed to polyethylene glycol # 300. A fine powder was obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜2μmの揃った凝集のない単分散
した球状粉末であり、酸素量も0.13%と非常に少ないも
のであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the particle shape, it was a monodispersed spherical powder having a uniform size of 1 μm to 2 μm and no aggregation, and the oxygen amount was 0.13%, which was very small.

実施例(5) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみグリセリンに変えた以外
は実施例(1)と同様にして銅微粉末を得た。
Example (5) Copper fine powder was prepared in the same manner as in Example (1) except that the same cupric oxide as in Example (1) was used and only the polyhydric alcohol for surface treatment of cupric oxide was changed to glycerin. Obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると1μm〜2μmの揃った凝集のない単分散
した球状粉末であり、酸素量も0.15%と非常に少ないも
のであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, the particles were 1 μm to 2 μm and were a uniform monodispersed spherical powder without agglomeration, and the oxygen content was very small at 0.15%.

実施例(6) 実施例(1)と同じ平均粒径10μmの酸化第二銅100gを
用い、エチレングリコールを0.5g加え、5mmφのステン
レスボールを粉砕媒体としたアトライターで30分間粉砕
した。粉砕後の酸化第二銅の平均粒径は5μmであっ
た。
Example (6) Using 100 g of cupric oxide having the same average particle diameter of 10 μm as in Example (1), 0.5 g of ethylene glycol was added, and crushed for 30 minutes with an attritor using a 5 mmφ stainless ball as a crushing medium. The average particle size of the cupric oxide after pulverization was 5 μm.

このように粉砕しながら表面処理した平均粒径5μmの
酸化第二銅50gを500ccの水溶液に分散、懸濁し、次いで
攪拌しながらビトラジン1水和物を50g添加し、15分後
に70℃になるように徐々に加温した。懸濁液が70℃近く
になると急激な反応が生じ、10分後に液温が92℃に昇温
すると同時に反応が終了し、銅微粉末が析出した。アス
ピレータでろ過後、アセトンで洗浄し、その後20℃で自
然乾燥した。
In this way, 50 g of cupric oxide having an average particle size of 5 μm, which has been surface-treated while being crushed, is dispersed and suspended in a 500 cc aqueous solution, and then 50 g of vitrazine monohydrate is added with stirring, and after 15 minutes, the temperature becomes 70 ° C. It was gradually heated. When the suspension temperature was close to 70 ° C., a rapid reaction occurred, and after 10 minutes, the liquid temperature was raised to 92 ° C. and, at the same time, the reaction was terminated and copper fine powder was deposited. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると0.5μm〜1μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.19%と非常に少ないものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 0.5 μm to 1 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.19%.

実施例(7) 実施例(1)と同じ平均粒径10μmの酸化第二銅100gを
用い、エチレングリコールを5g加え、5mmφのステンレ
スボールを粉砕媒体としたアトライターで180分間粉砕
した。粉砕後の酸化第二銅の平均粒径は0.5μmであっ
た。
Example (7) 100 g of cupric oxide having the same average particle size of 10 μm as in Example (1) was used, 5 g of ethylene glycol was added, and the mixture was ground for 180 minutes with an attritor using a 5 mmφ stainless ball as a grinding medium. The average particle size of the cupric oxide after pulverization was 0.5 μm.

このように粉砕しながら表面処理した平均粒径0.5μm
の酸化第二銅50gを500ccの水溶液に分散、懸濁し、次い
で攪拌しながらビトラジン1水和物を50g添加し、15分
後に70℃になるように徐々に加温した。懸濁液が70℃近
くになると急激な反応が生じ、10分後に液温が95℃に昇
温すると同時に反応が終了し、銅微粉末が析出した。ア
スピレータでろ過後、アセトンで洗浄し、その後20℃で
自然乾燥した。
An average particle size of 0.5 μm, which was surface-treated while being crushed in this way
50 g of cupric oxide was dispersed and suspended in a 500 cc aqueous solution, 50 g of vitrazine monohydrate was added with stirring, and the mixture was gradually heated to 70 ° C. after 15 minutes. When the suspension temperature was close to 70 ° C., a rapid reaction occurred, and after 10 minutes, the liquid temperature was raised to 95 ° C. and, at the same time, the reaction was terminated and copper fine powder was precipitated. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると0.3μm〜0.6μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.19%と非常に少ないものであった。
39 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 0.3 μm to 0.6 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.19%.

実施例(8) 平均粒径10μmの酸化第一銅50gに、エチレングリコー
ルを5g加え、ミキサーで10分間攪拌混合し、しかる後に
全量を500ccの水溶液に分散、懸濁し、次いで攪拌しな
がらビトラジン1水和物を50g添加し、15分後に70℃に
なるように徐々に加温した。懸濁液が70℃近くになると
急激な反応が生じ、10分後に液温が90℃に昇温すると同
時に反応が終了し、銅微粉末が析出した。アスピレータ
でろ過後、アセトンで洗浄し、その後20℃で自然乾燥し
た。
Example (8) 5 g of ethylene glycol was added to 50 g of cuprous oxide having an average particle size of 10 μm, and the mixture was stirred and mixed with a mixer for 10 minutes. Then, the whole amount was dispersed and suspended in an aqueous solution of 500 cc, and then vitrazine 1 was stirred. 50 g of the hydrate was added, and 15 minutes later, the mixture was gradually heated to 70 ° C. When the suspension temperature was close to 70 ° C., a rapid reaction occurred, and after 10 minutes, the liquid temperature was raised to 90 ° C. and, at the same time, the reaction was completed and copper fine powder was deposited. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると2μm〜3μmの揃った凝集のない単分散
した球状粉末であった。不純物として酸素量を測定した
結果0.11%と非常に少ないものであった。
44 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the particle shape, it was a monodispersed spherical powder having a uniform size of 2 μm to 3 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.11%.

実施例(9) 平均粒径10μmの酸化第一銅50gに、グリセリンを5g加
え、ミキサーで10分間攪拌混合し、しかる後に全量を50
0ccの水溶液に分散、懸濁し、次いで攪拌しながらビト
ラジン1水和物を25g添加し、15分後に60℃になるよう
に徐々に加温した。懸濁液が40℃以上になると徐々に反
応が開始し、60℃になると明らかに銅の析出が認めら
れ、30分後に反応が終了し、銅微粉末が析出した。アス
ピレータでろ過後、アセトンで洗浄し、その後20℃で自
然乾燥した。
Example (9) To 50 g of cuprous oxide having an average particle size of 10 μm, 5 g of glycerin was added, and the mixture was stirred and mixed with a mixer for 10 minutes.
25 g of bitrazine monohydrate was added while being dispersed and suspended in a 0 cc aqueous solution, and the mixture was gradually heated to 60 ° C. after 15 minutes. When the temperature of the suspension reached 40 ° C or higher, the reaction gradually started, and when it reached 60 ° C, the precipitation of copper was clearly observed. After 30 minutes, the reaction was completed and copper fine powder was precipitated. It was filtered with an aspirator, washed with acetone, and then naturally dried at 20 ° C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度、
粒形を見ると4μm〜5μmの揃った凝集のない単分散
した球状粉末であった。不純物として酸素量を測定した
結果0.10%と非常に少ないものであった。
44 g of copper fine powder was obtained, the particle size of the powder under an electron microscope,
As for the grain shape, it was a monodispersed spherical powder having a uniform size of 4 μm to 5 μm and no aggregation. As a result of measuring the amount of oxygen as an impurity, it was a very small amount of 0.10%.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、粒度分布巾の狭い、単分散
した球状銅微粉末を短時間にしかも安価に製造すること
ができる。
As described above, according to the present invention, monodispersed spherical copper fine powder having a narrow particle size distribution width can be produced in a short time and at low cost.

本発明によって得られる球状銅微粉末は、より緻密な厚
膜導体を形成する銅塗料に特に適し、また高純度である
ことから、各種触媒用としても有用なものである。
The spherical copper fine powder obtained by the present invention is particularly suitable for a copper coating which forms a denser thick-film conductor, and has high purity, so that it is also useful for various catalysts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化銅粉末の表面を多価アルコールで被覆
した後、該酸化銅粉末をヒドラジンにより還元すること
を特徴とする銅微粉末の製造方法。
1. A method for producing a fine copper powder, which comprises coating the surface of a copper oxide powder with a polyhydric alcohol and then reducing the copper oxide powder with hydrazine.
【請求項2】酸化銅粉末と多価アルコールを混合機又は
粉砕機に装入し、混合又は粉砕操作を行うことにより酸
化銅粉末の表面を多価アルコールで被覆することを特徴
とする特許請求の範囲第1項に記載の銅微粉末の製造方
法。
2. A copper oxide powder and a polyhydric alcohol are charged into a mixer or a crusher, and a mixing or crushing operation is performed to coat the surface of the copper oxide powder with the polyhydric alcohol. 2. The method for producing a fine copper powder according to item 1.
【請求項3】多価アルコールで被覆された酸化銅粉末を
水中に分散した状態で、攪拌しながらヒドラジン又はヒ
ドラジン水溶液を添加することにより該酸化銅粉末を還
元することを特徴とする特許請求の範囲第1項もしくは
第2項に記載の銅微粉末の製造方法。
3. A copper oxide powder coated with a polyhydric alcohol is dispersed in water to add hydrazine or an aqueous hydrazine solution while stirring to reduce the copper oxide powder. The method for producing a fine copper powder according to claim 1 or 2.
【請求項4】多価アルコールで被覆された酸化銅粉末を
水中に分散した状態で、攪拌しながらヒドラジン又はヒ
ドラジン水溶液を添加し、次いでこの混合懸濁液を加熱
することにより該酸化銅粉末を還元することを特徴とす
る特許請求の範囲第3項に記載の銅微粉末の製造方法。
4. A copper oxide powder coated with a polyhydric alcohol is dispersed in water, hydrazine or an aqueous solution of hydrazine is added thereto with stirring, and then the mixed suspension is heated to obtain the copper oxide powder. The method for producing a fine copper powder according to claim 3, characterized in that the copper fine powder is reduced.
JP12036188A 1988-05-17 1988-05-17 Method for producing fine copper powder Expired - Fee Related JPH0784605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12036188A JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12036188A JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH01290706A JPH01290706A (en) 1989-11-22
JPH0784605B2 true JPH0784605B2 (en) 1995-09-13

Family

ID=14784295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12036188A Expired - Fee Related JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JPH0784605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604627A (en) * 2019-01-26 2019-04-12 北京工业大学 A kind of device and method for reducing copper oxide with ethanol

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2452767B1 (en) * 2004-08-20 2015-11-25 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP4490305B2 (en) 2005-02-18 2010-06-23 Dowaホールディングス株式会社 Copper powder
JP4821014B2 (en) 2005-03-22 2011-11-24 Dowaエレクトロニクス株式会社 Copper powder manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604627A (en) * 2019-01-26 2019-04-12 北京工业大学 A kind of device and method for reducing copper oxide with ethanol

Also Published As

Publication number Publication date
JPH01290706A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
Ducamp-Sanguesa et al. Synthesis and characterization of fine and monodisperse silver particles of uniform shape
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
Silvert et al. Synthesis of monodisperse submicronic gold particles by the polyol process
KR101945166B1 (en) Copper powder for conductive paste and method for manufacturing same
JP2010513718A (en) Method for producing monodisperse and stable nanometallic silver and product obtained by said method
JP4012960B2 (en) Silver powder manufacturing method
JPS6155562B2 (en)
FR2691918A1 (en) Preparation of conductive powders of metal oxides.
US5188660A (en) Process for making finely divided particles of silver metals
US7226573B2 (en) Fine-grain silver oxide powder
JPH0920903A (en) Production of monodisperse gold grain powder
JPH0784605B2 (en) Method for producing fine copper powder
JP3973236B2 (en) Method for producing monodisperse noble metal powder
JPH10265812A (en) Production of superfine silver particle
JP2000239713A (en) Production of flaky silver powder
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JP4106460B2 (en) Method for producing copper powder
JP2621915B2 (en) Method for producing ultrafine copper powder
JPH0774364B2 (en) Method for producing fine copper powder
JP2776573B2 (en) Production method of indium oxide-tin oxide fine powder
JPS63266003A (en) Flaked platinum powder and production thereof
JP2000281797A (en) Preparation of fine particle
JP3122148B2 (en) Method for producing palladium powder
JPH05222413A (en) Production of copper monodisperse particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees