JPH077815B2 - Semiconductor device cooling method - Google Patents
Semiconductor device cooling methodInfo
- Publication number
- JPH077815B2 JPH077815B2 JP1443487A JP1443487A JPH077815B2 JP H077815 B2 JPH077815 B2 JP H077815B2 JP 1443487 A JP1443487 A JP 1443487A JP 1443487 A JP1443487 A JP 1443487A JP H077815 B2 JPH077815 B2 JP H077815B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- chip
- cooling
- wiring board
- cooling method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
【発明の詳細な説明】 〔概要〕 半導体装置の液冷効果を向上するため、半導体装置を搭
載した配線基板に圧電振動子を設置し、この圧電振動子
の生ずる高周波振動により半導体装置より発生する気泡
を除去して冷却効率を向上する冷却方法。DETAILED DESCRIPTION [Overview] In order to improve the liquid cooling effect of a semiconductor device, a piezoelectric vibrator is installed on a wiring board on which the semiconductor device is mounted, and high frequency vibration generated by the piezoelectric vibrator causes the semiconductor device to generate the vibration. A cooling method that removes air bubbles to improve cooling efficiency.
本発明は冷却効率を向上した半導体装置の冷却方法に関
する。The present invention relates to a semiconductor device cooling method with improved cooling efficiency.
情報処理装置の処理能力を向上する方法として多数の半
導体素子から構成されている半導体装置は単位素子の小
型化と共に素子数の増大が行われている。As a method for improving the processing capacity of an information processing apparatus, a semiconductor device including a large number of semiconductor elements is being miniaturized as a unit element and the number of elements is being increased.
すなわち、単位素子を形成する電極寸法や導体パターン
幅は極度に縮小されており、一方素子数は増大してLSI
やVLSIが実用化されている。That is, the size of the electrodes and the width of the conductor pattern forming the unit element are extremely reduced, while the number of elements is increased and
VLSI has been put to practical use.
また、配線基板への実装方法も改良され、従来は半導体
チップ毎にハーメチックシールパッケージに格納してあ
り、これをプリント配線基板に装着していたが、今後の
形態としてはパッシベーション技術の進歩により、複数
個のLSIチップをセラミックなどの回路基板に装着してL
SIモジールを作り、これを取替え単位として配線基板に
装着する方法がとられるに到っている。In addition, the mounting method on the wiring board has also been improved, and conventionally it was stored in each hermetically sealed package for each semiconductor chip, and this was mounted on the printed wiring board, but in the future, due to the progress of passivation technology, Mount multiple LSI chips on a circuit board such as ceramic
A method has been adopted in which an SI module is created and mounted on a wiring board as a replacement unit.
このように単位素子の小型化と高密度化が進むに従って
半導体装置の発熱量も膨大となり、従来の空冷方法では
素子の温度を最高使用温度範囲内に保持することは不可
能になった。As described above, as the miniaturization and high density of the unit element progress, the amount of heat generated by the semiconductor device also becomes enormous, and it becomes impossible to keep the element temperature within the maximum operating temperature range by the conventional air cooling method.
すなわち、今までLSIチップの発熱量は最高でも4ワッ
ト程度であったが、VLSIでは30ワット程度になり、さら
に増加する趨性にある。In other words, the heat generated by LSI chips has been about 4 watts at the maximum, but it is about 30 watts by VLSI, which is a tendency to increase further.
以上のことから、半導体装置の冷却方法は従来の空冷や
強制空冷に代わって液冷が必要であるが、ただ冷媒中に
浸漬するだけでは冷却能力が不足しており、強制液冷が
必要になってきている。From the above, the cooling method of the semiconductor device requires liquid cooling instead of conventional air cooling or forced air cooling, but the cooling capacity is insufficient by just immersing it in the refrigerant, and forced liquid cooling is required. It has become to.
発明者は多数のLSIを多層配線基板に搭載した半導体装
置の液冷方法について数件の実用新案登録を申請中であ
る。The inventor is applying for several utility model registrations regarding a liquid cooling method for a semiconductor device in which a large number of LSIs are mounted on a multilayer wiring board.
例えば実願昭59-016496,実願昭59-019428,実願昭59-099
389,実願昭59-099390,実願昭59-15752など、 これら出願の要旨は半導体チップ(以下略してチップ)
を搭載した回路基板を非腐蝕性で且つ非解離性であっ
て、沸点がチップの最高使用温度である85℃以下のフル
オロカーボン例えばC5F12(沸点30℃),C6F14(沸点56
℃)などの冷媒に浸漬して密封し、回路基板は容器の内
側に設けたコネクタを通じて外部回路に接続するか、或
いは回路基板を側壁として使用し、裏面より導出したリ
ードピンにコネクタを挿入して回路接続を行っている。For example, Japanese application Sho 59-016496, Japanese application Sho 59-019428, Japanese application Sho 59-099
389, Japanese Patent Application No. 59-099390, Japanese Patent Application No. 59-15752, etc. The gist of these applications is a semiconductor chip (hereinafter abbreviated as a chip).
A circuit board on which is mounted is non-corrosive and non-dissociative, and has a boiling point of 85 ° C or lower, which is the maximum operating temperature of the chip, such as fluorocarbons such as C 5 F 12 (boiling point 30 ° C), C 6 F 14 (boiling point 56
(° C) and soak it in a hermetically sealed medium, and connect the circuit board to an external circuit through a connector provided inside the container, or use the circuit board as a side wall and insert the connector into the lead pin drawn from the back surface. The circuit is connected.
そして、動作中にチップの発熱により接触界面で気化し
た冷媒を液中或いは容器上部の空隙部に配置してある熱
交換機(凝縮器)により効果的に冷却して液化するか、
冷媒を強制循環させ途中に熱交換機を設けて冷却する構
造をとっている。Then, during operation, the refrigerant vaporized at the contact interface due to the heat generation of the chip is effectively cooled in the liquid or by the heat exchanger (condenser) arranged in the void portion of the upper part of the container to be liquefied,
It has a structure in which a refrigerant is forcedly circulated and a heat exchanger is provided on the way to cool the refrigerant.
然し、このような液冷構造はチップの電力消費量が10ワ
ット未満の場合には適当であるが電力消費量がこれより
も大きな場合にはチップからの沸騰が激しくなり、チッ
プの表面が気化した気泡により覆われるため液冷効果が
無くなってしまう。However, such a liquid cooling structure is suitable when the power consumption of the chip is less than 10 watts, but when the power consumption of the chip is higher than this, boiling from the chip becomes intense and the surface of the chip vaporizes. The liquid cooling effect is lost because it is covered with the bubbles.
すなわち、気化したガスがチップの表面を覆い、冷媒の
接触を断つために断熱状態となる。That is, the vaporized gas covers the surface of the chip and interrupts the contact of the refrigerant, resulting in an adiabatic state.
一方、半導体は抵抗の温度係数が負の値をとるために温
度上昇と共に抵抗値が減少し、電流値の増加が起こって
暴走状態となり破壊に到る。On the other hand, the semiconductor has a negative temperature coefficient of resistance, so that the resistance value decreases as the temperature rises, and the current value increases, causing a runaway state and destruction.
そのために、従来よりも効果的な液冷方法が必要であっ
た。Therefore, a more effective liquid cooling method than before has been required.
以上記したように電力消費量の大きなチップの冷却には
従来の液冷方法では能力が不足しており、更に効果的な
強制冷却法を見出すことが課題である。As described above, the conventional liquid cooling method lacks the ability to cool a chip that consumes a large amount of power, and it is a problem to find a more effective forced cooling method.
上記の問題は接続端子により液冷容器内に装着され、複
数の半導体装置を搭載した配線基板が、該配線基板の一
端に圧電振動子を備え、該圧電振動子により該配線基板
に高周波振動を付与しながら冷媒により冷却する半導体
装置の冷却方法により実現することができる。The above-mentioned problem is that the wiring board mounted in the liquid cooling container by the connection terminal and having the plurality of semiconductor devices mounted therein has the piezoelectric vibrator at one end of the wiring board, and the piezoelectric vibrator causes high-frequency vibration to the wiring board. It can be realized by a cooling method of a semiconductor device in which a cooling is performed with a refrigerant while being applied.
本発明は気泡の効果的な除去方法を検討した結果なされ
たものである。The present invention has been made as a result of studying an effective method for removing bubbles.
すなわち、気泡は発生するや否やチップから離脱するの
が望ましいが、離脱は気泡が冷媒の粘度や比重によって
決まる一定の大きさに成長して初めて起こるものである
から、強制的な手段を用いない限り、発生するや否や離
脱させることはできない。That is, it is desirable that the bubbles are released from the chip as soon as they are generated, but the detachment occurs only after the bubbles grow to a certain size determined by the viscosity and the specific gravity of the refrigerant, so no forced means is used. As long as it occurs, it cannot be disengaged.
すなわち、消費電力の大きなチップにおいては沸騰が起
こる核の密度が高いために、気泡が成長する過程でチッ
プの表面が気泡により覆われるのである。That is, in a chip with high power consumption, the density of nuclei in which boiling occurs is high, so that the surface of the chip is covered with bubbles during the process of bubble growth.
そのため、気泡が発生するや否や除去する方法としては
冷媒を吹き付けるか、基板を振動するのが効果的である
が、この場合は振動を与える場合について研究した。Therefore, spraying a refrigerant or vibrating the substrate is effective as a method for removing the bubbles as soon as they are generated, but in this case, the case of vibrating was studied.
その結果、10KHz以上の高周波振動の付与が効果的なこ
とが判った。As a result, it was found that applying a high frequency vibration of 10 KHz or more is effective.
なお、振動数がこれ以下の場合は冷媒は振動するもの
ゝ、微少気泡を離脱させる効果はなく、従って本発明の
目的にはそわない。It should be noted that if the frequency is lower than this, the refrigerant will vibrate, and there will be no effect of removing the minute bubbles, and therefore the object of the present invention will not be met.
大きさが10mm角のLSIチップをマトリックス状に10×10
個搭載したセラミック多層基板にPZT(チタン酸ジルコ
ン酸鉛)を誘電体として構成された圧電振動子を装着
し、振動周波数40KHz,電力30ワットで基板の水平方向に
振動させた。10 x 10 mm square LSI chips arranged in a matrix of 10 x 10
A piezoelectric vibrator composed of PZT (lead zirconate titanate) as a dielectric was mounted on a ceramic multilayer substrate, and the substrate was vibrated horizontally at a vibration frequency of 40 KHz and a power of 30 watts.
この場合に使用した冷媒は沸点が56℃のC6F14であり、
基板を冷媒中に固定し、チップに定格を印加した。The refrigerant used in this case is C 6 F 14 with a boiling point of 56 ° C,
The substrate was fixed in the coolant and the chip was rated.
その結果、気泡は発生するや直ちにチップより遊離する
ようになり、従来の冷却能力が15W/cm2であったのに対
し、25W/cm2にまで向上することができた。As a result, as soon as the bubbles were generated, they were released from the chip, and the cooling capacity could be improved to 25 W / cm 2 from the conventional cooling capacity of 15 W / cm 2 .
なお、振動周波数が10KHz以下の場合には気泡は振動す
るものゝ、離脱せずにそのまま気泡の成長が進み、チッ
プは従来のように暴走状態となって破壊した。It should be noted that when the vibration frequency is 10 KHz or less, the bubbles oscillate, and the bubbles continue to grow without detaching and the chip breaks into a runaway state as in the past.
以上記したように本発明の実施により、半導体装置の液
冷構造において、チップ面から発生する気泡を発生する
や否や除去することができ、そのため冷却能力の向上が
可能となった。As described above, by carrying out the present invention, in the liquid cooling structure of the semiconductor device, the bubbles generated from the chip surface can be removed as soon as they are generated, so that the cooling capacity can be improved.
Claims (1)
数の半導体装置を搭載した配線基板が、該配線基板の一
端に圧電振動子を備え、該圧電振動子により配線基板に
高周波振動を付与しながら冷媒により冷却することを特
徴とする半導体装置の冷却方法。1. A wiring board mounted in a liquid cooling container by a connection terminal and having a plurality of semiconductor devices mounted thereon, a piezoelectric vibrator being provided at one end of the wiring board, and the piezoelectric vibrator causes high-frequency vibration on the wiring board. A method for cooling a semiconductor device, which comprises cooling with a refrigerant while applying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1443487A JPH077815B2 (en) | 1987-01-23 | 1987-01-23 | Semiconductor device cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1443487A JPH077815B2 (en) | 1987-01-23 | 1987-01-23 | Semiconductor device cooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63181453A JPS63181453A (en) | 1988-07-26 |
JPH077815B2 true JPH077815B2 (en) | 1995-01-30 |
Family
ID=11860912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1443487A Expired - Lifetime JPH077815B2 (en) | 1987-01-23 | 1987-01-23 | Semiconductor device cooling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH077815B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07108102B2 (en) * | 1990-05-01 | 1995-11-15 | 日本碍子株式会社 | Method for manufacturing piezoelectric / electrostrictive film type actuator |
-
1987
- 1987-01-23 JP JP1443487A patent/JPH077815B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63181453A (en) | 1988-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4312012A (en) | Nucleate boiling surface for increasing the heat transfer from a silicon device to a liquid coolant | |
CA1115822A (en) | Cooling tunnels for semiconductor devices | |
US6327145B1 (en) | Heat sink with integrated fluid circulation pump | |
US5436793A (en) | Apparatus for containing and cooling an integrated circuit device having a thermally insulative positioning member | |
US5455738A (en) | High thermal conductivity, matched CTE. low density mounting plate for a semiconductor circuit | |
US7489034B2 (en) | Integrated circuit cooling system and method | |
US7842553B2 (en) | Cooling micro-channels | |
JPH077815B2 (en) | Semiconductor device cooling method | |
US5477084A (en) | Microelectronic device packaging containing a liquid and method | |
JPH04147657A (en) | Cooling mechanism for electronic component | |
JPH09283958A (en) | Highly efficient cooling structure for integrated circuit | |
JPS6285449A (en) | Cooling structure for semiconductor devices | |
JP2822655B2 (en) | Electronic component cooling mechanism | |
JPH04372159A (en) | Cooler for semiconductor device and cooling method thereof | |
JPH03224256A (en) | Cooling equipment for electronic machinery and apparatus | |
JPS61131553A (en) | Immersion liquid cooling device | |
JPH03273669A (en) | Semiconductor device with cooling mechanism | |
JPH0442931Y2 (en) | ||
JPH05251600A (en) | Heat sink for immersion jet cooling | |
JPH037960Y2 (en) | ||
JPH02155258A (en) | Jet-cooled semiconductor device | |
JPH0319275Y2 (en) | ||
JPS6184045A (en) | Integrated circuit cooling structure | |
JPH0533015Y2 (en) | ||
JPH0719157Y2 (en) | Semiconductor package for immersion cooling |