JPH078155B2 - Power generator - Google Patents
Power generatorInfo
- Publication number
- JPH078155B2 JPH078155B2 JP21134290A JP21134290A JPH078155B2 JP H078155 B2 JPH078155 B2 JP H078155B2 JP 21134290 A JP21134290 A JP 21134290A JP 21134290 A JP21134290 A JP 21134290A JP H078155 B2 JPH078155 B2 JP H078155B2
- Authority
- JP
- Japan
- Prior art keywords
- high temperature
- solid electrolyte
- electrode film
- transfer body
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Hybrid Cells (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、熱エネルギーから直接電気エネルギーに変
換する直接発電方式による発電装置に関する。Description: TECHNICAL FIELD The present invention relates to a power generation device of a direct power generation system that directly converts thermal energy into electrical energy.
(従来の技術) この発明が対象とする発電方式は、アルカリ金属熱電変
換方式或はナトリウムヒートエンジンと呼ばれ、その発
電原理は1969年J.T.Kummerらにより提案されたものであ
る(米国特許3,458,356)。この発電方式は、発電装
置の電極面積当たりの出力が大きい、単位重量当たり
の出力が大きい、比較的高いエネルギー変換効率が達
成可能である、発電規模を自由に選択できる、あら
ゆる熱源に対応できる、直接発電のための作動部がな
く、振動、騒音もなく、信頼性も高い、など数多くの利
点を備えている。(Prior Art) A power generation system targeted by the present invention is called an alkali metal thermoelectric conversion system or a sodium heat engine, and the power generation principle was proposed by JT Cummer et al. In 1969 (US Pat. No. 3,458,356). This power generation method has a large output per electrode area of the power generation device, a large output per unit weight, can achieve a relatively high energy conversion efficiency, can freely select the power generation scale, and can support any heat source, It has many advantages such as no operating part for direct power generation, no vibration and noise, and high reliability.
この発電原理を利用した発電装置は今迄にいくつか報告
されている。第4図は従来の発電装置を示すものであ
り、装置内にはβアルミナ或はβ″アルミナ等の固体電
解質1、固体電解質1の+側には正極電極膜2、正極電
極膜2に対向して高温側熱源3がそれぞれ設けられ、ま
たその下方にはコンデンサ4、循環用ポンプ5が設けら
れ、更に正極電極膜2とこれと反対側の固体電解質1を
結ぶ外部回路6が設けられている。Some power generation devices using this power generation principle have been reported so far. FIG. 4 shows a conventional power generator. A solid electrolyte 1 such as β-alumina or β ″ -alumina is provided in the device, a positive electrode film 2 is provided on the + side of the solid electrolyte 1, and a positive electrode film 2 is opposed thereto. Then, a high temperature side heat source 3 is provided respectively, a condenser 4 and a circulation pump 5 are provided below the high temperature side heat source 3, and an external circuit 6 connecting the positive electrode film 2 and the solid electrolyte 1 on the opposite side is provided. There is.
ナトリウム等の作動媒体はコンデンサ4で液相の状態に
した後、そのまま液相の状態で正極電極膜2とは反対側
の固体電解質1に供給される。他の方法としては、本願
発明者らが先に提案したように、液相状態の作動媒体を
蒸発させ、気相で正極電極膜2とは反対側の固体電解質
1に供給される(特開平1-97182号)。The working medium such as sodium is brought into a liquid phase state by the capacitor 4, and then is supplied as it is to the solid electrolyte 1 on the side opposite to the positive electrode film 2 in the liquid phase state. As another method, as previously proposed by the present inventors, the working medium in the liquid phase is evaporated and supplied to the solid electrolyte 1 on the side opposite to the positive electrode film 2 in the gas phase (Japanese Patent Laid-Open No. Hei 10 (1999) -135242). 1-97182).
固体電解質1の左側(電極膜2と反対側)に供給された
ナトリウム等の作動媒体は電解質界面において電子を放
出してイオン化され、正極電極膜2側に移動し、正極電
極膜2では電子を受け取って還元されると同時に、高温
側熱源3からの熱で蒸発する。更に気相となった作動媒
体は正極電極膜2と高温側熱源3の間を通ってコンデン
サ4に供給され、ここで凝縮され、液相となった作動媒
体は循環用ポンプ5により最初の状態である正極電極膜
2とは反対側の固体電解質1に供給される。このような
クローズドなサイクルを構成することにより、外部回路
6に直流電力を発生させることができる。The working medium such as sodium supplied to the left side of the solid electrolyte 1 (on the side opposite to the electrode film 2) releases electrons at the electrolyte interface and is ionized, and moves to the positive electrode film 2 side. At the same time as it is received and reduced, it is evaporated by the heat from the high temperature side heat source 3. Further, the working medium in the vapor phase is supplied to the condenser 4 through the space between the positive electrode film 2 and the heat source 3 on the high temperature side, is condensed there, and the working medium in the liquid phase is in the initial state by the circulation pump 5. Is supplied to the solid electrolyte 1 on the side opposite to the positive electrode film 2. By configuring such a closed cycle, it is possible to generate DC power in the external circuit 6.
(発明が解決しようとする問題点) アルカリ金属熱電変換方式の大きな問題点の一つは電極
膜部への熱エネルギーの供給方法にあり、上述のような
従来の装置においては高温側熱源3から電極膜2への熱
エネルギーの供給は輻射加熱による方法が採用されてい
る。しかし、電極膜2と高温側熱源3との間は気相の作
動媒体の通路となるため、電極膜2と高温側熱源3との
間には間隔を設ける必要があり、このため熱源3の温度
と電極膜2との温度差が大きくなり、例えば電極膜2の
面を800℃とするために高温側加熱面の温度を1100℃以
上にする必要がある。したがって、熱エネルギーの損失
が大きく、また高温において耐久性のある高価な材料を
使用したり、電極膜と高温側熱源との位置関係を考慮す
る必要があり、したがってシステムを設計する上での制
約条件が多くなるなどの問題点がある。(Problems to be Solved by the Invention) One of the major problems of the alkali metal thermoelectric conversion method lies in the method of supplying thermal energy to the electrode film portion, and in the conventional device as described above, the high temperature side heat source 3 is used. The method of supplying radiant heat to the electrode film 2 employs radiant heating. However, since a gas-phase working medium passage is provided between the electrode film 2 and the high temperature side heat source 3, it is necessary to provide a gap between the electrode film 2 and the high temperature side heat source 3, and therefore the heat source 3 The temperature difference between the temperature and the electrode film 2 becomes large. For example, in order to set the surface of the electrode film 2 to 800 ° C., it is necessary to set the temperature of the high temperature side heating surface to 1100 ° C. or higher. Therefore, it is necessary to use an expensive material that has a large loss of thermal energy and is durable at high temperature, and to consider the positional relationship between the electrode film and the heat source on the high temperature side, which is a constraint in designing the system. There are problems such as many conditions.
また、高温側熱源3から電極膜2を輻射加熱に加熱する
場合には、電極膜2面の加熱が不均一になり、このため
固体電解質1の破損を招く恐れがあるばかりでなく、電
極膜2面の加熱が不均一であるため、電極膜2面での作
動媒体の蒸発に差が生じ、最適運転条件での作動が難し
くなるなどの問題点がある。When the electrode film 2 is heated by radiant heating from the high temperature side heat source 3, the heating of the surface of the electrode film 2 becomes non-uniform, which may cause damage to the solid electrolyte 1 as well as the electrode film. Since the heating of the two surfaces is non-uniform, there is a problem in that there is a difference in evaporation of the working medium on the two surfaces of the electrode film, making it difficult to operate under optimum operating conditions.
(問題点を解決するための手段) 以上の問題点を解決するため、この発明では固体電解質
の+側に電極部を設け、該電極部に対向して高温部を設
け、作動媒体は固体電解質中をイオン化して通過させ、
電極部で電子を受取り還元されると同時に、高温部から
の熱で蒸発させて循環使用する発電装置において、電極
部と高温部との間に多孔質の伝熱体を介在させた発電装
置を提案するものである。(Means for Solving Problems) In order to solve the above problems, in the present invention, an electrode part is provided on the + side of the solid electrolyte, a high temperature part is provided facing the electrode part, and the working medium is the solid electrolyte. Ionize the inside and let it pass,
In a power generator that receives and reduces electrons at the electrode part and at the same time evaporates by the heat from the high temperature part and circulates and uses the power generator, a porous heat transfer body is interposed between the electrode part and the high temperature part. It is a proposal.
ここで、作動媒体としては、固体電解質のイオン導電率
の高い媒体が選定される。例えば、βアルミナ或はβ″
アルミナ等の固体電解質を使用する場合には、ナトリウ
ム、カリウム、セシウム等のアルカリ金属或は水銀等を
使用することができ、このほか固体電解質を選定するこ
とにより、他の作動媒体の使用も可能である。Here, a medium having a high ionic conductivity of the solid electrolyte is selected as the working medium. For example, β-alumina or β ″
When using a solid electrolyte such as alumina, it is possible to use alkali metals such as sodium, potassium and cesium, or mercury, and it is also possible to use other working media by selecting a solid electrolyte. Is.
多孔質の伝熱体の材質としては、絶縁物質、導電物質何
れをも使用することができるが、高温に耐えることが可
能であり、且つ作動媒体に腐食しないこと等を考慮し
て、ニッケル、モリブデン、タングステン、ニオブ、レ
ニウム、タンタル等の高融点金属が使用されるが、絶縁
物質より成る多孔質物質を複合化した物質の使用も可能
である。また、多孔質伝熱体の形状としては、電極膜か
らの作動媒体の蒸発を妨害しないような気孔率の高い形
状のものを採用することができる。As the material for the porous heat transfer material, either an insulating material or a conductive material can be used, but nickel, nickel, in consideration of being capable of withstanding high temperatures and not corroding the working medium, Refractory metals such as molybdenum, tungsten, niobium, rhenium, and tantalum are used, but it is also possible to use a composite material of a porous material made of an insulating material. Further, as the shape of the porous heat transfer body, a shape having a high porosity that does not interfere with the evaporation of the working medium from the electrode film can be adopted.
(作用) 以上のように、この発明では電極部と高温部との間に多
孔質の伝熱体を介在させているため、高温部の熱は伝熱
体を通って電極部に伝えられ、この熱で電極部で蒸発し
た作動媒体は伝熱体の多孔質通路を通ってコンデンサに
送られる。(Operation) As described above, in the present invention, since the porous heat transfer body is interposed between the electrode part and the high temperature part, the heat of the high temperature part is transferred to the electrode part through the heat transfer body. The working medium evaporated in the electrode portion by this heat is sent to the condenser through the porous passage of the heat transfer body.
このように、この発明では高温部の熱は熱伝導により電
極部に伝えるため、高温側と電極部、固体電解質の部分
との温度差を小さくすることができ、このため発電効率
の向上が可能となる。また、この発明では高温側の温度
が低下することにより熱損失を低く抑えることが可能と
なり、また安価な材料の使用が可能となり、更に高温側
加熱面と電極部、固体電解質の位置関係を比較的自由に
設定でき、システム設計上大変有利である。As described above, in the present invention, the heat of the high temperature portion is transferred to the electrode portion by heat conduction, so that the temperature difference between the high temperature side and the electrode portion or the portion of the solid electrolyte can be made small, and therefore the power generation efficiency can be improved. Becomes Further, according to the present invention, it is possible to suppress the heat loss by lowering the temperature on the high temperature side, and it is possible to use an inexpensive material. Furthermore, the positional relationship between the heating surface on the high temperature side, the electrode portion, and the solid electrolyte is compared. It can be set freely and is very advantageous in system design.
また、多孔質の伝熱体をニッケルのような導電性物質で
構成する場合には、伝熱体自体が電極部の一部となり、
これに外部回路のリード線を接続することができる。即
ち、第4図に示す従来の装置では電極膜2に外部回路6
のリード線を接続していたが、この電極膜2の厚みはミ
クロンオーダであり、したがって電極膜の全面から発生
する電流を抵抗が小さい状態で取り出すためのリード線
の接続が難しく、また一旦接続しても作動中に断線する
などの難点があったが、この発明で使用する伝熱体の厚
みはセンチオーダであり、リード線の接続を容易に、且
つ確実に行なうことができる。Further, when the porous heat transfer body is made of a conductive material such as nickel, the heat transfer body itself becomes a part of the electrode part,
An external circuit lead wire can be connected to this. That is, in the conventional device shown in FIG.
However, since the thickness of the electrode film 2 is on the order of micron, it is difficult to connect the lead wire for taking out the current generated from the entire surface of the electrode film with a small resistance, and the connection is once made. Even though there is a problem such as disconnection during operation, the thickness of the heat transfer body used in the present invention is of the order of centimeters, and the lead wire can be connected easily and surely.
(実施例) 以下、この発明を図示の実施例に基づいて詳細に説明す
る。(Example) Hereinafter, the present invention will be described in detail based on an illustrated example.
第1図は、この発明の一実施例を示すもので、第4図と
同様に、1はβアルミナ或はβ″アルミナ等の固体電解
質、2は固体電解質1の+側に設けられた正極電極膜、
3は正極電極膜2に対向して設けられた高温側熱源、4
はコンデンサ、5は循環用ポンプ、6は外部回路であ
る。FIG. 1 shows an embodiment of the present invention. As in FIG. 4, 1 is a solid electrolyte such as β-alumina or β ″ -alumina, and 2 is a positive electrode provided on the + side of the solid electrolyte 1. Electrode film,
3 is a high temperature side heat source provided facing the positive electrode film 2;
Is a condenser, 5 is a circulation pump, and 6 is an external circuit.
電極膜2と高温側熱源3の間には多孔質のニッケル等で
構成される伝熱体7が介在され、外部回路6の一方のリ
ード線は伝熱体7に接続されている。A heat transfer body 7 made of porous nickel or the like is interposed between the electrode film 2 and the high temperature side heat source 3, and one lead wire of the external circuit 6 is connected to the heat transfer body 7.
作動媒体としては、ナトリウムを使用し、したがって第
4図で説明したように、固体電解質1でナトリウムはイ
オン化され、電極膜2方向に移動し、電極膜2では電子
が与えられ、再びナトリウムとなると同時に、高温側熱
源3から伝熱体7を通って伝えられた熱で蒸発し、この
蒸気は伝熱体7の多孔質通路を通って下方のコンデンサ
4に送られる。Sodium is used as the working medium. Therefore, as described in FIG. 4, when the solid electrolyte 1 ionizes sodium, it moves toward the electrode film 2 and electrons are given to the electrode film 2 to become sodium again. At the same time, the heat transmitted from the high temperature side heat source 3 through the heat transfer body 7 evaporates, and this vapor is sent to the condenser 4 below through the porous passage of the heat transfer body 7.
このようにして、第4図で説明したと同様にして外部回
路6に直流電流を発生することができるが、この発明で
は高温側熱源3からの熱を伝熱体7により電極膜2に伝
えているため、高温側加熱面と電極膜2、固体電解質1
の部分の温度差を小さくすることができ、発電効率を向
上させることができる。In this way, a direct current can be generated in the external circuit 6 in the same manner as described with reference to FIG. 4, but in the present invention, the heat from the high temperature side heat source 3 is transferred to the electrode film 2 by the heat transfer body 7. Therefore, the heating surface on the high temperature side, the electrode film 2, the solid electrolyte 1
It is possible to reduce the temperature difference in the portion of, and to improve the power generation efficiency.
第2図は、他の実施例を示すもので、この場合固体電解
質1としては円筒状のものを使用し、円筒状の固体電解
質1の周縁に電極膜2が設けられ、更にその外周にはニ
ッケルで構成された多孔質の伝熱体7、高温側熱源3が
それぞれ設けられており、循環用ポンプ5からの作動媒
体の通路の先端は円筒状の固体電解質1の内側に臨ませ
るようしてある。FIG. 2 shows another embodiment. In this case, a cylindrical solid electrolyte 1 is used, an electrode film 2 is provided on the periphery of the cylindrical solid electrolyte 1, and the outer periphery thereof is further provided. A porous heat transfer body 7 made of nickel and a high temperature side heat source 3 are respectively provided, and the tip of the passage of the working medium from the circulation pump 5 is made to face the inside of the cylindrical solid electrolyte 1. There is.
他の箇所は第1図と同様であり、同一符号を使用してそ
の説明を省略するが、この実施例では第1図とは異な
り、円筒状の固体電解質1の周縁に設けられた電極膜2
をその外周に設けられた高温側熱源3から伝熱体7を介
して加熱するため、比較的小さな熱エネルギーで電極膜
2を有効に加熱することができる。したがって、高温側
加熱面と電極面との温度差を小さくすることができる。
例えば、この形状について従来の輻射加熱方式の場合、
電極面を800℃とするためには周囲高温側加熱面は1100
℃以上にすることが必要であったが、第2図の実施例で
は高温側加熱面温度は860℃程度で十分である。Other parts are the same as those in FIG. 1 and the same reference numerals are used and the description thereof is omitted. However, in this embodiment, unlike FIG. 1, the electrode film provided on the periphery of the cylindrical solid electrolyte 1 is different. Two
Is heated from the high temperature side heat source 3 provided on the outer periphery thereof via the heat transfer body 7, so that the electrode film 2 can be effectively heated with relatively small heat energy. Therefore, the temperature difference between the high temperature side heating surface and the electrode surface can be reduced.
For example, in the case of the conventional radiant heating method for this shape,
To make the electrode surface 800 ° C, the heating surface on the high temperature side is 1100
Although it was necessary to set the temperature above ℃, in the embodiment shown in FIG. 2, it is sufficient that the high temperature side heating surface temperature is about 860 ℃.
第3図は、第2図を更に改良した実施例であり、この場
合は円筒状の高温側熱源3の内壁に伝熱体7を接して4
本の円筒状の固体電解質1が配置され、循環用ポンプ5
からはそれぞれの円筒状の固体電解質1の内部に作動媒
体が供給される。他の動作については上記実施例と同様
であるので、ここでは説明を省略する。FIG. 3 shows an embodiment in which FIG. 2 is further improved. In this case, the heat transfer body 7 is brought into contact with the inner wall of the cylindrical high temperature side heat source 3
A cylindrical solid electrolyte 1 is arranged, and a circulation pump 5 is provided.
The working medium is supplied to the inside of each cylindrical solid electrolyte 1. The other operations are the same as those in the above-mentioned embodiment, so the description thereof is omitted here.
第3図においては、第2図より更に効率よく、且つ均一
に電極面を加熱できるため、従来の電極面の不均一加熱
に起因する固体電解質の破損を防ぐことができる。電極
面が均一に加熱されるため、最適運転条件で装置を作動
させることができる。In FIG. 3, the electrode surface can be heated more efficiently and uniformly than in FIG. 2, so that damage to the solid electrolyte due to nonuniform heating of the conventional electrode surface can be prevented. Since the electrode surface is heated uniformly, the device can be operated under optimum operating conditions.
(発明の効果) 以上要するに、この発明によれば電極部と高温部との間
に多孔質の伝熱体を介在させることにより、従来の輻射
加熱方式と比較して高温側加熱面と電極面の間の温度差
を大幅に減少させることができ、熱エネルギーの有効利
用を図ることができる。また、比較的小さな熱エネルギ
ーで効率よく発電できるので、この発明の対象とするア
ルカリ金属熱電変換方式の応用範囲を広げることができ
る。(Effects of the Invention) In summary, according to the present invention, by interposing a porous heat transfer body between the electrode part and the high temperature part, the high temperature side heating surface and the electrode surface can be compared with the conventional radiant heating method. The temperature difference between the two can be significantly reduced, and the thermal energy can be effectively used. Moreover, since it is possible to efficiently generate electricity with relatively small heat energy, it is possible to widen the range of application of the alkali metal thermoelectric conversion method which is the object of the present invention.
また、この発明では高温側温度が低下することにより熱
損失を低減させることが可能となり、さらに安価な材料
の使用が可能となり、コスト低減効果もある。Further, according to the present invention, it is possible to reduce the heat loss by lowering the temperature on the high temperature side, it becomes possible to use an inexpensive material, and there is also a cost reduction effect.
更に、この発明では電極面を均一に加熱できることか
ら、固体電解質の破損を招来することなく、同時に最適
運転条件で装置を作動させることができる。Further, according to the present invention, since the electrode surface can be heated uniformly, the device can be operated under optimum operating conditions without causing damage to the solid electrolyte.
また、この発明では従来の輻射加熱方式と比較して高温
側加熱面と電極、固体電解質の位置関係の制約条件が少
なく、このためシステム設計上の自由度を増すことがで
きる。Further, according to the present invention, there are few restrictions on the positional relationship between the heating surface on the high temperature side, the electrode, and the solid electrolyte, as compared with the conventional radiant heating method, and therefore the degree of freedom in system design can be increased.
第1図は、この発明の一実施例を示す発電装置の概略側
面図、第2図は、この発明の他の実施例を示す発電装置
の概略側面図、第3図は、この発明の更に他の実施例を
示す発電装置の概略平面図、第4図は、従来の発電装置
の概略側面図である。 図中、1は固体電解質、2は電極膜、3は高温側熱源、
7は多孔質の伝熱体。FIG. 1 is a schematic side view of a power generator showing an embodiment of the invention, FIG. 2 is a schematic side view of a power generator showing another embodiment of the invention, and FIG. 3 is a further side view of the invention. FIG. 4 is a schematic plan view of a power generator showing another embodiment, and FIG. 4 is a schematic side view of a conventional power generator. In the figure, 1 is a solid electrolyte, 2 is an electrode film, 3 is a high temperature side heat source,
7 is a porous heat transfer body.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本多 武夫 茨城県つくば市梅園1丁目1番4 電子技 術総合研究所内 (56)参考文献 特開 昭60−249879(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Honda 1-4-1, Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute (56) Reference JP-A-60-249879 (JP, A)
Claims (2)
部に対向して高温部を設け、作動媒体は固体電解質中を
イオン化して通過させ、電極部で電子を受取り還元され
ると同時に、高温部からの熱で蒸発させて循環使用する
発電装置において、電極部と高温部との間に多孔質の伝
熱体を介在させたことを特徴とする発電装置。1. An electrode part is provided on the + side of the solid electrolyte, and a high temperature part is provided opposite to the electrode part. The working medium is ionized in the solid electrolyte to pass therethrough, and electrons are received and reduced at the electrode part. At the same time, in a power generation device that is circulated for use by being evaporated by heat from a high temperature part, a power generation device characterized in that a porous heat transfer body is interposed between the electrode part and the high temperature part.
許請求の範囲第1項記載の発電装置。2. The power generator according to claim 1, wherein the porous heat transfer body is made of a conductive material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21134290A JPH078155B2 (en) | 1990-08-09 | 1990-08-09 | Power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21134290A JPH078155B2 (en) | 1990-08-09 | 1990-08-09 | Power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0496666A JPH0496666A (en) | 1992-03-30 |
JPH078155B2 true JPH078155B2 (en) | 1995-01-30 |
Family
ID=16604380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21134290A Expired - Lifetime JPH078155B2 (en) | 1990-08-09 | 1990-08-09 | Power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH078155B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG166123A1 (en) * | 2005-10-05 | 2010-11-29 | Thomas Beretich | Thermally enhanced solid-state generator |
-
1990
- 1990-08-09 JP JP21134290A patent/JPH078155B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0496666A (en) | 1992-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5492570A (en) | Hybrid thermal electric generator | |
KR101137377B1 (en) | Electric converter unit and electric converter system | |
JPH0515158B2 (en) | ||
CA1133577A (en) | Internal geometry of alkali metal thermoelectric generator devices | |
CN102945778A (en) | Hollow cathode assembly | |
JP2008294129A (en) | THERMOELECTRIC POWER GENERATOR AND THERMOELECTRIC POWER GENERATOR HAVING THE THERMOELECTRIC POWER GENERATOR | |
CN202917423U (en) | A hollow cathode assembly | |
JPH078155B2 (en) | Power generator | |
JP2008228386A (en) | Electrode manufacturing method for thermoelectric power generation element, electrode thereof, and thermoelectron power generation element using the electrode | |
EP1245796B1 (en) | Hybrid combustion power system | |
JP3787625B2 (en) | Thermoelectric converter | |
KR101305431B1 (en) | Themal to eletric converting cell | |
JP4687305B2 (en) | Thermoelectric generator | |
JP4706983B2 (en) | Heating device including thermoelectric module | |
JP3188070B2 (en) | Thermoelectric generation module | |
JP2887253B1 (en) | Thermoelectric conversion generator | |
JP2004535048A (en) | Fuel cell with optimal temperature control | |
JP2866926B2 (en) | Power generator | |
JP3597269B2 (en) | Thermionic generator | |
JPH0634603B2 (en) | Solid electrolyte type thermoelectric converter | |
JPH08237972A (en) | Thermoelectron power generation electrode unit and its production | |
JP3295991B2 (en) | High-purity sodium purification equipment | |
JP3481959B2 (en) | Alkali metal thermoelectric generator | |
JPH018955Y2 (en) | ||
RU2355075C1 (en) | Thermoelectrochemical generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |