[go: up one dir, main page]

JPH0783934A - Analytical instrument equipped with a thermostatic chamber with temperature compensation function - Google Patents

Analytical instrument equipped with a thermostatic chamber with temperature compensation function

Info

Publication number
JPH0783934A
JPH0783934A JP23067193A JP23067193A JPH0783934A JP H0783934 A JPH0783934 A JP H0783934A JP 23067193 A JP23067193 A JP 23067193A JP 23067193 A JP23067193 A JP 23067193A JP H0783934 A JPH0783934 A JP H0783934A
Authority
JP
Japan
Prior art keywords
temperature
constant
constant temperature
bath
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23067193A
Other languages
Japanese (ja)
Inventor
Hiromichi Sato
弘道 佐藤
Hiroshi Hashimoto
汎 橋本
Mitsuru Ikezaki
満 池崎
Kahei Shiraishi
嘉平 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP23067193A priority Critical patent/JPH0783934A/en
Publication of JPH0783934A publication Critical patent/JPH0783934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Control Of Temperature (AREA)

Abstract

(57)【要約】 【目的】 気温の変化や装置自身の発熱温度変化という
要因があっても分析物質の温度を精度よく一定に保つ恒
温槽を具備した分析装置を提供する。 【構成】 恒温槽に組み込む各恒温槽温度センサと恒温
槽をとりまくハウジング10内部空間にモニタリング温
度センサ1とを配設し、モニタリング測定温度と、前記
各恒温槽温度に対する前記モニタリング測定温度の高,
低の大きさによる値(以下、補償温度)を前記恒温槽温
度に加算する演算制御回路103によりヒ−タや冷却装
置を制御が行なわれる恒温槽を分析装置に配設したもの
である。また、ハウジング10内部の雰囲気温度を検出
するモニタセンサ1を設けモニタ温度に対し、線形一次
直線で決定される補償温度を演算制御回路103にて加
算したものである。
(57) [Summary] [Purpose] To provide an analyzer equipped with a thermostatic chamber that maintains the temperature of an analyte accurately and accurately even when there are factors such as changes in air temperature and changes in the exothermic temperature of the device itself. [Composition] Each constant temperature bath temperature sensor incorporated in the constant temperature bath and a monitoring temperature sensor 1 are arranged in an internal space of a housing 10 surrounding the constant temperature bath, and the monitoring measurement temperature and the high monitoring measurement temperature with respect to each constant temperature bath temperature,
A thermostatic chamber in which a heater and a cooling device are controlled by an arithmetic and control circuit 103 for adding a value (hereinafter, compensation temperature) depending on the size of low to the thermostatic chamber temperature is provided in the analyzer. Further, a monitor sensor 1 for detecting the ambient temperature inside the housing 10 is provided, and the compensation temperature determined by a linear linear line is added to the monitor temperature by the arithmetic control circuit 103.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分析装置に係り、恒温
槽周囲の雰囲気温度に影響され難い温度補償機能をもた
せた恒温槽を具備する分析装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer, and more particularly to an analyzer equipped with a thermostat having a temperature compensating function that is hardly affected by the ambient temperature around the thermostat.

【0002】[0002]

【従来の技術】従来の分析装置では、ハウジングにおお
われた恒温槽内に、容器に入った形で試料や試薬が設置
され、前記試料・試薬の特性にあわせ一定温度に冷却さ
れたり,逆に温められたりして用いられている。そし
て、これらの試料や試薬はピペッティング機構により必
要量を反応容器に移しとられ、前記反応容器内では試料
と試薬とが反応し合い、分析物質へと変化し、分析測定
部で測定される。
2. Description of the Related Art In a conventional analyzer, a sample and a reagent are placed in a container in a thermostatic chamber covered with a housing, cooled to a constant temperature according to the characteristics of the sample and the reagent, and vice versa. It is used after being warmed. Then, the required amount of these samples and reagents is transferred to a reaction container by a pipetting mechanism, and the sample and the reagent react with each other in the reaction container to be changed into an analytical substance, which is measured by an analytical measurement unit. .

【0003】一般に、試料と試薬の反応では温度を一定
温に保つこと、特に生体試料においては前記反応容器や
前記分析物質を精度良く、体温にほぼ等しい37℃に保
つことが測定結果の再現性を良くするパラメータとして
要求される。このような分析装置における恒温槽ならび
に制御装置としては、特開昭56−168553号公報
や特開昭63−182568号公報記載の技術に示され
るように目標温度に制御された循環水を熱媒体として用
い、前記反応容器をその熱媒体水中に浸すことによって
精度よく前記分析物質を保温する装置が知られており、
多く実用化されている。
Generally, in a reaction between a sample and a reagent, it is necessary to maintain a constant temperature, particularly in a biological sample, to keep the reaction container and the analytical substance at 37 ° C., which is substantially equal to the body temperature, with good reproducibility of measurement results. Is required as a parameter to improve. As a constant temperature bath and a control device in such an analyzer, circulating water controlled to a target temperature is used as a heat medium as disclosed in the techniques described in JP-A-56-168553 and JP-A-63-182568. A device for accurately keeping the temperature of the analytical substance by immersing the reaction vessel in the heat medium water is known as
Many have been put to practical use.

【0004】しかし、これらの装置は、その構造が水と
いう液体を使用するために、水を循環させるためのポン
プや水質,水量を維持する機構を組み込んだり、配管を
引きまわしたりして大がかりになる。その上、例えば光
分析においては水に吸収される波長光を測定光として使
用しなければならない場合もある。
However, since these devices use a liquid called water, these devices have a large scale by incorporating a pump for circulating water, a mechanism for maintaining the water quality and the amount of water, and routing pipes. Become. In addition, for example, in optical analysis, it is sometimes necessary to use the wavelength light absorbed by water as the measurement light.

【0005】分析操作において、試料・試薬混合撹拌の
ために高速で前記反応容器自体を振動させる場合なども
ある。このように、水を熱媒体として水に浸して保温す
る手段を利用し得ない分析方法や装置も数多くある。
In the analysis operation, the reaction container itself may be vibrated at a high speed for stirring the sample / reagent mixture. As described above, there are many analysis methods and devices which cannot utilize the means for soaking the water in the water as a heat medium to keep the heat.

【0006】上記の如く、水を熱媒体として使用できな
い装置では、一般に空気恒温槽を用いたものが広く知ら
れており、この空気恒温槽を備えた分析装置の例として
は、米国特許第5,133,936号等が挙げられる。
そして、空気を利用した恒温槽およびその回路について
はガスクロマトグラフ装置の例ではあるが、実開昭64
−3926号公報記載の技術のように、温度制御ブリッ
ジ回路において、恒温槽内の制御検出用測温抵抗体と恒
温槽外の検出用用抵抗体とが同じ温度係数を有すること
により雰囲気温度変化補償を考慮した装置があげられ
る。
[0006] As described above, as an apparatus in which water cannot be used as a heat medium, an apparatus using an air constant temperature bath is generally widely known. As an example of the analyzer equipped with the air constant temperature oven, US Pat. , 133,936 and the like.
As for the thermostatic chamber and its circuit using air, which is an example of a gas chromatograph,
As in the technique disclosed in Japanese Patent No. 3926, in the temperature control bridge circuit, the temperature sensing resistor for control detection inside the thermostat and the resistor for detection outside the thermostat have the same temperature coefficient, thereby changing the ambient temperature. A device that considers compensation can be given.

【0007】[0007]

【発明が解決しようとする課題】近年の分析装置におい
ては、自動化が進み、複数個数並べられた反応容器中に
次々と分析物質を生成させているが、これらの温度制御
のために直接温度センサを分析物質内に挿入する方法
は、前記分析物質の性質を配慮し用いられていない。そ
こで前記の如く、水,空気のような反応容器をとりまく
熱媒体の温度を制御したり、あるいは反応容器をとりま
く恒温槽本体を制御したりして間接的に温度制御の方法
が用いられている。
In the recent analyzers, automation has progressed, and analytical substances are successively produced in a plurality of reaction vessels arranged side by side. However, in order to control these temperatures, a direct temperature sensor is used. The method of inserting the compound into the analytical substance is not used in consideration of the properties of the analytical substance. Therefore, as described above, an indirect temperature control method is used by controlling the temperature of the heat medium surrounding the reaction vessel such as water or air, or by controlling the constant temperature bath main body surrounding the reaction vessel. .

【0008】しかし、水のように比熱が大きく、少々の
外部からの侵入熱では温度変動し難い熱媒体はともかく
として、比熱が小さく空気を熱媒体とするような恒温槽
においては、恒温槽内部とハウジング内空間とのあいだ
に空気流出入があったり、気温の変化や装置自身の発熱
による影響などにより、反応容器中の分析物質の温度を
目標値で一定に保つことが難しいという問題点があっ
た。
However, apart from the heat medium whose specific heat is large like water and whose temperature does not easily fluctuate due to a small amount of heat entering from the outside, in the constant temperature tank whose specific heat is small and air is used as the heat medium, There is a problem that it is difficult to keep the temperature of the analyte in the reaction vessel at the target value because of air inflow and outflow between the housing and the space inside the housing, and changes in temperature and the heat generated by the device itself. there were.

【0009】しかも、分析装置では、±0.2〜0.3
〔℃〕の誤差精度にて分析物質の温度を制御するもので
あるから、前記ガスクロマトグラフ装置に用いられてい
る実開昭64−3926号公報記載の技術による温度補
償方法では不充分であった。本発明は、上記従来技術の
問題点を解決するためになされたもので、気温の変化や
装置自身の発熱温度変化という要因があっても分析物質
の温度を精度よく、かつ、一定に保つ恒温槽を具備した
分析装置を提供することを目的とする。
Moreover, in the analyzer, ± 0.2 to 0.3
Since the temperature of the substance to be analyzed is controlled by the error accuracy of [° C.], the temperature compensation method according to the technique described in Japanese Utility Model Laid-Open No. 64-3926 used in the gas chromatograph device is insufficient. . The present invention has been made in order to solve the above-mentioned problems of the prior art. Even if there is a factor such as a change in air temperature or a change in exothermic temperature of the device itself, the temperature of the analyte is kept constant with high accuracy. An object is to provide an analyzer equipped with a tank.

【00010】[00010]

【課題を解決するための手段】上記目的は、恒温槽に組
み込んだ各恒温槽温度センサと恒温槽をとりまくハウジ
ング内部空間にモニタリング温度センサとを配設し、前
記各恒温槽温度に対する前記モニタリングセンサ検出温
度の高,低差の大きさによる温度値(以下、補償温度と
いう)を前記恒温槽温度に加算する演算制御回路を設置
し、前記加算された温度により前記各恒温槽を制御する
ことによって達成することができる。また、前記補償温
度値は、前記各恒温槽制御温度に対する前記モニタリン
グ温度センサ検出温度の高,低差の大きさによる温度値
に対して線形一次直線で決定することによって達成され
る。
Means for Solving the Problems The above-mentioned object is to provide a constant temperature bath temperature sensor incorporated in a constant temperature bath and a monitoring temperature sensor in an inner space of a housing surrounding the constant temperature bath, and the monitoring sensor for each constant temperature bath temperature. By installing a calculation control circuit for adding a temperature value (hereinafter referred to as a compensation temperature) depending on the magnitude of the difference in detected temperature to the constant temperature bath temperature, and controlling each constant temperature bath by the added temperature. Can be achieved. Further, the compensation temperature value is achieved by determining a linear linear line with respect to a temperature value depending on the magnitude of the difference between the temperature detected by the monitoring temperature sensor and the temperature detected by the monitoring temperature sensor with respect to each constant temperature bath control temperature.

【00011】より詳しくは、本発明に係る温度補償機
能付恒温槽を具備した分析装置の構成は、ハウジング
と、前記ハウジング中に取り付けられた分析測定部と、
分析物質を入れる複数の反応容器と、前記反応容器を保
持し前記分析測定部へ移送するための反応容器移送機構
と、温度センサを具備した前記反応容器を特定温度に保
つための恒温槽と、前記分析物質を生成するための試料
と試薬とが入っている容器と、前記容器を保持移送する
移送機構と、温度センサを具備した前記容器を特定温度
に保つための恒温槽と、前記の各試料や各試薬を前記反
応容器中に必要量分注するピペッティング機構を備えた
分析装置において、前記ハウジング内部空間温度を検出
するモニタリングセンサと、前記各恒温槽のそれぞれの
温度に、当該各恒温槽温度と前記モニタリングセンサに
より検出したハウジング内部空間温度とのそれぞれの差
に関係する一定の補償温度を加算する演算回路と、前記
それぞれの演算値に基づき前記各恒温槽をそれぞれの温
度に制御する制御部とを備えたものである。演算回路
は、前記各恒温槽のそれぞれの温度に、前記各恒温槽の
温度とハウジング内部空間の検出温度とのそれぞれの差
に対して線形一次直線形で決定される補償温度を加算す
るようにしたものである。
More specifically, the structure of an analyzer equipped with a constant temperature bath having a temperature compensation function according to the present invention comprises a housing, an analysis measuring section mounted in the housing,
A plurality of reaction containers for containing an analytical substance, a reaction container transfer mechanism for holding the reaction container and transferring it to the analysis and measurement unit, and a constant temperature bath for maintaining the reaction container equipped with a temperature sensor at a specific temperature, A container containing a sample and a reagent for producing the analysis substance, a transfer mechanism for holding and transferring the container, a thermostatic chamber for maintaining the container at a specific temperature, which is equipped with a temperature sensor, and each of the above. In an analyzer equipped with a pipetting mechanism that dispenses a required amount of a sample or each reagent into the reaction container, a monitoring sensor that detects the internal space temperature of the housing, and the temperature of each of the constant temperature baths are adjusted to the respective constant temperature. An arithmetic circuit for adding a constant compensation temperature related to the difference between the bath temperature and the housing internal space temperature detected by the monitoring sensor, and the respective arithmetic values Wherein those having a control unit for controlling the constant temperature bath to the respective temperatures based. The arithmetic circuit is configured to add to each temperature of each of the constant temperature baths, a compensation temperature determined by a linear linear type with respect to each difference between the temperature of each of the constant temperature baths and the detected temperature of the housing internal space. It was done.

【0012】[0012]

【作用】上記各技術的手段の働きは次のとおりである。
本発明の構成によれば、モニタリング用温度センサでは
ハウジング内部空間温度TH〔℃〕をすると、恒温槽温
度に対して前記検出温度TH〔℃〕に基づく所定の補償
温度値が演算制御回路で加算され、この加算値にしたが
って加熱器や冷却器などを動作させるので、例えば反応
容器内の分析物質をT〔℃〕に精度よく保温することが
できる。
The function of each of the above technical means is as follows.
According to the configuration of the present invention, in the temperature sensor for monitoring, when the housing internal space temperature T H [° C.], a predetermined compensation temperature value based on the detected temperature T H [° C.] is calculated with respect to the constant temperature bath temperature. Since the heater and the cooler are operated in accordance with the added value, it is possible to accurately keep the temperature of the analyte in the reaction container at T [° C.], for example.

【0013】例えば、ハウジング内部空間がTH〔℃〕
の条件下において、反応容器内の分析物質をT〔℃〕
(ただし、T≧THとする)に保温する場合には、前記
空気の流出入現象などを考えると、反応容器を取り囲ん
でいる恒温槽の温度をT+△T〔℃〕に上昇させて、分
析物質がT〔℃〕に保温することができる。逆にいえ
ば、恒温槽自身がT+△T〔℃〕にすることにより前記
分析物質がT〔℃〕に保温することができる。
For example, the internal space of the housing is TH [° C]
Under the condition of
(However, the T ≧ T H) when kept at, given the like inflow and outflow behavior of the air, the temperature of the thermostatic chamber surrounding the reaction vessel is raised to T + △ T [℃], The analyte can be kept warm at T [° C]. Conversely, by setting the temperature of the thermostat itself to T + ΔT [° C], the analytical substance can be kept at T [° C].

【0014】前記△T〔℃〕が補償温度であり、一般に
T〔℃〕とTH〔℃〕の差が大きい程、補償温度△Tを
大きくする必要がある。ここで、T〔℃〕をTH〔℃〕
にかかわらず一定にするために△T〔℃〕をTH〔℃〕
に対する線形一次直線で近似決定する。このことは、実
験的に好作用を確認することがてきる。
The ΔT [° C.] is the compensation temperature, and generally, the larger the difference between T [° C.] and T H [° C.], the larger the compensation temperature ΔT needs to be. Where T [° C] is TH [° C]
△ T for constant regardless of the [℃] a T H [℃]
Approximate the linear first-order straight line to. This can be experimentally confirmed to have a favorable effect.

【0015】[0015]

【実施例】以下本発明の一実施例に係る温度補償機能付
恒温槽を具備した分析装置を図1ないし図8を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An analyzer equipped with a temperature-controlled thermostatic chamber according to an embodiment of the present invention will be described below with reference to FIGS.

【0016】〔実施例 1〕図1は、本発明の一実施例
に係る温度補償機能付き恒温槽を具備した分析装置の一
部ブロック図を含む略示説明図、図2は、図1の恒温槽
付分析装置に用いられる恒温槽の一部断面図、図3は、
図1の恒温槽付分析装置に用いられる温度制御回路図、
図4は、図3の温度制御回路の信号出力条件を示す線
図、図5は、図3の温度制御回路における制御特性の一
例を示す線図、図6は、図3の温度制御回路における他
の制御特性の一例を示す線図、図7は、図3の温度制御
回路におけるさらに他の制御特性の一例を示す線図であ
る。
[Embodiment 1] FIG. 1 is a schematic explanatory view including a partial block diagram of an analyzer equipped with a thermostat having a temperature compensation function according to an embodiment of the present invention, and FIG. A partial cross-sectional view of the constant temperature oven used in the analyzer with constant temperature oven, FIG.
FIG. 1 is a temperature control circuit diagram used in the analyzer with a constant temperature bath,
4 is a diagram showing signal output conditions of the temperature control circuit of FIG. 3, FIG. 5 is a diagram showing an example of control characteristics in the temperature control circuit of FIG. 3, and FIG. 6 is a diagram of the temperature control circuit of FIG. FIG. 7 is a diagram showing an example of another control characteristic, and FIG. 7 is a diagram showing an example of still another control characteristic in the temperature control circuit of FIG.

【0017】図1,2,3において、図中、1はモニタ
用測温抵抗体、9はモニタ用測温抵抗体の固定部材、1
0はハウジング、21は反応容器固定用のファスナ、3
0は反応容器、35は分析測定物質、40は反応容器用
恒温槽、41は反応容器恒温槽測温抵抗体、43は加熱
器、45は断熱材、50は試料・試薬ディスク、51は
試料容器、52は試薬容器、60は試料・試薬容器用恒
温槽、61は試料・試薬恒温槽測温抵抗体、70は試薬
溜用恒温槽、71は試薬溜恒温槽測温抵抗体、72は試
薬溜、80はピペッティング機構、90は分析測定部、
101はモニタ温度測定回路、102は恒温槽温度測定
回路、103は演算制御回路、104は出力回路、11
0、111、112は、前記各測定回路101、10
2、103のブリッジ辺の可変抵抗器である。
In FIGS. 1, 2 and 3, 1 is a monitor resistance temperature detector, 9 is a fixing member for the monitor resistance temperature detector, and 1
0 is a housing, 21 is a fastener for fixing the reaction container, 3
0 is a reaction container, 35 is an analytical measurement substance, 40 is a reaction container constant temperature bath, 41 is a reaction container constant temperature bath resistance thermometer, 43 is a heater, 45 is a heat insulating material, 50 is a sample / reagent disc, 51 is a sample A container, 52 is a reagent container, 60 is a sample / reagent container thermostat, 61 is a sample / reagent thermostat, 70 is a reagent thermostat, 71 is a reagent thermostat, and 72 is Reagent reservoir, 80 pipetting mechanism, 90 analysis and measurement unit,
Reference numeral 101 is a monitor temperature measuring circuit, 102 is a constant temperature bath temperature measuring circuit, 103 is an arithmetic control circuit, 104 is an output circuit, 11
0, 111, 112 are the measurement circuits 101, 10 described above.
2, 103 is a variable resistor on the bridge side.

【0018】図1に示す如く、分析ステ−ジ構成部品の
支持台およびカバ−をかねるハウジング10内には、そ
の内部の図示左側に駆動部(図示せず)により回転移動
する反応ディスク20が配置されている。前記反応ディ
スク20には、その外周縁に沿って反応容器30が配設
されている。前記ハウジング10の内部の図示右側に
は、駆動部(図示せず)によって回転移動する試料・試
薬ディスク50が配置され、前記試料・試薬ディスク5
0には、試料容器51や試薬容器52が各指定ポジショ
ンに固定されるようになっている。
As shown in FIG. 1, a reaction disk 20 rotatably moved by a drive unit (not shown) inside the housing 10 which also serves as a support and a cover for the components of the analysis stage. It is arranged. A reaction container 30 is arranged along the outer peripheral edge of the reaction disk 20. A sample / reagent disc 50, which is rotationally moved by a drive unit (not shown), is disposed on the right side inside the housing 10 in the drawing.
At 0, the sample container 51 and the reagent container 52 are fixed at respective designated positions.

【0019】図2により、反応容器30の周辺をさらに
祥しく説明する。前記反応容器30は、前記反応ディス
ク20にファスナ21により固定され、その内周(図2
においては、左側)外周、底面の三方向から囲む反応容
器用恒温槽40が配設され、前記反応容器用恒温槽40
がハウジング10に固定(固定部は図示せず)されるよ
うになっている。
The surroundings of the reaction vessel 30 will be described more prominently with reference to FIG. The reaction vessel 30 is fixed to the reaction disk 20 by a fastener 21 and has an inner circumference (see FIG. 2).
In the left side), a constant temperature bath 40 for a reaction vessel is provided, which is surrounded from the outer periphery and the bottom in three directions.
Is fixed to the housing 10 (the fixed portion is not shown).

【0020】前記反応容器用恒温槽40は、アルミニウ
ム等の熱伝導係数の大きい金属で形成され、この反応容
器用恒温槽40の温度を測定制御できるようにその一部
に小孔が穿設され、前記小孔には反応容器恒温槽測温抵
抗体41が挿入されている。また、ハウジング10内の
雰囲気温度を測定するため、モニタ用測温抵抗体1が、
その固定部材9に固定され、前記反応容器用恒温槽40
の近傍に設置されている。前記反応容器用恒温槽40
は、その外周に沿って加熱器43が巻かれ、前記加熱器
43が巻かれている部位を含め、外部との熱的遮断をす
るため断熱材45により覆われている。
The reaction chamber 40 is formed of a metal having a large coefficient of thermal conductivity such as aluminum, and a small hole is formed in a part of the reaction chamber 40 so that the temperature of the reaction chamber 40 can be measured and controlled. A reaction vessel thermostatic chamber temperature measuring resistor 41 is inserted into the small hole. Further, in order to measure the ambient temperature in the housing 10, the resistance temperature detector for monitor 1 is
It is fixed to the fixing member 9, and the thermostat 40 for the reaction vessel is used.
It is installed near. Constant temperature bath 40 for the reaction vessel
The heater 43 is wound around the outer circumference of the heater, and is covered with a heat insulating material 45 to thermally shield the outside, including the portion where the heater 43 is wound.

【0021】再び、図1に示すごとく、前記試料・試薬
ディスク50をとりかこむように試料・試薬用恒温槽6
0が配設され、前記反応容器用恒温槽40と同様、その
中に試料・試薬恒温槽測温抵抗体61(図示せず)が取
り付けられ、冷却装置により所定の温度、例えば、10
℃前後に制御され前記容器内の試料・試薬の腐敗劣化防
止がなされている。
Again, as shown in FIG. 1, the sample / reagent constant temperature bath 6 so as to enclose the sample / reagent disk 50.
No. 0 is provided, and a sample / reagent thermostat RTD 61 (not shown) is mounted therein as in the thermostat 40 for reaction vessels, and a predetermined temperature, for example, 10
It is controlled to around 0 ° C. to prevent spoilage and deterioration of the sample / reagent in the container.

【0022】前記ハウジング10内部中央にも、試薬溜
72と試薬溜用恒温槽70と前記試薬溜用恒温槽測温抵
抗体71とが設置され、他の各恒温槽とは独立して温度
制御され、前記試薬溜72内の試薬を所定の温度に保持
するようになっている。
A reagent reservoir 72, a reagent reservoir constant temperature bath 70, and the reagent reservoir constant temperature bath RTD 71 are also installed in the center of the housing 10, and the temperature is controlled independently of the other constant temperature baths. The reagent in the reagent reservoir 72 is kept at a predetermined temperature.

【0023】前記の試料容器51,試薬容器52,試薬
溜72内の試料や試薬は、前記各恒温槽40,60,7
0により囲繞された域内のほぼ中央に設けられているピ
ペッティング機構80の上下回転運動により、前記ピペ
ッティング機構80のノズル81の先端から前記反応容
器30へ移送・注入される。
The samples and reagents in the sample container 51, the reagent container 52 and the reagent reservoir 72 are stored in the constant temperature baths 40, 60 and 7 respectively.
By the vertical rotation movement of the pipetting mechanism 80 provided in the approximate center of the area surrounded by 0, the pipette mechanism 80 transfers and injects it from the tip of the nozzle 81 of the pipetting mechanism 80.

【0024】前記反応容器30へ移送・注入された各試
料,試薬は、前記反応容器30内で混合され、分析物質
35を形成するが、前記反応容器用恒温層40で囲まれ
ているため、次第に所定の温度まで加温されながら回転
・移送され、前記反応ディスク20の下方に配設されて
いる光度計などにより構成される分析測定部90にてデ
−タが測定される。
The respective samples and reagents transferred and injected into the reaction container 30 are mixed in the reaction container 30 to form an analytical substance 35, which is surrounded by the constant temperature layer 40 for the reaction container. It is gradually rotated and transferred while being heated to a predetermined temperature, and the data is measured by an analysis and measurement section 90 which is arranged below the reaction disk 20 and is constituted by a photometer or the like.

【0025】図3を参照して、反応容器恒温槽の温度制
御動作について詳述する。図3において、モニタ用測温
抵抗体1は、モニタ用温度測定回路101に接続されて
おり、反応容器恒温槽測温抵抗体41は恒温槽用温度測
定回路102に接続されている。
With reference to FIG. 3, the temperature control operation of the reaction vessel constant temperature bath will be described in detail. In FIG. 3, the monitor temperature measuring resistor 1 is connected to the monitor temperature measuring circuit 101, and the reaction vessel thermostatic chamber temperature measuring resistor 41 is connected to the thermostatic chamber temperature measuring circuit 102.

【0026】前記モニタ用温度測定回路101、前記恒
温槽用温度測定回路102は、前記モニタ用測温抵抗体
1、前記反応容器恒温槽測温抵抗体41をそれぞれ含む
ブリッジ回路とそのブリッジ出力を増幅する差動増幅器
120、121とを備えている。これらの出力が演算制
御回路103に伝達される。
The temperature measuring circuit for monitor 101 and the temperature measuring circuit for constant temperature chamber 102 respectively include a bridge circuit including the temperature measuring resistor for monitoring 1 and the reaction vessel constant temperature chamber temperature measuring resistor 41 and a bridge output thereof. The differential amplifiers 120 and 121 for amplifying are provided. These outputs are transmitted to the arithmetic and control circuit 103.

【0027】前記演算制御回路103は、前記差動増幅
器120の出力を抵抗112により分圧し、この分圧出
力と前記差動増幅器121の出力とがオペアンプ123
に入力され、増幅されている。さらに、前記演算制御回
路103は出力回路104と接続され、前記出力回路1
04は、加熱器43と接続されると共に前記加熱器43
に電流を流すための出力端子TPを具備している。
The arithmetic control circuit 103 divides the output of the differential amplifier 120 by a resistor 112, and the divided output and the output of the differential amplifier 121 are operational amplifiers 123.
Is input to and amplified. Further, the arithmetic control circuit 103 is connected to the output circuit 104, and the output circuit 1
04 is connected to the heater 43 and is connected to the heater 43.
It has an output terminal TP for passing a current therethrough.

【0028】図3には、反応容器恒温槽測温抵抗体41
が恒温槽用温度測定回路102に挿入されている場合を
図示しているが、前記試料・試薬恒温槽測温抵抗体6
1,前記試薬恒温槽測温抵抗体71もそれぞれ同一構成
の恒温槽用温度測定回路に挿入され、演算制御回路10
3、出力回路104にと接続されている。そして、それ
ぞれ前記試料・試薬用恒温槽60の冷却装置(図示せ
ず),前記試薬溜用恒温槽70のヒ−タ(図示せず)を
制御しているが、前記モニタ用温度測定回路101は共
用とし、前記演算制御回路103を簡易化している。
FIG. 3 shows a reaction vessel thermostatic chamber temperature measuring resistor 41.
Is shown inserted into the temperature measuring circuit for constant temperature chamber 102, the sample / reagent constant temperature chamber temperature measuring resistor 6
1. The reagent thermostat RTD 71 is also inserted into the thermostat temperature measuring circuit of the same configuration, and the arithmetic control circuit 10
3, connected to the output circuit 104. The cooling device (not shown) for the sample / reagent constant temperature bath 60 and the heater (not shown) for the reagent reservoir constant temperature bath 70 are controlled respectively, but the monitor temperature measuring circuit 101 is used. Are used in common to simplify the arithmetic control circuit 103.

【0029】ここで、本実施例の生体試料自動分析装置
における温度制御特性を検討する。反応容器30中の分
析物質35に求められる保温仕様は、前記分析物質35
の性質上、標準体温の37℃±0.2℃と厳しい。加え
て、前述した如く、空気を熱媒体とした恒温槽において
は、気温変化の影響、装置内の電源や駆動モ−タの発熱
影響、あるいは装置内における空気流れの影響などの要
因により、上記制御仕様に温度を維持することは技術的
にきわめて難しい。
Here, the temperature control characteristics of the biological sample automatic analyzer of the present embodiment will be examined. The heat insulation specifications required for the analytical substance 35 in the reaction container 30 are as follows.
The standard body temperature is 37 ° C ± 0.2 ° C, which is severe. In addition, as described above, in a thermostatic chamber using air as a heat medium, due to factors such as the influence of temperature changes, the heat generation of the power supply and drive motor in the device, or the influence of air flow in the device, It is technically extremely difficult to maintain the temperature within the control specifications.

【0030】図2に示す構成について温度制御を考える
と、ハウジング10内の雰囲気温度、すなわちモニタ用
測温抵抗体1の検出温度が所定の温度、例えば37℃よ
りも低い場合、分析物質35をT=37〔℃〕に加温維
持するためには反応容器用恒温槽40の温度がT=37
〔℃〕よりも高くなければならない。
Considering the temperature control for the configuration shown in FIG. 2, when the ambient temperature in the housing 10, that is, the detected temperature of the resistance temperature detector for monitoring 1 is lower than a predetermined temperature, for example, 37 ° C., the analytical substance 35 is discharged. In order to keep heating at T = 37 [° C.], the temperature of the reaction vessel thermostatic chamber 40 is T = 37.
It must be higher than [° C].

【0031】図4を参照して、さらに詳しく説明する。
図4は、反応容器恒温層40の制御温度と前記信号出力
端子TPの出力との関係を示しているが、前記のよう
に、ハウジング10内の雰囲気温度が所定温度より低い
場合、分析物質35の維持温度、37〔℃〕よりも高い
温度T1〔℃〕を臨界温度として加熱器43のON−O
FFの動作する必要がある。
A more detailed description will be given with reference to FIG.
FIG. 4 shows the relationship between the control temperature of the reaction vessel thermostatic layer 40 and the output of the signal output terminal TP. As described above, when the ambient temperature in the housing 10 is lower than the predetermined temperature, the analytical substance 35 is obtained. ON-O of the heater 43 with the temperature T 1 [° C.] higher than 37 [° C.] as the critical temperature.
It is necessary to operate the FF.

【0032】そして、前記ハウジング10内の雰囲気温
度と分析物質35の維持温度、37〔℃〕との温度差が
大きい程、T1を高く設定しなければない。このハウジ
ング10内の雰囲気温度と分析物質35の維持温度との
差を補償温度値と定義づけ、本実施例においては、補償
温度値を前記モニタ用測温抵抗体1の検出温度に対する
線型1次直線として決定する。図5は、横軸にモニタセ
ンサの検出温度をとり、縦軸に制御温度を示し、補償温
度値との関係の実例を示している。
Then, the larger the temperature difference between the ambient temperature in the housing 10 and the maintaining temperature of the analyte 35, 37 [° C.], the higher T 1 should be set. The difference between the ambient temperature in the housing 10 and the maintenance temperature of the analytical substance 35 is defined as a compensation temperature value. In this embodiment, the compensation temperature value is a linear primary with respect to the temperature detected by the monitor resistance temperature detector 1. Determine as a straight line. FIG. 5 shows the temperature detected by the monitor sensor on the horizontal axis and the control temperature on the vertical axis, showing an example of the relationship with the compensation temperature value.

【0033】また、前記反応容器30だけでなく、試
料、試薬も精度よく保温する必要があるときには同様に
して前記試料・試薬用恒温槽60,前記試薬溜用恒温槽
70の温度制御も実施できる。しかし、前記試薬貯溜槽
72内の試薬を保温する場合には、前記反応ディスク2
0のような構造でないため、比較的熱遮断構造がとりや
すく、補償値直線傾斜が小さくてよい場合もある。図6
は、横軸にモニタセンサの検出温度をとり、縦軸に制御
温度を示し、補償温度値との関係の一例を示したもので
ある。
When it is necessary to keep the temperature of not only the reaction container 30 but also the sample and the reagent with high accuracy, the temperature control of the sample / reagent thermostat 60 and the reagent reservoir thermostat 70 can be similarly performed. . However, when keeping the temperature of the reagent in the reagent storage tank 72, the reaction disk 2
Since the structure is not 0, a heat-shielding structure is relatively easy to take, and the compensation value linear gradient may be small in some cases. Figure 6
Shows the temperature detected by the monitor sensor on the horizontal axis and the control temperature on the vertical axis, showing an example of the relationship with the compensation temperature value.

【0034】図3において、モニタ用温度測定回路10
1の電圧出力をX、恒温槽用温度測定回路102の電圧
出力をYとすれば、演算制御回路103からの出力は、
AX+Y(0≦A≦1)となる。
In FIG. 3, the temperature measuring circuit for monitor 10 is used.
If the voltage output of 1 is X and the voltage output of the temperature measuring circuit 102 for constant temperature bath is Y, the output from the arithmetic control circuit 103 is
AX + Y (0 ≦ A ≦ 1).

【0035】具体例として、前記測定回路101、10
2のブリッジ回路の各出力可変抵抗器110,111を
調整し、反応容器恒温槽測温抵抗41が37.5〔℃〕
を検出するとき、恒温槽用温度測定回路102の差動電
圧が0、モニタ用温度測定回路101のモニタ用測温抵
抗体1が37〔℃〕を検出するとき、差動電圧が0とな
るようにする。さらに、前記演算制御回路103からの
出力が0となるよう熱的帰還を実現するように出力回路
104を構成する。前記反応容器恒温槽40の制御温度
は、図7の示す座標(37℃、37.5℃)の点を通る
多くの直線となる。
As a specific example, the measuring circuits 101 and 10
The output variable resistors 110 and 111 of the bridge circuit of 2 are adjusted so that the reaction vessel constant temperature chamber temperature measuring resistance 41 is 37.5 [° C.].
Is detected, the differential voltage of the temperature measuring circuit 102 for constant temperature bath is 0, and when the resistance temperature detector 1 for monitoring of the temperature measuring circuit 101 for monitoring detects 37 [° C.], the differential voltage is 0. To do so. Further, the output circuit 104 is configured to realize thermal feedback so that the output from the arithmetic control circuit 103 becomes zero. The control temperature of the reaction vessel constant temperature bath 40 becomes many straight lines passing through the points of the coordinates (37 ° C., 37.5 ° C.) shown in FIG. 7.

【0036】前記直線の傾きは、前記Aの大きさ、すな
わち、前記演算制御回路103の前記モニタ用温度測定
回路101の出力の分圧用可変抵抗器112の大きさに
よって決定される。分析物質35をモニタ温度如何にか
かわらず37〔℃〕に保温したければ、前記直線の示す
制御温度と37〔℃〕との差が、モニタセンサ1の各検
出温度に対する補償温度値ということになる。
The slope of the straight line is determined by the magnitude of A, that is, the magnitude of the voltage dividing variable resistor 112 of the output of the monitoring temperature measuring circuit 101 of the arithmetic control circuit 103. If it is desired to keep the analytical substance 35 at 37 [° C.] regardless of the monitor temperature, the difference between the control temperature indicated by the straight line and 37 [° C.] is the compensation temperature value for each detected temperature of the monitor sensor 1. Become.

【0037】前記補償温度値は、モニタセンサ検出温度
および分析物質35の温度の関係から実験的に容易に求
めることができる。その補償温度値をとるように前記可
変抵抗器110,111,112を調節する。このよう
な補償温度値を加え、制御されている反応容器用恒温槽
40により囲まれ保温されている分析物質35は、気温
の変化や装置自身の発熱によりモニタ検出付近の温度が
変化しても精度よく、例えば37℃を維持することがで
きる。本実施例に基づく空気恒温槽のデ−タによれば、
装置外気温が16℃から30℃まで変化しても分析物質
35を37℃±0.15に保温することができる。
The compensation temperature value can be easily obtained experimentally from the relationship between the temperature detected by the monitor sensor and the temperature of the analytical substance 35. The variable resistors 110, 111, 112 are adjusted so as to take the compensation temperature value. The analytical substance 35, which is surrounded by the controlled constant temperature bath 40 for a reaction container and kept warm by adding such a compensation temperature value, even if the temperature around the monitor detection changes due to a change in temperature or heat generated by the device itself. It is possible to accurately maintain, for example, 37 ° C. According to the data of the air constant temperature bath according to this embodiment,
Even if the outside air temperature of the device changes from 16 ° C. to 30 ° C., the analytical substance 35 can be kept at 37 ° C. ± 0.15.

【0038】〔実施例 2〕図8は、本発明の他の一実
施例に係る温度補償機能付恒温槽を具備した分析装置の
一部制御ブロック図を含む断面図である。図8に示す如
く、ファンにて送風される加熱空気により反応容器用恒
温槽を加熱する場合について説明する。
[Embodiment 2] FIG. 8 is a sectional view including a partial control block diagram of an analyzer equipped with a temperature-controlled thermostatic chamber according to another embodiment of the present invention. As shown in FIG. 8, the case where the constant temperature bath for the reaction vessel is heated by the heated air blown by the fan will be described.

【0039】図8において、図1と同一符号は同等部分
であるので詳細な説明を省略し、新たな符号のみ説明す
る。41aは吹付エア温度用測温体、44は送風ファ
ン、102aは吹付エア温度測定回路である。吹付エア
温度用測温体41aの検出温度に温度補償値を加え反応
容器用恒温槽40を制御する。本発明は、上記各実施例
に限定されるものでなく、種々の態様が考えられる。
In FIG. 8, the same reference numerals as those in FIG. 1 are the same parts, so detailed description thereof will be omitted and only new reference numerals will be described. 41a is a temperature measuring body for blowing air temperature, 44 is a blower fan, and 102a is a blowing air temperature measuring circuit. The temperature compensating value is added to the temperature detected by the temperature sensor 41a for blowing air temperature to control the constant temperature bath 40 for the reaction vessel. The present invention is not limited to the above embodiments, and various modes are conceivable.

【0040】[0040]

【発明の効果】以上、詳述したように本発明によれば、
モニタリングセンサによって恒温槽周囲の雰囲気温度を
検出し、その雰囲気温度に対する線形一次直線で決定さ
れる補償温度が演算制御回路で加算制御されているた
め、気温の変化や装置自身の発熱温度変化という要因が
あっても分析物質の温度を精度、かつ、一定に保つ恒温
槽を具備した分析装置を提供することができる。
As described above in detail, according to the present invention,
The ambient temperature around the constant temperature bath is detected by the monitoring sensor, and the compensation temperature determined by a linear linear line to the ambient temperature is added and controlled by the arithmetic control circuit. Even if there is, it is possible to provide an analyzer equipped with a constant temperature bath that keeps the temperature of the analysis substance accurate and constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る温度補償機能付恒温槽
を具備した分析装置の一部ブロック図を含む略示説明図
である。
FIG. 1 is a schematic explanatory view including a partial block diagram of an analyzer equipped with a temperature-controlled thermostat according to an embodiment of the present invention.

【図2】図1の恒温槽付分析装置に用いられる恒温槽の
一部断面図である。
FIG. 2 is a partial cross-sectional view of a constant temperature oven used in the analyzer with constant temperature oven of FIG.

【図3】図1の恒温槽付分析装置に用いられる温度制御
回路図である。
FIG. 3 is a temperature control circuit diagram used in the analyzer with a constant temperature bath of FIG.

【図4】図3の温度制御回路の信号出力条件を示す線図
である。
FIG. 4 is a diagram showing a signal output condition of the temperature control circuit of FIG.

【図5】図3の温度制御回路における制御特性の一例を
示す線図である。
5 is a diagram showing an example of control characteristics in the temperature control circuit of FIG.

【図6】図3の温度制御回路における他の制御特性の一
例を示す線図である。
6 is a diagram showing an example of another control characteristic in the temperature control circuit of FIG.

【図7】図3の温度制御回路におけるさらに他の制御特
性の一例を示す線図である。
FIG. 7 is a diagram showing an example of still another control characteristic in the temperature control circuit of FIG.

【図8】本発明の他の一実施例に係る温度補償機能付恒
温槽を具備した分析装置の一部断面図を含む制御ブロッ
ク図である。
FIG. 8 is a control block diagram including a partial cross-sectional view of an analyzer equipped with a temperature-controlled thermostatic chamber according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 モニタ用測温抵抗体 10 ハウジング 30 反応容器 35 分析測定物質 40 反応容器用恒温槽 41 恒温槽制御用測温抵抗体 41a 吹付エア用測温抵抗体 43 ヒ−タ 44 送風ファン 101 モニタ用温度測定回路 102 恒温槽用温度測定回路 102a 吹付エア温度測定回路 103 演算制御回路 104 出力回路 111 可変抵抗器 110 可変抵抗器 112 可変抵抗器 1 RTD for monitor 10 Housing 30 Reaction vessel 35 Analytical measurement substance 40 Constant temperature bath for reaction vessel 41 RTD for control of constant temperature bath 41a RTD for blowing air 43 Heater 44 Blower fan 101 Temperature for monitor Measuring circuit 102 Constant temperature bath temperature measuring circuit 102a Spraying air temperature measuring circuit 103 Arithmetic control circuit 104 Output circuit 111 Variable resistor 110 Variable resistor 112 Variable resistor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 汎 茨城県勝田市市毛1040番地 株式会社日立 サイエンスシステムズ内 (72)発明者 池崎 満 茨城県勝田市市毛1040番地 株式会社日立 サイエンスシステムズ内 (72)発明者 白石 嘉平 茨城県勝田市市毛1040番地 株式会社日立 サイエンスシステムズ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Pan Hashimoto, 1040 Imo, Katsuta, Ibaraki, Hitachi Science Systems Co., Ltd. 72) Inventor Kahei Shiraishi, 1040, Moe, Katsuta, Ibaraki, Hitachi Science Systems Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハウジングと、前記ハウジング中に取り
付けられた分析測定部と、分析物質を入れる複数の反応
容器と、前記反応容器を保持し前記分析測定部へ移送す
るための反応容器移送機構と、温度センサを具備した前
記反応容器を特定温度に保つための恒温槽と、前記分析
物質を生成するための試料と試薬とが入っている容器
と、前記容器を保持移送する移送機構と、温度センサを
具備した前記容器を特定温度に保つための恒温槽と、前
記の各試料や各試薬を前記反応容器中に必要量分注する
ピペッティング機構を備えた分析装置において、 前記ハウジング内部空間温度を検出するモニタリングセ
ンサと、 前記各恒温槽のそれぞれの温度に、当該各恒温槽温度と
前記モニタリングセンサにより検出したハウジング内部
空間温度とのそれぞれの差に関係する一定補償温度を加
算する演算回路と、 前記各演算値に基づき前記各恒温槽をそれぞれ所定の温
度に制御する制御部とを備えたことを特徴とする温度補
償機能付恒温槽を具備した分析装置。
1. A housing, an analysis / measurement unit mounted in the housing, a plurality of reaction containers for containing an analyte, and a reaction container transfer mechanism for holding the reaction container and transferring it to the analysis / measurement unit. A constant temperature bath for maintaining the reaction container at a specific temperature equipped with a temperature sensor, a container containing a sample and a reagent for producing the analyte, a transfer mechanism for holding and transferring the container, and a temperature In an analyzer equipped with a thermostatic chamber for maintaining the container equipped with a sensor at a specific temperature, and a pipetting mechanism for dispensing a required amount of each sample or each reagent into the reaction container, the internal space temperature of the housing A monitoring sensor for detecting the temperature of each of the constant temperature baths, and the temperature of the constant temperature bath and the internal space temperature of the housing detected by the monitoring sensor. A constant temperature with temperature compensation function, comprising: an arithmetic circuit for adding a constant compensation temperature related to the difference; and a control unit for controlling each of the constant temperature baths to a predetermined temperature based on each of the calculated values. An analyzer equipped with a tank.
【請求項2】 演算回路は、前記各恒温槽のそれぞれの
温度に、前記各恒温槽温度とハウジング内部空間の検出
温度とのそれぞれの差に対して線形一次直線形で決定さ
れる補償温度を加算することを特徴とする請求項1記載
の温度補償機能付恒温槽を具備した分析装置。
2. The arithmetic circuit provides, to each temperature of each of the constant temperature baths, a compensation temperature determined in a linear linear form with respect to each difference between the temperature of each constant temperature bath and the detected temperature of the housing internal space. An analyzer comprising a thermostatic chamber with a temperature compensation function according to claim 1, wherein the temperature is added.
JP23067193A 1993-09-17 1993-09-17 Analytical instrument equipped with a thermostatic chamber with temperature compensation function Pending JPH0783934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23067193A JPH0783934A (en) 1993-09-17 1993-09-17 Analytical instrument equipped with a thermostatic chamber with temperature compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23067193A JPH0783934A (en) 1993-09-17 1993-09-17 Analytical instrument equipped with a thermostatic chamber with temperature compensation function

Publications (1)

Publication Number Publication Date
JPH0783934A true JPH0783934A (en) 1995-03-31

Family

ID=16911481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23067193A Pending JPH0783934A (en) 1993-09-17 1993-09-17 Analytical instrument equipped with a thermostatic chamber with temperature compensation function

Country Status (1)

Country Link
JP (1) JPH0783934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303963A (en) * 2006-05-11 2007-11-22 Olympus Corp Analyzer, and method for controlling temperature of liquid sample in analyzer
JP2015090605A (en) * 2013-11-06 2015-05-11 東ソー株式会社 Temperature controllable analyzer
CN114690820A (en) * 2022-03-30 2022-07-01 广东万和电气有限公司 Kitchen appliance and temperature compensation method and device
JP2024051118A (en) * 2019-08-05 2024-04-10 株式会社日立ハイテク Liquid Dispensing Device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303963A (en) * 2006-05-11 2007-11-22 Olympus Corp Analyzer, and method for controlling temperature of liquid sample in analyzer
JP2015090605A (en) * 2013-11-06 2015-05-11 東ソー株式会社 Temperature controllable analyzer
JP2024051118A (en) * 2019-08-05 2024-04-10 株式会社日立ハイテク Liquid Dispensing Device
CN114690820A (en) * 2022-03-30 2022-07-01 广东万和电气有限公司 Kitchen appliance and temperature compensation method and device
CN114690820B (en) * 2022-03-30 2023-08-08 广东万和电气有限公司 Household appliance for kitchen and temperature compensation method and device

Similar Documents

Publication Publication Date Title
EP1859258B1 (en) Differential scanning calorimeter (dsc) with temperature controlled furnace
US4963499A (en) Method for the calorimetry of chemical processes
US4892707A (en) Apparatus for the calorimetry of chemical processes
EP2645108B1 (en) Automatic analyzer
JP4505842B2 (en) Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus
US5730026A (en) Microprocessor-based liquid sensor and ice detector
CA1057974A (en) Apparatus and method for batch-type analysis of liquid samples
JP3434694B2 (en) Differential scanning calorimeter
JP4098935B2 (en) Single cell calorimeter
JP2671931B2 (en) Device and method for analyzing medical samples
US4266194A (en) Sensor for VT probes
JPH0783934A (en) Analytical instrument equipped with a thermostatic chamber with temperature compensation function
JP2006515672A (en) Precision control thermostat
US5586061A (en) Temperature validation method for temperature-controlling and temperature-monitoring systems
Bowie et al. Development of an aqueous temperature-indicating technique and its application to clinical laboratory instrumentation.
JP2008020311A (en) Analysis apparatus
Merlone et al. A liquid bath for accurate temperature measurements
EP0170713B1 (en) Method and apparatus for the calorimetry of chemical processes
JP2002296283A (en) Automatic analyzer
Rusby Introduction to temperature measurement.
Span et al. Measurement uncertainty in calibration and compliancy testing of PCR and qPCR thermal cyclers
CA1224941A (en) Method and apparatus for the calorimetry of chemical processes
JPS60189021A (en) Thermostatic oven
KR920009890B1 (en) Temperature control means of thermostat for measuring viscosity
JPH087170B2 (en) Adiabatic temperature rise test equipment for concrete etc.