JPH0781604A - 自動走行車両 - Google Patents
自動走行車両Info
- Publication number
- JPH0781604A JPH0781604A JP5254896A JP25489693A JPH0781604A JP H0781604 A JPH0781604 A JP H0781604A JP 5254896 A JP5254896 A JP 5254896A JP 25489693 A JP25489693 A JP 25489693A JP H0781604 A JPH0781604 A JP H0781604A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- lane
- obstacle
- travel
- traveling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Image Processing (AREA)
- Feedback Control In General (AREA)
Abstract
き、道路と障害物の特徴量からファジィ推論を通じて車
線ごとの走行可能度合いを求め、それから最適の車線を
選択して障害物を回避しつつ自動走行する。ファジィ推
論は簡易化されルール数が低減している。 【効果】 多車線道路を任意に車線変更しつつ安定に自
動走行することができる。
Description
より具体的には高速自動車道など複数の車線が存在する
道路環境において、他車を含む走行環境を認識して任意
に車線変更しつつ自動走行できる様にした自動走行車両
に関する。
ものが提案されており、例えば特開平2−226310
号公報においては、走行路面の映像画像から抽出された
車線境界線や障害物情報などに基づいてファジィ推論を
行って車両の操舵を制御する技術が提案されている。ま
た本出願人も先に特開平3−158976号公報で自動
走行車両において車線境界線を認識する技術を提案して
いる。
については今まで様々な技術が提案されているが、複数
の車線(レーン)を有する道路において任意に車線変更
(レーンチェンジ)して自動走行できる様にしたものは
提案されていなかった。この様な技術は、高速自動車道
などを自動走行するときに極めて有益であるが、他車を
含む障害物が存在する道路環境の中で自ら行動を決定し
つつ最適な車線を選択して自動走行するには解決すべき
課題が多い。
決し、複数の車線を有すると共に、他車を含む障害物が
存在する道路環境において、最適な車線を選択して安定
して自動走行する様にした自動走行車両を提供すること
にある。
を含む障害物が存在する走路環境において最適な車線を
選択すると共に、障害物を回避しつつ前車への追従走行
なども可能とする自動走行車両を提供することを目的と
する。
の推論を簡略化して演算量および使用メモリの低減を図
ると共に、デバッグ効率を向上させた自動走行車両を提
供することを目的とする。
めに本発明は例えば請求項1項に示す如く、外界を認識
しつつ自動走行する車両において、車両進行方向に対し
て複数の走行可能領域を認識する認識手段、車両周囲に
存在する障害物の少なくとも位置を含む障害物の状態を
検出する障害物状態検出手段、車速および前記複数の走
行可能領域に対する自車の位置と方位とを少なくとも含
む自車の状態を検出する自車状態検出手段、検出値に基
づいてファジィ推論を行って前記複数の走行可能領域に
ついて走行可能度合いを判定する走行可能度合い判定手
段、判定された走行可能度合いに基づいて前記複数の走
行可能領域のいずれかを選択する選択手段、少なくとも
前記検出された自車状態に基づいて自車の走行軌跡を求
める軌跡算出手段、および選択された走行可能領域を走
行すべく少なくとも前記検出された自車の状態と算出さ
れた走行軌跡とに基づいて車両走行の制御量を算出する
制御量算出手段、を備える如く構成した。
域を有する道路環境において最適な走行可能領域を選択
しつつ安定に自動走行することができる。尚、ここで走
行可能領域は車線を意味する。
説明する。
的に示す透視図である。図において、自動走行車両はC
CDカメラ10を1基備える。CCDカメラ10は運転
席上方のルームミラー取り付け位置に固定され、車両進
行方向を単眼視する。符号12はミリ波レーダからなる
レーダユニットを示し、車両前方に取り付けられた2基
の前方レーダ12a、車両側方に取り付けられた3基の
側方レーダ12bおよび車両後方に取り付けられた2基
の後方レーダ(図示せず)の計10基のレーダ群からな
り、反射波を通じて他車などの立体障害物の存在を検出
する。車両室内の中央部付近にはヨーレートセンサ14
が設けられ、車両の鉛直軸(z軸)回りの角加速度を検
出する。更に、車両のドライブシャフト(図示せず)の
付近にはリードスイッチからなる車速センサ16が設け
られ、車両の進行速度を検出すると共に、舵角センサ1
8が車両のステアリングシャフト20の付近に設けられ
てステアリング舵角を検出する。
角制御モータ22が取り付けられると共に、スロットル
弁(図示せず)にはパルスモータからなるスロットルア
クチュエータ24が取り付けられ、更にブレーキ(図示
せず)にはブレーキ圧力アクチュエータ26(図1で図
示省略)が取り付けられる。この構成において、車両は
算出された舵角制御量に応じて舵角制御されると共に、
スロットル弁が開閉されて車速が調節され、また必要に
応じてブレーキが作動させられて自動走行する。
ク図である。CCDカメラ10の出力は画像処理ハード
ウェア30に送られて必要な処理が行われ、その結果は
バス32を介して共有メモリ34にストアされる。画像
処理CPU36および画像評価CPU38は所定時刻ご
とにストア値を読み出して走行路面の状態を検出する。
レーダユニット12の出力はレーダ処理回路40および
バス32を介して共有メモリ34にストアされる。レー
ダ評価CPU42は所定時刻毎にストア値を読み出して
障害物の位置を座標上で検出する。
CPU44に送られて自車両の移動軌跡が推定される。
行動計画意思決定CPU50は前記ストア値から目標経
路を作成する。その目標経路と推定された自車の移動軌
跡は軌跡追従CPU46に送られ、そこで軌跡(目標経
路)追従制御量が決定される。更に、軌跡追従制御CP
U46は、舵角制御量を算出して舵角制御CPU52に
出力する。舵角制御CPU52はPWMコントローラ5
4およびドライバ56を介して前記舵角制御モータ22
を駆動する。尚、モータ駆動量はエンコーダ58を通じ
て検出され、フィードバック制御が行われる。
度・追従制御部で後述の様に車体の目標加速度を求め、
車速制御CPU60に送出する。車速制御CPU60は
アクセルパルスモータコントローラ62、ドライバ64
を介してスロットルアクチュエータ24を駆動すると共
に、ブレーキソレノイドコントローラ66およびドライ
バ68を介してブレーキ圧力アクチュエータ26を駆動
する。その駆動量は圧力センサ70を介して検出され、
第2のフィードバック制御が行われる。尚、上記におい
て、図示の簡略化のため、波形整形回路などセンサの処
理回路は省いた。図3は図2ブロック図を機能的に示す
ものである。
この自動走行車両の動作を説明する。図4フロー・チャ
ートは、前記した行動計画意思決定CPU50が行う動
作を示す。
する。これは前記した画像処理CPU36および画像評
価CPU38の出力を入力して行う。即ち、画像処理C
PU36は図5に示す様な入力画像から道路区分線(車
線境界線。白色または黄色の実線ないし破線で示され
る)を抽出して画像平面座標を求め、それを射影変換し
て実平面座標を求め、各線成分を実平面上の点列データ
として幾何学的関係を付加して出力する。画像評価CP
U38は、それに基づいて後で述べる様に車線幅などの
詳細なデータを出力する。S10においてはこれらを入
力する。
力する。これは前記したレーダ評価CPU42の出力を
入力することで行う。S10およびS12を経ることに
より行動計画意思決定CPU50は図6に示す様な外部
環境情報を得る。
車線)と自車との位置関係を求める。画像評価CPU3
8からの車線データは毎時刻同じものが出力されるので
はなく、認識された車線境界線がリアルタイムに出力さ
れる。そこで同一車線境界線および車線には同一の番号
を付して特定し、車線境界線(ないし車線)と自車との
位置関係を対応づける。上記を図7に示す。尚、車線境
界線(ないし車線)の特定については同日付けで提出し
た別出願(整理番号A93−1025)に述べてあるの
で、この程度の説明に止める。
置関係を求める。図示は省略するが、これもS14の作
業と同様であり、障害物と車線境界線(ないし車線)と
の位置関係を対応づける作業である。尚、障害物が複数
個存在するときは、番号を付して特定する。
し、S20に進んで車線内の障害物情報を抽出する。こ
れは続いて行うファジィ推論のために、適宜な処理を行
って特徴および特徴量を求める作業である。
態では単なる線分の座標に過ぎないため、図8に示す如
く線形化して車線幅および車線長さをその特徴ないし特
徴量として求める。また障害物情報も入力値の状態では
単なる座標に存在する障害物に過ぎないため、図9に示
す様に各障害物までの距離などの特徴ないし特徴量を抽
出して自車両との関係を求め、最終的に図示の如く、各
障害物までの距離、自車速度と障害物速度の相対速度お
よび目標車速と障害物速度との偏差を求めて特徴量とす
る。
ラメータ)をファジィ量へ変換する。ファジィ推論での
入力値は基本的に−1から1の値をとるため、入力値を
正規化すると共に、不要な大きな値のために正規化した
情報量のダイナミックレンジが失われない様、その範囲
に止める。実施例の場合には具体的には以下の如く決定
した。 特徴量 ファジィ量 車線長さ 0〜100m 0〜1 車線幅 0〜5m 0〜1 各障害物までの距離 0〜100m 0〜1 自車速度と障害物速度の 相対速度 −100〜100km/h −1〜1 目標車速と障害物速度の 偏差 −100〜100km/h −1〜1
ップ関数(以下「ファジィラベル」と言う)を設定す
る。図10ないし図11に設定したファジィラベルを示
す。実施例においてファジィラベルとして、ZO
(零),PS(少し大きい),PM(大きさが中位),
PB(非常に大きい),NB(非常に小さい),NM
(小ささが中位),N(小さい),Z(零付近),P
(大きい)の9種を用い、特徴量(推論パラメータ)に
より使い分けた。
トシステムにより車線ごとに走行可能度合いを推論す
る。
どが複雑に絡み合う環境において車線毎に前方、側方、
後方の様々な状況に応じて最適に判断して行動させるに
は、単なるルールの記述手法では組み合わせが一意に定
まらず、ルールの増大、抜け、矛盾が発生し易い。また
自動運転の感覚と同乗者のドライブ感覚とを違和感なく
調整するのも極めて困難である。この様な状況で最適か
つ同乗者に与える違和感の少ない制御手法には、ファジ
ィ推論を用いるファジィエキスパートシステムが最適と
考えられる。ファジィエキスパートシステムであれば、
多入力、平行同時推論が可能であり、判断パターンも漏
れなく組み合わせることができる上、メンバーシップ関
数を変更するだけで人間のフィーリングにマッチする様
に調整することができるからである。そこで、実施例で
はファジィエキスパートシステムを用いることにした。
を用いるとしても、入力条件が多いため、ルール数が膨
大になってしまう。そこで、以下に述べる様な手法を採
用してルール数を削減した。
システムを示す。実施例では、ファジィ推論を一次推論
と二次推論とから構成した。一次推論では、道路の特徴
量から車線走行可能度合いルールを用いて各車線の走行
可能度合いが推論されると共に、障害物の特徴量から2
種の障害物危険判定ルールを用いて障害物走行可能度合
いが推論される。
を通じて推論された走行可能度合いと、2種の障害物危
険判定ルール(障害物危険度合いルールと総称する)を
通じて得られた走行可能度合いから、走行可能判定ルー
ルを用いて各車線の走行可能度合いがトータルに推論さ
れる。
によって相違しないので、同一のルール群を用いて各車
線ごとに推論する。但し、検出する推論パラメータが車
線により相違するので、推論値が車線によって相違する
のは言うまでもない。
次推論用ルールおよび二次推論用の1種のルール群を示
す。図示の如く、それらは全て、前件部が2個のファジ
ィラベルからなる16個のルールより構成される。
論」と言う)を説明すると、この多重推論においては図
17に示す如く、一次推論ルールの後件部を二次推論の
前件部として使用する様にした。より具体的には図13
ないし図16および図18に示す如く、一次推論ルール
の後件部について各ファジィラベルのグレード値が最大
となるルールをそれぞれ選択し、そのグレード値(重み
を示す)をそのファジィラベルの代表値として二次推論
ルールの前件部のファジィラベルに当てはめ、二次推論
ルールの最終出力を求めてファジィエキスパートシステ
ムの出力とする様にした。
様に、ルールR1(説明の便宜のため使用ルールがR
1,R2の2個とする)について前件部ファジィラベル
A11,12のメンバーシップ値のうち最小値を選択し
て後件部ファジィラベルB1のグレード値ω1を求め、
ルールR2についても同様の作業を行って後件部ファジ
ィラベルB2のグレード値ω2を求め、定義域上で両者
の和集合B0を求め、その重心y0を求めてルール群R
1,R2の最終出力とする。その結果、図12に示す様
にファジィ推論を連続的に行うとき、通常の手法に従う
と、図20に記載する様にルール数が膨大となる。
す様に、各ファジィラベルについてグレード値が最大と
なるものを選択し、そのファジィラベルを代表させる様
にした。即ち、図13の場合、ファジィラベルとしてZ
O,PS,PM,PBの4種を使用しているが、後件部
は同一ファジィラベルについて複数個の値を持つ。例え
ば、PMで言えば3個の値を持つ。そしてPMの3個の
値は、同図下部に示す様に大小関係にある。
と、その中で最大のものは、そのファジィラベル(即
ち、PM)で最もルールの満足度が高いのであるから、
グレード値が最大となったものでそのファジィラベルを
代表させることができるとみなすこともできる。そこ
で、この発明においては各ファジィラベルについてグレ
ード値が最大となる値をそれぞれ求め、そのグレード値
を二次推論ルールの前件部の当該ファジィラベルに代入
することとした。
意味するが、換言すれば、一次推論では各ファジィラベ
ルの重みのみ求めて定義域上の最終出力を求めず、二次
推論でその重みを用いて初めて定義域上の最終出力を求
める様にした。図16の末尾に、この様にして求める二
次推論ルールの最終出力の算出を示す。尚、一般に最終
出力は前記の如く後件部メンバーシップ値の和集合の重
心を求めることで行われるが、処理時間がかかるため、
ここではいわゆるシングルトン方式と呼ばれる簡易重心
計算を用いた。
大幅に低減することができ、その結果、演算量ないし使
用メモリ容量を低減することができ、またデバッグ効率
を向上することができた。
ステムの推論で得られる走行可能度合いの出力例を示
す。走行可能度合いは各車線ごとに0〜1までの実数値
で図示の如く決定される。図示例は、自車線を中心に左
右に計3個の車線が存在する道路環境の場合である。出
力は認識される全ての車線に対して行われ、以前の推論
時刻で認識され、当該推論時刻で認識されない車線の出
力値は0となる。
したことから、障害物が各車線の種々の位置に存在し、
しかも時々刻々変動する様な複雑な道路状況を的確に評
価することができた。図12に示す様に、次いでこれに
基づいて車線のいずれかを選択することになるが、その
選択作業も簡易となって円滑に行うことができる。
26に進んでその目標車線の決定を行う。尚、これには
ファジィ推論を用いない。
ートである。同図の説明に入る前に図23を参照してこ
の選択作業を簡単に説明すると、自車線の走行可能度合
いがスレッシュオルド値以下になるまで、他の車線の走
行可能度合いがそれより大きくても車線変更しない様に
した。またスレッシュオルド値以下となったときは、走
行可能度合いがスレッシュオルド値より大きい車線を選
択すると共に、一旦選択した後は、選択車線の走行可能
度合いがスレッシュオルド値以下となっても、選択車線
と他の車線の走行可能度合いの差が設定値(適宜設定)
を超えない限り、車線変更を行わない様にした。即ち、
ヒステリシスを設けて制御ハンチングが生じない様にし
た。
S100で自車線の走行可能度合いがスレッシュオルド
値以下か否か判断し、否定されるときはS102に進ん
で自車線を維持し、S104に進んで目標車線を自車線
と置き換える(但し、この場合には自車線がそのまま自
車線に置き換えられる)。S100で肯定されるときは
S106に進み、右車線の走行可能度合いがスレッシュ
オルド値以上か否か判断する。
み、そこで自車線の走行可能度合いと右車線の走行可能
度合いの差が、前記した設定値より小さいか否か判断す
る。これは右車線に変更しても走行可能度合いに大差な
い場合には車線を変更する意義が少ないことから、それ
を判定するためである。従って、否定されるときは走行
可能度合いの差が小さくないので、S110に進んで目
標車線を右車線とし、S104に進んで目標車線を自車
線と置き換える。
いの差が設定値より小さいと判断されるときはS112
に進んで左車線の走行可能度合いがスレッシュオルド値
以上か否か判断する。尚、S106で否定されるときは
右車線についてそれ以上検討する益がないので、直ちに
S112にジャンプする。
ッシュオルド値以上ではないと判断されるときは左車線
に変更する意味がないので、S102に進んで自車線を
維持すると共に、S112で肯定されるときはS114
に進み、そこで自車線と左車線の走行可能度合いの差が
設定値より小さいか否か判断し、肯定されるときはS1
02に進んで自車線を維持すると共に、否定されるとき
はS116に進んで左車線を目標車線とする。尚、右車
線から判断する様にしたのは、法令上追越しは右側から
行うことが原則となっているからである。
28に進んで決定された目標車線に対して目標経路を計
画する。
自車線の場合には車線の中央に2.5mおきにx,yの
点を車線上に設定する。ここで、x,yは図25に示す
様な座標上の位置を示す。車線の中央に目標経路を計画
することにより、安全に自動走行することができる。
尚、この実施例において座標のX軸は車両進行方向にと
る。
の中央に基準線を求め、基準線上に適宜な位置(目標レ
ーンチェンジ、ポイント)(a)を選択し、その位置
(a)から自車位置までの線分(b)を求め、その線分
に対し、2.5mおきにx,yの点を設定する。尚、こ
こで位置(a)は、自車速Vに車線変更(レーンチェン
ジ)予定時間Tを乗じた距離Lで求める。尚、レーンチ
ェンジした後は目標経路が中央基準線に沿って計画され
るのは自車線を走行する場合と同様である。
る場合、接触する可能性があるので、その障害物の位置
から5m減算した位置を目標とし、自車位置までの線分
(b)を求めて同様に処理する。
する。先に図2に関して述べた様に、ヨーレートセンサ
14などの出力から軌跡推定CPU44において自車の
走行軌跡が図25に示す様に推定されて共有メモリ34
にストアされており、このステップではそのストア値を
読み出して自車の現在位置を推定する。
補正を行う。
に沿って進行すべくS30で自車の走行軌跡を入力した
が、目標車線の決定までにある程度の処理時間を要し、
自車は明らかにその間に移動している。従って、図26
に示す様に、画像入力時と処理時間経過後とでは自車の
位置は相違している筈であり、その移動した位置を考慮
して目標経路を定めないと、目標経路追従制御に誤差が
生じる。従って、このステップで図26に示す様に、自
車の位置を前記座標の原点位置に置く様に座標変更し、
目標経路(点列で示される)を遅れ補正する。
ルシステムによる目標走行速度(加速度)を算出する。
28はその中の加速度制御器の詳細を示すブロック図で
ある。また、図29は目標加速度の推論に使用されるフ
ァジィ・メンバーシップ関数を示す。図27においてフ
ァジィ推論器は障害物までの距離、自車速度と障害物速
度の相対速度および自車速度を入力パラメータとしてフ
ァジィ推論を行い、目標加速度を算出する。尚、加速度
は車速の1階差分値で表す。また、ファジィ推論は前述
した多重推論ではなく、従来手法を用いる。
は目標加速度と実加速度との偏差を求め、偏差に応じて
スロットル開度ないしブレーキ圧力を目標値にPID制
御する。かかる構成により、前車との距離を所定の値に
保ちつつ目標加速度で自動走行することができ、前車の
動きに応じて加減速ないし停止することができる。
46、舵角制御CPU52、車速制御(加速度制御)C
PU60に目標経路、目標速度(加速度)を出力して終
わる。
走行テスト結果を示す。図30は定速走行する前走車に
追従走行した場合を示し、所定の離間距離を保ちつつ前
走車に正確に追従している様子が見てとれよう。図31
に、そのときの走行可能度合いを従来手法により推論し
た場合とこの発明で提案する多重推論を用いて推論した
場合を対比して示す。図示の如く、両者の結果にほとん
ど差異がなかった。
前走車に応じて停止した場合を示す。また、図33に、
そのときの走行可能度合い推論を障害物発見ポイントに
ついて従来手法とこの発明で提案する多重推論を用いて
推論した場合を対比して示す。図31と同様に、このテ
スト結果でも両者にほとんど差異がなかった。
合いなる概念を用い、それをファジィ推論を通じて判定
する様にしたので、複数の車線が平行し障害物が点在す
る道路環境においても常に最適な車線を選択して安定に
走行することができる。また、障害物の有無などから車
線ごとの走行可能度合いを推論して車線を選択するの
で、障害物と接触するなどの危険がない。
行可能度合いを判断する様にしたので、同乗者のフィー
リングに合った運転制御が可能となると共に、そのファ
ジィ推論においては多重推論を用いたので、演算量およ
びメモリ量を低減でき、デバッグ効率も向上する。
行可能度合いを判断すると共に、それから目標車線を決
定するに際してスレッシュオルド値との比較から行う様
にしたので、スレッシュオルド値を上下させることによ
っても車線変更の頻度などを調節することができ、道路
環境に応じて一層最適に走行することができる。
論を2段接続としたが、推論パラメータが干渉し合わな
い限り、3段ないしはそれ以上を接続しても良い。
例で示した他に、車線の曲率、障害物の速度、自車速
度、目標車速など種々のものを用いても良い。また、実
施例では障害物に関して前方に存在するものだけをファ
ジィ推論パラメータとしたが、後方に存在するものにつ
いてもファジィ推論パラメータに使用しても良い。
視を用いて前方レーダなどを省略しても良い。
行し、障害物が存在する道路環境においても常に最適な
車線を選択して安定に走行することができる。
えて、障害物を確実に回避しつつ最適な車速を選択して
走行することができる。
し、障害物が存在する道路環境においても常に最適な車
線を選択することができると共に、選択された車線に向
かう目標軌跡に沿って正確に走行することができる。
し、障害物が存在する道路環境においても常に最適な車
線を選択することができると共に、車線の中央を走行す
ることから、安全に走行することができる。
いて自動走行に必要な制御値を求めることで人間のフィ
ーリングにマッチした制御が容易に可能になると共に、
推論の演算量および使用メモリ容量の低減を図ることが
でき、デバッグ効率の向上も図ることができる。
明透視図である。
示すブロック図である。
と同様の説明図である。
作で自動走行動作を示すフロー・チャートである。
る画像処理の説明図である。
ーダ評価結果の入力を通じて得られる外部環境情報を示
す説明図である。
(自車)の位置関係を説明する説明図である。
明図である。
説明図である。
ーシップ関数(ファジィラベル)を示す説明図である。
バーシップ関数(ファジィラベル)を示す説明図であ
る。
トシステムによる車線ごとの走行可能度合い推論および
推論値により行われる目標車線決定を全体的に示す説明
図である。
用される車線走行可能度合いルール群を示す説明図であ
る。
用される障害物危険判定ルール群を示す説明図である。
用される別の障害物危険判定ルール群を示す説明図であ
る。
用される二次推論用のトータルの走行可能度合いルール
群を示す説明図である。
明図である。
体的に示す説明図である。
ある。
発明で用いる多重推論によるルール数の減少度を示す説
明図である。
度合いを示すタイミング・チャートである。
説明するサブルーチン・フロー・チャートである。
説明するタイミング・チャートである。
標経路の計画作業を示す説明図である。
する説明図である。
補正作業を示す説明図である。
度)制御のブロック図である。
ック図である。
使用するパラメータである。
行のテストデータ図である。
で推論した場合とこの発明による多重推論で推論した場
合とを対比して示す説明図である。
る。
図である。
Claims (5)
- 【請求項1】 外界を認識しつつ自動走行する車両にお
いて、 a.車両進行方向に対して複数の走行可能領域を認識す
る認識手段、 b.車両周囲に存在する障害物の少なくとも位置を含む
障害物の状態を検出する障害物状態検出手段、 c.車速および前記複数の走行可能領域に対する自車の
位置と方位とを少なくとも含む自車の状態を検出する自
車状態検出手段、 d.検出値に基づいてファジィ推論を行って前記複数の
走行可能領域について走行可能度合いを判定する走行可
能度合い判定手段、 e.判定された走行可能度合いに基づいて前記複数の走
行可能領域のいずれかを選択する選択手段、 f.少なくとも前記検出された自車状態に基づいて自車
の走行軌跡を求める軌跡算出手段、および g.選択された走行可能領域を走行すべく少なくとも前
記検出された自車の状態と算出された走行軌跡とに基づ
いて車両走行の制御量を算出する制御量算出手段、を備
えたことを特徴とする自動走行車両。 - 【請求項2】h.少なくとも前記検出された障害物の状
態に基づいて障害物の移動軌跡を求める移動軌跡算出手
段、を備え、前記制御量算出手段は、少なくとも前記求
めた自車の軌跡と障害物の移動軌跡とに基づいて前記車
両走行の制御量を算出することを特徴とする請求項1項
記載の自動走行車両。 - 【請求項3】 前記制御量算出手段は、前記選択された
走行可能領域へ自車が移動を開始するまでの時間遅れを
補正する手段を備えることを特徴とする請求項1項また
は2項記載の自動走行車両。 - 【請求項4】 前記制御量算出手段は、前記選択された
走行可能領域に対する自車の最適位置を求める手段を備
えることを特徴とする請求項1項ないし3項のいずれか
に記載の自動走行車両。 - 【請求項5】 外界を認識しつつ自動走行する車両にお
いて、 a.少なくとも車両が走行する走行可能領域を認識して
走行可能領域の状態を示すパラメータを検出する手段、 b.少なくとも車両の走行状態を示すパラメータを検出
する手段、 c.前記検出されたパラメータを前件部に用いてファジ
ィプロダクションルールを設定し、ファジィ推論を行っ
てその後件部の重みを求める第1ファジィ推論手段、 d.前記後件部を前件部に用いて第n(n≧2)のファ
ジィプロダクションルールを設定し、第nのファジィ推
論を行って第nルールの後件部の重みと重心位置とから
後件部の出力を求める第nファジィ推論手段、および e.求めた後件部の出力に基づいて車両走行の制御量を
算出する制御量算出手段、を備えたことを特徴とする自
動走行車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254896A JP2853077B2 (ja) | 1993-09-17 | 1993-09-17 | 自動走行車両 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254896A JP2853077B2 (ja) | 1993-09-17 | 1993-09-17 | 自動走行車両 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0781604A true JPH0781604A (ja) | 1995-03-28 |
JP2853077B2 JP2853077B2 (ja) | 1999-02-03 |
Family
ID=17271353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5254896A Expired - Fee Related JP2853077B2 (ja) | 1993-09-17 | 1993-09-17 | 自動走行車両 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2853077B2 (ja) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19546506A1 (de) * | 1995-12-13 | 1997-06-19 | Daimler Benz Ag | Fahrzeug-Navigationssystem und Signalverarbeitungsverfahren für ein solches Navigationssystem |
US5710565A (en) * | 1995-04-06 | 1998-01-20 | Nippondenso Co., Ltd. | System for controlling distance to a vehicle traveling ahead based on an adjustable probability distribution |
EP0849144A2 (en) * | 1996-12-17 | 1998-06-24 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering apparatus for vehicles |
WO1998054629A1 (en) * | 1997-05-30 | 1998-12-03 | Raytheon Company | Obstacle avoidance processing method for vehicles using an autom ated highway system |
US5913375A (en) * | 1995-08-31 | 1999-06-22 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle steering force correction system |
US5929802A (en) * | 1997-11-21 | 1999-07-27 | Raytheon Company | Automotive forward looking sensor application |
US5959570A (en) * | 1997-11-21 | 1999-09-28 | Raytheon Company | Automotive forward looking sensor blockage detection system and related techniques |
EP0835796A3 (en) * | 1996-10-09 | 2000-09-20 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering system for verhicle |
JP2004157731A (ja) * | 2002-11-06 | 2004-06-03 | Nissan Motor Co Ltd | 車両用推奨操作量生成装置 |
JP2004157910A (ja) * | 2002-11-08 | 2004-06-03 | Nissan Motor Co Ltd | 車両用推奨操作量生成装置 |
WO2005013236A1 (ja) * | 2003-07-30 | 2005-02-10 | Olympus Corporation | 安全移動支援装置 |
JP2006163879A (ja) * | 2004-12-08 | 2006-06-22 | Daihatsu Motor Co Ltd | 画像処理方法及び画像処理装置 |
US7243026B2 (en) | 2003-12-05 | 2007-07-10 | Fuji Jukogyo Kabushiki Kaisha | Vehicle traveling control device |
JP2009043090A (ja) * | 2007-08-09 | 2009-02-26 | Toyota Motor Corp | 走行制御計画評価装置 |
JP2009157499A (ja) * | 2007-12-25 | 2009-07-16 | Toyota Motor Corp | 運転支援装置及び運転支援システム |
JP2010247580A (ja) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | 走行支援装置 |
CN104183150A (zh) * | 2014-08-15 | 2014-12-03 | 山东交通学院 | 车载单体道路交通状态判别装置与方法 |
TWI613115B (zh) * | 2017-03-30 | 2018-02-01 | H P B Optoelectronic Co Ltd | 交通工具之後方警示系統 |
WO2018123344A1 (ja) * | 2016-12-27 | 2018-07-05 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
CN108693878A (zh) * | 2017-04-06 | 2018-10-23 | 丰田自动车株式会社 | 前进路线设定装置以及前进路线设定方法 |
JP2018203034A (ja) * | 2017-06-02 | 2018-12-27 | 本田技研工業株式会社 | 走行軌道決定装置及び自動運転装置 |
JP2019199205A (ja) * | 2018-05-17 | 2019-11-21 | トヨタ自動車株式会社 | 自動運転システム |
WO2019220717A1 (ja) * | 2018-05-15 | 2019-11-21 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
CN111045422A (zh) * | 2018-10-11 | 2020-04-21 | 顾泽苍 | 一种自动驾驶导入“机智获得”模型的控制方法 |
CN111462493A (zh) * | 2020-04-10 | 2020-07-28 | 北京工业大学 | 一种基于车联网的超车态势感知预警系统 |
KR20200102378A (ko) * | 2019-02-21 | 2020-08-31 | 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 | 정보 처리 방법, 장치 및 저장 매체 |
CN111645677A (zh) * | 2020-05-20 | 2020-09-11 | 吉林大学 | 一种车辆制动转向协调控制紧急防碰撞系统及控制方法 |
CN115201827A (zh) * | 2021-04-13 | 2022-10-18 | 江苏允行智能科技有限公司 | 一种基于汽车智能驾驶的毫米波雷达补偿系统及补偿方法 |
CN118387135A (zh) * | 2024-04-19 | 2024-07-26 | 广东汽车检测中心有限公司 | 一种智能网联汽车自动驾驶检测控制方法及其控制系统 |
-
1993
- 1993-09-17 JP JP5254896A patent/JP2853077B2/ja not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5710565A (en) * | 1995-04-06 | 1998-01-20 | Nippondenso Co., Ltd. | System for controlling distance to a vehicle traveling ahead based on an adjustable probability distribution |
US5913375A (en) * | 1995-08-31 | 1999-06-22 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle steering force correction system |
DE19635009B4 (de) * | 1995-08-31 | 2010-05-27 | Honda Giken Kogyo K.K. | System zur Korrektur der Lenkkraft eines Fahrzeugs |
US6414712B1 (en) | 1995-12-13 | 2002-07-02 | Daimlerchrylsler, Ag | Vehicle navigational system and signal processing method for said navigational system |
DE19546506A1 (de) * | 1995-12-13 | 1997-06-19 | Daimler Benz Ag | Fahrzeug-Navigationssystem und Signalverarbeitungsverfahren für ein solches Navigationssystem |
EP0835796A3 (en) * | 1996-10-09 | 2000-09-20 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering system for verhicle |
EP0849144A2 (en) * | 1996-12-17 | 1998-06-24 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering apparatus for vehicles |
EP0849144A3 (en) * | 1996-12-17 | 2000-05-24 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering apparatus for vehicles |
US6170591B1 (en) | 1996-12-17 | 2001-01-09 | Honda Giken Kogyo Kabushiki Kaisha | Automatic steering apparatus for vehicles |
WO1998054629A1 (en) * | 1997-05-30 | 1998-12-03 | Raytheon Company | Obstacle avoidance processing method for vehicles using an autom ated highway system |
US5929802A (en) * | 1997-11-21 | 1999-07-27 | Raytheon Company | Automotive forward looking sensor application |
US5959570A (en) * | 1997-11-21 | 1999-09-28 | Raytheon Company | Automotive forward looking sensor blockage detection system and related techniques |
JP2004157731A (ja) * | 2002-11-06 | 2004-06-03 | Nissan Motor Co Ltd | 車両用推奨操作量生成装置 |
JP2004157910A (ja) * | 2002-11-08 | 2004-06-03 | Nissan Motor Co Ltd | 車両用推奨操作量生成装置 |
WO2005013236A1 (ja) * | 2003-07-30 | 2005-02-10 | Olympus Corporation | 安全移動支援装置 |
US7243026B2 (en) | 2003-12-05 | 2007-07-10 | Fuji Jukogyo Kabushiki Kaisha | Vehicle traveling control device |
JP2006163879A (ja) * | 2004-12-08 | 2006-06-22 | Daihatsu Motor Co Ltd | 画像処理方法及び画像処理装置 |
JP4530827B2 (ja) * | 2004-12-08 | 2010-08-25 | ダイハツ工業株式会社 | 画像処理方法及び画像処理装置 |
JP2009043090A (ja) * | 2007-08-09 | 2009-02-26 | Toyota Motor Corp | 走行制御計画評価装置 |
JP2009157499A (ja) * | 2007-12-25 | 2009-07-16 | Toyota Motor Corp | 運転支援装置及び運転支援システム |
JP2010247580A (ja) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | 走行支援装置 |
CN104183150A (zh) * | 2014-08-15 | 2014-12-03 | 山东交通学院 | 车载单体道路交通状态判别装置与方法 |
CN104183150B (zh) * | 2014-08-15 | 2016-03-16 | 山东交通学院 | 车载单体道路交通状态判别装置与方法 |
JPWO2018123344A1 (ja) * | 2016-12-27 | 2019-06-27 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
WO2018123344A1 (ja) * | 2016-12-27 | 2018-07-05 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
CN110114253A (zh) * | 2016-12-27 | 2019-08-09 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及程序 |
TWI613115B (zh) * | 2017-03-30 | 2018-02-01 | H P B Optoelectronic Co Ltd | 交通工具之後方警示系統 |
CN108693878A (zh) * | 2017-04-06 | 2018-10-23 | 丰田自动车株式会社 | 前进路线设定装置以及前进路线设定方法 |
JP2018203034A (ja) * | 2017-06-02 | 2018-12-27 | 本田技研工業株式会社 | 走行軌道決定装置及び自動運転装置 |
US10775798B2 (en) | 2017-06-02 | 2020-09-15 | Honda Motor Co., Ltd. | Running track determining device and automatic driving apparatus |
WO2019220717A1 (ja) * | 2018-05-15 | 2019-11-21 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
US12017648B2 (en) | 2018-05-15 | 2024-06-25 | Hitachi Astemo, Ltd. | Vehicle control device |
JPWO2019220717A1 (ja) * | 2018-05-15 | 2021-05-27 | 日立Astemo株式会社 | 車両制御装置 |
JP2019199205A (ja) * | 2018-05-17 | 2019-11-21 | トヨタ自動車株式会社 | 自動運転システム |
CN111045422A (zh) * | 2018-10-11 | 2020-04-21 | 顾泽苍 | 一种自动驾驶导入“机智获得”模型的控制方法 |
EP3699890A3 (en) * | 2019-02-21 | 2020-11-25 | Baidu Online Network Technology (Beijing) Co., Ltd. | Information processing method and apparatus, and storage medium |
KR20200102378A (ko) * | 2019-02-21 | 2020-08-31 | 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 | 정보 처리 방법, 장치 및 저장 매체 |
CN111462493B (zh) * | 2020-04-10 | 2021-05-28 | 北京工业大学 | 一种基于车联网的超车态势感知预警系统 |
CN111462493A (zh) * | 2020-04-10 | 2020-07-28 | 北京工业大学 | 一种基于车联网的超车态势感知预警系统 |
CN111645677A (zh) * | 2020-05-20 | 2020-09-11 | 吉林大学 | 一种车辆制动转向协调控制紧急防碰撞系统及控制方法 |
CN115201827A (zh) * | 2021-04-13 | 2022-10-18 | 江苏允行智能科技有限公司 | 一种基于汽车智能驾驶的毫米波雷达补偿系统及补偿方法 |
CN118387135A (zh) * | 2024-04-19 | 2024-07-26 | 广东汽车检测中心有限公司 | 一种智能网联汽车自动驾驶检测控制方法及其控制系统 |
CN118387135B (zh) * | 2024-04-19 | 2025-01-03 | 广东汽车检测中心有限公司 | 一种智能网联汽车自动驾驶检测控制方法及其控制系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2853077B2 (ja) | 1999-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2853077B2 (ja) | 自動走行車両 | |
US11932284B2 (en) | Trajectory setting device and trajectory setting method | |
CN109131326B (zh) | 一种具有换道辅助功能的自适应巡航控制器及其工作方法 | |
EP1400391B1 (en) | Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus | |
US20200238980A1 (en) | Vehicle control device | |
JP5130638B2 (ja) | 回避操作算出装置、回避制御装置、各装置を備える車両、回避操作算出方法および回避制御方法 | |
JP7151179B2 (ja) | 車線変更推定装置および車線変更推定方法と、車両制御装置および車両制御方法 | |
US5101351A (en) | Autonomous vehicle using fuzzy control | |
CN113498519B (zh) | 用于识别拐入车辆或拐出车辆的方法及控制单元 | |
US20200353918A1 (en) | Vehicle control device | |
CN109649393A (zh) | 一种自动驾驶变换车道的路径规划方法及装置 | |
US20200317192A1 (en) | Vehicle control device | |
US20200384999A1 (en) | Vehicle control device | |
JP2004504216A (ja) | 車両用自動制動及び操縦システム | |
CN112965476A (zh) | 一种基于多窗口抽样的高速无人车轨迹规划系统及方法 | |
US20200391747A1 (en) | Vehicle control device | |
EP4049916B1 (en) | Vehicle control method, vehicle control system, and vehicle | |
JP5023869B2 (ja) | 車両用運転操作支援装置、および車両用運転操作支援方法 | |
US20200180614A1 (en) | Vehicle control device | |
EP1407915B1 (en) | Vehicle surroundings monitoring system and traveling control system incorporating the monitoring system | |
WO2022130701A1 (ja) | 車両制御装置 | |
CN114364592A (zh) | 用于自动驾驶车辆的轨迹形状生成的方法和装置 | |
CN114103893A (zh) | 一种无人车的轨迹预测防撞方法 | |
CN114379550B (zh) | 用于辅助驾驶的自适应车道保持辅助方法和装置 | |
JP2024506972A (ja) | 障害物を回避するための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981006 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071120 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081120 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081120 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091120 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091120 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101120 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |