[go: up one dir, main page]

JPH0782098A - Silicon substrate having silicon carbide-embedded layer and its production - Google Patents

Silicon substrate having silicon carbide-embedded layer and its production

Info

Publication number
JPH0782098A
JPH0782098A JP18925693A JP18925693A JPH0782098A JP H0782098 A JPH0782098 A JP H0782098A JP 18925693 A JP18925693 A JP 18925693A JP 18925693 A JP18925693 A JP 18925693A JP H0782098 A JPH0782098 A JP H0782098A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
layer
silicon carbide
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18925693A
Other languages
Japanese (ja)
Other versions
JP2615406B2 (en
Inventor
Akiyoshi Chiyatanihara
昭義 茶谷原
Kaneshige Fujii
兼栄 藤井
Yuji Horino
裕治 堀野
Masato Kiuchi
正人 木内
Atsushi Kinomura
淳 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5189256A priority Critical patent/JP2615406B2/en
Publication of JPH0782098A publication Critical patent/JPH0782098A/en
Application granted granted Critical
Publication of JP2615406B2 publication Critical patent/JP2615406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a single crystal silicon carbide layer having same crystal direction as a single crystal silicon as thickly as possible to a definite depth from the surface of a silicon substrate. CONSTITUTION:In a silicon substrate having silicon carbide-embedded layer, this silicon substrate has a single crystal silicon layer on the surface and has a single crystal silicon carbide layer having same crystal direction as the single crystal silicon as an intermediate layer under the single crystal silicon layer. In a method for synthesizing silicon carbide by injecting carbon ion into the silicon substrate, carbon ions to which >=20keV energy is given are injected into the single crystal silicon substrate heated and kept to 800-1300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素埋め込み層をも
つシリコン基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon substrate having a silicon carbide embedded layer and a method for manufacturing the same.

【0002】[0002]

【従来技術とその課題】炭化珪素は、エネルギーバンド
ギャップが3Cで2.4eV、6Hで3.0eVと大き
く、しかも熱伝導性が高いため、高温動作可能な大電力
用半導体素子、発光素子材料等として利用されている。
この場合、シリコン基板中にできるだけ分厚い炭化珪素
層を形成させることができれば、各種分野における利用
価値をより一層高めることができる。
2. Description of the Related Art Silicon carbide has a large energy band gap of 2.4 eV at 3 C and 3.0 eV at 6 H and has high thermal conductivity. It is used as etc.
In this case, if a silicon carbide layer as thick as possible can be formed in the silicon substrate, the utility value in various fields can be further enhanced.

【0003】炭化珪素の単結晶バルクを形成する方法と
して昇華法、液相法等があり、これらの方法により形成
させた単結晶バルクをスライスし、研磨することによっ
て炭化珪素基板が製造される。
As a method for forming a single crystal bulk of silicon carbide, there are a sublimation method, a liquid phase method and the like, and a silicon carbide substrate is manufactured by slicing and polishing the single crystal bulk formed by these methods.

【0004】しかしながら、上記の単結晶バルクの炭化
珪素合成方法では、大きな単結晶を合成することが困難
である。また、炭化珪素は多くの結晶多形をもち、その
形によって性質も大きく異なるので目的に応じた結晶形
とする必要があるが、上記合成方法ではその制御が極め
て困難である。
However, it is difficult to synthesize a large single crystal by the above-mentioned method for synthesizing silicon carbide of single crystal bulk. Further, since silicon carbide has many crystal polymorphs and the properties thereof greatly vary, it is necessary to make a crystal form according to the purpose, but it is extremely difficult to control it by the above synthesis method.

【0005】一方、炭化珪素薄膜を形成する方法として
は、化学蒸着、スパッタ蒸着、イオン注入等の方法が知
られており、例えば860℃に加熱されたシリコン基板
に180keV、135keV及び90keVのエネル
ギーをもつ炭素イオンを注入し、シリコン基板に炭化珪
素薄膜を形成した例がある。
On the other hand, as a method for forming a silicon carbide thin film, methods such as chemical vapor deposition, sputter vapor deposition, and ion implantation are known. For example, energy of 180 keV, 135 keV and 90 keV is applied to a silicon substrate heated to 860 ° C. There is an example in which a carbon carbide thin film is implanted to form a silicon carbide thin film on a silicon substrate.

【0006】ところが、上記従来のイオン注入法では、
エネルギーが低い等の理由により、炭化珪素層は極く表
面部分(0〜0.5μm程度)に限られ、多量にイオン
注入することができない。しかも、注入領域を増やすと
大面積に炭化珪素を形成できる反面、アモルファス状の
炭化珪素が形成され、これを熱処理しても単結晶化でき
ないので多結晶体のままで存在することとなる。
However, in the above conventional ion implantation method,
Due to low energy and the like, the silicon carbide layer is limited to a very surface portion (about 0 to 0.5 μm), and a large amount of ions cannot be implanted. Moreover, while increasing the implantation region allows silicon carbide to be formed over a large area, amorphous silicon carbide is formed, and even if it is heat-treated, it cannot be made into a single crystal, so that it remains as a polycrystalline body.

【0007】[0007]

【発明が解決しようとする課題】本発明は、単結晶シリ
コンと同じ結晶方位をもつ単結晶炭化珪素層を、シリコ
ン基板の表面から一定の深さにできるだけ分厚く形成さ
せることを主な目的とする。
SUMMARY OF THE INVENTION The main object of the present invention is to form a single crystal silicon carbide layer having the same crystal orientation as that of single crystal silicon to a certain depth from the surface of a silicon substrate as thick as possible. .

【0008】[0008]

【課題を解決するための手段】本発明者は、上記従来技
術の問題点に鑑み、鋭意研究を重ねたところ、イオン注
入法において、一定のエネルギーをもつ炭素イオンを特
定温度に保持されたシリコン基板に注入する場合には、
その表面は単結晶シリコン層を保持したままで、表面か
ら一定の深さに単結晶状態の炭化珪素層を中間層として
形成できることを見出し、本発明を完成するに至った。
The inventors of the present invention have made extensive studies in view of the above-mentioned problems of the prior art. As a result, in the ion implantation method, carbon ions having a certain energy are held at a specific temperature. When injecting into the substrate,
The inventors have found that a single crystal silicon carbide layer can be formed as an intermediate layer at a certain depth from the surface while holding the single crystal silicon layer on the surface thereof, and completed the present invention.

【0009】即ち、本発明は、下記の炭化珪素埋め込み
層をもつシリコン基板及びその製造方法を提供するもの
である。 1.炭化珪素層を有するシリコン基板において、その表
面に単結晶シリコン層を有し、当該単結晶シリコン層の
下に単結晶シリコンと同じ結晶方位をもつ単結晶炭化珪
素層を中間層として有することを特徴とする炭化珪素埋
め込み層をもつシリコン基板。 2.シリコン基板に炭素イオンを注入することにより炭
化珪素を合成する方法において、800〜1300℃に
加熱・保持した単結晶シリコン基板に対し200keV
以上のエネルギーを与えた炭素イオンを注入することを
特徴とする炭化珪素埋め込み層をもつシリコン基板の製
造方法。
That is, the present invention provides the following silicon substrate having a silicon carbide burying layer and a method for manufacturing the same. 1. A silicon substrate having a silicon carbide layer, having a single crystal silicon layer on the surface thereof, and having a single crystal silicon carbide layer having the same crystal orientation as that of single crystal silicon as an intermediate layer under the single crystal silicon layer. A silicon substrate having a silicon carbide buried layer. 2. In the method of synthesizing silicon carbide by implanting carbon ions into a silicon substrate, 200 keV is applied to a single crystal silicon substrate heated and held at 800 to 1300 ° C.
A method of manufacturing a silicon substrate having a silicon carbide burying layer, which comprises implanting carbon ions given the above energy.

【0010】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0011】本発明基板は、その表面に単結晶シリコン
層を有し、当該単結晶シリコン層の下に基板と同じ結晶
方位をもつ単結晶炭化珪素層を有する。
The substrate of the present invention has a single crystal silicon layer on its surface, and a single crystal silicon carbide layer having the same crystal orientation as the substrate under the single crystal silicon layer.

【0012】その製造方法を以下に示す。まず、本発明
で使用できるシリコン基板は、公知の製造方法で作製さ
れた基板を使用することができる。
The manufacturing method will be described below. First, as the silicon substrate that can be used in the present invention, a substrate manufactured by a known manufacturing method can be used.

【0013】次いで、上記シリコン基板を800〜13
00℃に加熱・保持する。1300℃を超える場合に
は、結晶多形6Hになるおそれがあるので好ましくな
い。また、加熱・保持は真空中で行なうことが望まし
い。次いで、加熱されたシリコン基板に炭素イオンの注
入を行なうことにより、炭化珪素層を形成させる。炭素
イオンは、200keV以上のエネルギーを与えて加速
する。このように高エネルギー状態の炭素イオンを用い
るので、シリコン基板表面のスパッタによるエッチング
を回避できる結果、基板シリコンと同じ濃度までの多量
の炭素イオンを注入することが可能となる。この場合、
加速させるエネルギーの上限は、所望の炭化珪素埋め込
み層の深さ及び厚さによって適宜調整すれば良いが、通
常は1GeV程度で良い。炭素イオンを加速させるため
の装置としては公知の加速器を用いることができ、例え
ばタンデム型加速器、高周波四重極型加速器、サイクロ
トロン等が挙げられる。イオン注入における上記以外の
操作方法及び条件は、通常のイオン注入法による方法に
従えば良い。
Then, the above silicon substrate is covered with 800 to 13
Heat and hold at 00 ° C. If it exceeds 1300 ° C., there is a possibility that the crystal polymorphic form will be 6H, which is not preferable. Moreover, it is desirable to perform heating and holding in a vacuum. Then, a silicon carbide layer is formed by implanting carbon ions into the heated silicon substrate. Carbon ions are accelerated by giving energy of 200 keV or more. Since carbon ions in a high energy state are used in this way, etching of the surface of the silicon substrate by sputtering can be avoided, and as a result, a large amount of carbon ions up to the same concentration as the substrate silicon can be implanted. in this case,
The upper limit of the energy to be accelerated may be appropriately adjusted depending on the desired depth and thickness of the silicon carbide burying layer, but is usually about 1 GeV. As a device for accelerating carbon ions, a known accelerator can be used, and examples thereof include a tandem accelerator, a high frequency quadrupole accelerator, and a cyclotron. The operation method and conditions other than the above in the ion implantation may be according to the method based on the ordinary ion implantation method.

【0014】このようにして、高温基板中に炭素イオン
を注入することにより、表面層はもとのシリコン単結晶
状態を保持したまま、当該シリコン基板と同じ結晶方位
をもった単結晶構造をもつ層を一定の深さに形成させる
ことができる。
Thus, by implanting carbon ions into the high temperature substrate, the surface layer has a single crystal structure having the same crystal orientation as the silicon substrate while maintaining the original silicon single crystal state. The layers can be formed to a constant depth.

【0015】[0015]

【発明の効果】本発明の製造方法によれば、シリコン基
板表面はスパッタによるエッチングが起こらず、即ち表
面層はもとのシリコン単結晶状態を保ったまま、シリコ
ン単結晶と同じ結晶方位をもつ単結晶からなる炭化珪素
埋め込み層を中間層として有するシリコン基板を得るこ
とができる。しかも、炭素イオンに与えるエネルギーの
調整によって、炭化珪素埋め込み層の深さ及び厚さを自
由に制御することも可能である。
According to the manufacturing method of the present invention, the silicon substrate surface is not etched by sputtering, that is, the surface layer has the same crystal orientation as the silicon single crystal while maintaining the original silicon single crystal state. A silicon substrate having a silicon carbide burying layer made of single crystal as an intermediate layer can be obtained. Moreover, it is also possible to freely control the depth and thickness of the silicon carbide burying layer by adjusting the energy applied to the carbon ions.

【0016】従って、このような特異な構造をもつ本発
明シリコン基板は、特に各種電子素子材料等に有用であ
る。例えば、SiC−Siヘテロ接合をもった電子素子
を作成する場合、表面部がシリコン単結晶層であるので
従来の半導体プロセスもそのまま適用することができ
る。また、炭化珪素上に酸化膜(SiO2 )を形成させ
る場合、従来では熱酸化法により炭化珪素を直接酸化し
ていたのに対し、本発明の基板では表面層であるシリコ
ンをそのまま酸化するだけで良く、より低温で且つ高速
に酸化膜の形成が可能となる。
Therefore, the silicon substrate of the present invention having such a peculiar structure is particularly useful for various electronic device materials and the like. For example, when an electronic element having a SiC-Si heterojunction is created, the conventional semiconductor process can be applied as it is because the surface portion is a silicon single crystal layer. Further, in the case of forming an oxide film (SiO 2 ) on silicon carbide, conventionally, silicon carbide was directly oxidized by a thermal oxidation method, whereas in the substrate of the present invention, only the surface layer of silicon is directly oxidized. Therefore, the oxide film can be formed at a lower temperature and at a higher speed.

【0017】[0017]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention.

【0018】実施例1 真空中、880℃に保ったシリコン単結晶基板に、タン
デム型加速器を用いて1.5MeVのエネルギーをもつ
炭素イオンを1.5×1018cm-2注入することによっ
て、本発明基板を得た。
Example 1 Carbon single ions having an energy of 1.5 MeV were implanted into a silicon single crystal substrate kept at 880 ° C. in a vacuum using a tandem accelerator at 1.5 × 10 18 cm -2 , The substrate of the present invention was obtained.

【0019】このようにして得た基板中における炭素の
深さ方向濃度分布をラザフォード後方散乱法を用いて測
定した結果を図1に示す。図1から明らかなように、炭
素は基板表面には存在せず、表面から一定の深さに炭化
珪素層を形成していることがわかる。
FIG. 1 shows the result of measuring the concentration distribution of carbon in the depth direction in the substrate thus obtained by using the Rutherford backscattering method. As is clear from FIG. 1, carbon does not exist on the surface of the substrate, and the silicon carbide layer is formed at a constant depth from the surface.

【0020】また、X線回折分析によって上記炭化珪素
を分析した結果を図2及び図3に示す。この結果より、
立方晶の炭化珪素(3C型)のみが形成されていおり、
しかもシリコン基板(400)面と炭化珪素(200)
面の回折が起こる方位が一致していることからその結晶
方位が同じであることがわかる。
The results of analyzing the above silicon carbide by X-ray diffraction analysis are shown in FIGS. 2 and 3. From this result,
Only cubic silicon carbide (3C type) is formed,
Moreover, the silicon substrate (400) surface and the silicon carbide (200)
It can be seen that the crystal orientations are the same because the orientations in which the diffraction of the planes occur are the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により得たシリコン基板中の埋め込
み炭化珪素層の状態を示すラザフォード後方散乱法によ
る炭素濃度分布を示す図である。
FIG. 1 is a diagram showing a carbon concentration distribution by Rutherford backscattering method showing a state of a buried silicon carbide layer in a silicon substrate obtained by the method of the present invention.

【図2】本発明方法により得たシリコン基板中のシリコ
ン(400)面からのX線回折の正極点極図形である。
FIG. 2 is a positive pole figure of X-ray diffraction from a silicon (400) plane in a silicon substrate obtained by the method of the present invention.

【図3】本発明方法により得たシリコン基板中の炭化珪
素(200)面からのX線回折の正極点極図形である。
FIG. 3 is a positive pole figure of X-ray diffraction from a silicon carbide (200) plane in a silicon substrate obtained by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木野村 淳 大阪府箕面市西小路4−1−33 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Kinomura 4-1-33 Nishikoji, Minoh City, Osaka Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素層を有するシリコン基板におい
て、その表面に単結晶シリコン層を有し、当該単結晶シ
リコン層の下に単結晶シリコンと同じ結晶方位をもつ単
結晶炭化珪素層を中間層として有することを特徴とする
炭化珪素埋め込み層をもつシリコン基板。
1. A silicon substrate having a silicon carbide layer, which has a single crystal silicon layer on its surface, and an intermediate layer of a single crystal silicon carbide layer having the same crystal orientation as that of the single crystal silicon under the single crystal silicon layer. And a silicon substrate having a silicon carbide burying layer.
【請求項2】シリコン基板に炭素イオンを注入すること
により炭化珪素を合成する方法において、800〜13
00℃に加熱・保持した単結晶シリコン基板に対し20
0keV以上のエネルギーを与えた炭素イオンを注入す
ることを特徴とする炭化珪素埋め込み層をもつシリコン
基板の製造方法。
2. A method of synthesizing silicon carbide by implanting carbon ions into a silicon substrate, which comprises 800 to 13
20 for single crystal silicon substrate heated and held at 00 ℃
A method of manufacturing a silicon substrate having a silicon carbide burying layer, which comprises implanting carbon ions having an energy of 0 keV or more.
JP5189256A 1993-06-30 1993-06-30 Method for manufacturing silicon substrate having silicon carbide buried layer Expired - Lifetime JP2615406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5189256A JP2615406B2 (en) 1993-06-30 1993-06-30 Method for manufacturing silicon substrate having silicon carbide buried layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5189256A JP2615406B2 (en) 1993-06-30 1993-06-30 Method for manufacturing silicon substrate having silicon carbide buried layer

Publications (2)

Publication Number Publication Date
JPH0782098A true JPH0782098A (en) 1995-03-28
JP2615406B2 JP2615406B2 (en) 1997-05-28

Family

ID=16238255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5189256A Expired - Lifetime JP2615406B2 (en) 1993-06-30 1993-06-30 Method for manufacturing silicon substrate having silicon carbide buried layer

Country Status (1)

Country Link
JP (1) JP2615406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303508B1 (en) 1999-12-16 2001-10-16 Philips Electronics North America Corporation Superior silicon carbide integrated circuits and method of fabricating
US6407014B1 (en) 1999-12-16 2002-06-18 Philips Electronics North America Corporation Method achieving higher inversion layer mobility in novel silicon carbide semiconductor devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129623A (en) * 1986-11-20 1988-06-02 Seiko Epson Corp Ion beam exposure mask
JPH023931A (en) * 1988-06-20 1990-01-09 Fujitsu Ltd Semiconductor device
JPH03197385A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Preparation of substrate for depositing diamond thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129623A (en) * 1986-11-20 1988-06-02 Seiko Epson Corp Ion beam exposure mask
JPH023931A (en) * 1988-06-20 1990-01-09 Fujitsu Ltd Semiconductor device
JPH03197385A (en) * 1989-12-26 1991-08-28 Matsushita Electric Ind Co Ltd Preparation of substrate for depositing diamond thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303508B1 (en) 1999-12-16 2001-10-16 Philips Electronics North America Corporation Superior silicon carbide integrated circuits and method of fabricating
US6407014B1 (en) 1999-12-16 2002-06-18 Philips Electronics North America Corporation Method achieving higher inversion layer mobility in novel silicon carbide semiconductor devices
US6504184B2 (en) 1999-12-16 2003-01-07 Koninklijke Philips Electronics N.V. Superior silicon carbide integrated circuits and method of fabricating

Also Published As

Publication number Publication date
JP2615406B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JP3380313B2 (en) Diamond field effect transistor
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
JP3085272B2 (en) Method for forming thermal oxide film on silicon carbide semiconductor device
US5334283A (en) Process for selectively etching diamond
JPH01103825A (en) Thin film type silicon semiconductor device and manufacture thereof
JPH0637288A (en) Soi structure, provided with deep and thin oxide layer, manufactured by high-energy ion implantation and by successive heat treatment
TW200407984A (en) Method for transferring an electrically active thin film
JP2681283B2 (en) Method for growing oxide on ion-implanted polysilicon surface
Tsaur et al. Formation of Si-enriched metastable compounds in the Pt-Si system using ion bombardment and post annealing
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
JPS61295371A (en) Method for manufacturing aluminum material with aluminum nitride layer
EP0069707B1 (en) Method of oxidising semiconductor substrates
JPS60245211A (en) Method of forming SOI structure
JPS58190020A (en) epitaxial growth method
JPH01313974A (en) Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method
JPH02210820A (en) Manufacture of bipolar transistor
JPH0412629B2 (en)
JP2814503B2 (en) Method for producing single crystal diamond film composite
JPH10297996A (en) Formation of silicon carbide thin layer
Harada et al. Formation of β-FeSi2 thin films by partially ionized vapor deposition
JPH04367278A (en) Insulating gate thin film transistor and manufacture thereof
JPH0629168A (en) Manufacture of lsi substrate
JPS59127841A (en) Manufacture of semiconductor device
JPS62177972A (en) Semiconductor device
JPS605567A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term