[go: up one dir, main page]

JPH0777009A - Stator of axial flow turbomachine - Google Patents

Stator of axial flow turbomachine

Info

Publication number
JPH0777009A
JPH0777009A JP22420093A JP22420093A JPH0777009A JP H0777009 A JPH0777009 A JP H0777009A JP 22420093 A JP22420093 A JP 22420093A JP 22420093 A JP22420093 A JP 22420093A JP H0777009 A JPH0777009 A JP H0777009A
Authority
JP
Japan
Prior art keywords
blade
flow
axial
vane
turbomachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22420093A
Other languages
Japanese (ja)
Inventor
Yoshio Kano
芳雄 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22420093A priority Critical patent/JPH0777009A/en
Publication of JPH0777009A publication Critical patent/JPH0777009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】 【目的】軸流型ターボ機械の性能向上を図るために、低
損失の静翼を実現することを目的とする。 【構成】環状流路内に複数個配置された軸流型ターボ機
械の静翼を、軸方向傾き角δを半径方向に変化させ、子
午面において弓状になるよう構成する。 【効果】静翼を軸方向に傾けることにより、静翼の曲が
り部から下流側にかけての翼面は、流れを側壁方向に押
しつけるような流路形状となる。この結果、側壁に発達
する境界層や翼間流路に発生する二次流れ渦を抑制する
ような翼間流れを実現することができる。しかも、流出
角に大きな影響を与えずに、側壁に発達する境界層や翼
間流路に発生する二次流れ渦を抑制する作用が生じる。
この結果、低損失の軸流型ターボ機械の静翼を実現する
ことが可能となる。
(57) [Abstract] [Purpose] The objective is to realize a low-loss vane in order to improve the performance of an axial-flow turbomachine. [Structure] A plurality of stator blades of an axial flow type turbomachine arranged in an annular flow path are configured so that an axial inclination angle δ is changed in a radial direction so as to be arcuate in a meridian plane. [Effect] By inclining the stationary blade in the axial direction, the blade surface from the bent portion of the stationary blade to the downstream side has a flow path shape that presses the flow in the side wall direction. As a result, it is possible to realize the inter-blade flow that suppresses the secondary flow vortices generated in the boundary layer that develops on the side wall and the inter-blade flow path. Moreover, the effect of suppressing the secondary flow vortices generated in the boundary layer that develops on the side wall and the inter-blade flow path occurs without significantly affecting the outflow angle.
As a result, it is possible to realize a vane of an axial flow turbomachine with low loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービン,ガスター
ビン及び軸流圧縮機などの軸流型ターボ機械の静翼に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stationary blade of an axial flow turbomachine such as a steam turbine, a gas turbine and an axial compressor.

【0002】[0002]

【従来の技術】静翼の構造を変えて段落内部流れの改善
を図っている従来技術としては、例えば、静翼内部流れ
に発生する二次流れ渦による損失を低減するために、静
翼を軸方向から見てスパン方向中央部で対称となるよう
な弓型形状としたものがある。これについては、ASME P
aper No.90−GT−55なる報告書の論文名「TheIn
fluence of Blade Lean on Turbine Losses 」などに記
載されている。更に、軸方向から見て非対称弓型形状と
した静翼については、特願平2−67115号に示されてい
る。これら従来技術は、二次流れ渦による損失の低減に
有効であるが、静翼の流出角が設計値に対して大きくず
れるため、動翼への入射角が大きくなるという問題が発
生する。したがって、軸流型ターボ機械のより一層の性
能向上を図るためには、静翼の流出角が設計値に対して
大きくずれない高性能の静翼構造が要求されている。
2. Description of the Related Art As a conventional technique for improving the internal flow of a paragraph by changing the structure of the vane, for example, in order to reduce the loss due to the secondary flow vortex generated in the internal flow of the vane, the vane is There is an arched shape that is symmetric in the central portion in the span direction when viewed from the axial direction. For this, see ASME P
aper No.90-GT-55 report title "The In
fluence of Blade Lean on Turbine Losses ”. Further, a stator blade having an asymmetrical bow shape when viewed from the axial direction is disclosed in Japanese Patent Application No. 2-67115. These conventional techniques are effective in reducing the loss due to the secondary flow vortices, but since the outflow angle of the stationary blade deviates largely from the design value, there arises a problem that the incident angle to the moving blade becomes large. Therefore, in order to further improve the performance of the axial-flow turbomachine, a high-performance vane structure in which the outflow angle of the vane does not greatly deviate from the design value is required.

【0003】[0003]

【発明が解決しようとする課題】一般に軸流型ターボ機
械の翼間流れでは、流体の粘性に起因した三次元流動現
象として二次流れ渦が発生する。すなわち、静翼や動翼
を支持する側壁上に発達する流速の遅い境界層流れとそ
の影響の無い流速の早い主流部が翼によって転向を受け
ると流体に作用する遠心力の違いにより半径方向の流れ
が発生し、結果として翼間流れに一対の渦を形成する。
この二次流れ渦は損失発生の原因となるため、極力その
発生を防止することが望ましい。この二次流れ渦は、例
えば側壁境界層の吸い込みなどによっても軽減できるこ
とは周知の事実であるが、実際のターボ機械に適用する
のは構造が複雑になり現実的でない。本発明では、この
ような翼間流れに発生する二次流れ渦による損失を軽減
し、高性能なターボ機械を実現するための静翼構造を提
供することを目的とする。
Generally, in the inter-blade flow of an axial flow type turbomachine, a secondary flow vortex is generated as a three-dimensional flow phenomenon due to the viscosity of the fluid. In other words, when a boundary layer flow with a low flow velocity that develops on the side wall that supports the stationary blades and rotor blades and a main flow part with a low flow velocity that does not affect the flow velocity are deflected by the blades, the centrifugal force acting on the fluid causes a difference in radial direction. A flow is generated, which results in the formation of a pair of vortices in the inter-blade flow.
Since this secondary flow vortex causes loss, it is desirable to prevent it as much as possible. It is a well-known fact that this secondary flow vortex can be mitigated by, for example, suction of the sidewall boundary layer, but it is not realistic to apply it to an actual turbomachine because of its complicated structure. It is an object of the present invention to provide a vane structure for reducing a loss due to a secondary flow vortex generated in such an inter-blade flow and realizing a high performance turbomachine.

【0004】[0004]

【課題を解決するための手段】本発明の第一は軸流型タ
ーボ機械の静翼の軸方向傾き角δを半径方向に変化さ
せ、子午面において翼前縁方向に突き出るような弓状に
なるようにしたことを特徴とするものである。ここで、
軸方向傾き角δは各半径位置における翼前縁接線と回転
軸に垂直な前縁を通る線とのなす角度である。
The first object of the present invention is to change the axial inclination angle δ of a stationary blade of an axial flow type turbomachine in a radial direction so that the stationary blade has a bow shape protruding toward a blade leading edge in a meridian plane. It is characterized in that here,
The axial tilt angle δ is an angle formed by the blade leading edge tangent line at each radial position and a line passing through the leading edge perpendicular to the rotation axis.

【0005】本発明の第二は上記静翼の軸方向傾き角δ
の半径方向分布を翼スパン中央部に対して対称とならな
いように設定し、静翼の弓型形状を子午面で見て、翼ス
パン中央部に対して対称とならないことを特徴とするも
のである。
The second aspect of the present invention is to provide an axial inclination angle δ of the above vane.
The radial distribution of is set so as not to be symmetric with respect to the central part of the blade span, and the arched shape of the stationary vanes is viewed in the meridian plane, and is not symmetrical with respect to the central part of the blade span. is there.

【0006】本発明の第三は翼長をH,子午面における
翼根元の軸方向位置から軸方向弓形状の最大変位をFと
して、最大変位量を0<F/H<0.2 の範囲で弓型形
状になるようにしたことを特徴とするものである。
In the third aspect of the present invention, the maximum displacement amount is in the range of 0 <F / H <0.2, where H is the blade length, and F is the maximum displacement of the axial arch shape from the axial position of the blade root on the meridian plane. It is characterized by having an arched shape.

【0007】[0007]

【作用】静翼の軸方向傾き角δの半径方向分布を、翼前
縁方向に突き出るような弓型形状になるように分布させ
れば、流れを側壁側に押しつけ、しかも周方向の傾きで
はないので、流出角を大きく変化させること無く、側壁
境界層の発達を抑制すると同時に翼間流れに発生する二
次流れ渦を減少させることができる。すなわち、側壁近
傍の翼形状に着目すると、軸方向傾き角δの半径方向分
布を翼前縁方向に突き出るような弓型形状になるように
分布させた場合、翼の曲がり部から下流の翼面は、側壁
から中央部にかけて上流側に傾くことになり、流れに対
しては、側壁方向へ押しつけるような流路形状を形成す
る。この流路形状は流出角の偏向をほとんど伴うことな
く流れを側壁方向へ押しつけるため、静翼流出部の流出
角を良好に保ったまま、側壁境界層の発達を抑制すると
同時に翼間流れに発生する二次流れ渦を減少させる作用
を発生させる。さらに、前述したように、静翼部の流出
角の偏向が小さいために、設計した流出角で流れを動翼
へ導くことができるので、動翼部への入射角が小さくな
り、動翼部の迎え角損失の増大を招くことはない。
[Function] If the radial distribution of the axial inclination angle δ of the stationary blade is distributed so as to have an arched shape protruding toward the leading edge of the blade, the flow is pressed toward the side wall and the inclination in the circumferential direction is reduced. Since it does not exist, it is possible to suppress the development of the sidewall boundary layer and to reduce the secondary flow vortices generated in the blade-to-blade flow without significantly changing the outflow angle. That is, focusing on the blade shape near the side wall, when the radial distribution of the axial inclination angle δ is distributed so as to have an arched shape protruding toward the blade leading edge direction, the blade surface downstream from the curved portion of the blade is Will incline toward the upstream side from the side wall to the central portion, and will form a flow path shape that presses against the flow in the side wall direction. This flow channel shape pushes the flow toward the side wall with almost no deflection of the outflow angle, so while suppressing the development of the side wall boundary layer while maintaining the outflow angle of the vane outflow part, it occurs in the inter-blade flow. It produces the action of reducing the secondary flow eddies. Further, as described above, since the deviation of the outflow angle of the stationary vane portion is small, the flow can be guided to the moving blade at the designed outflow angle, so the incident angle to the moving blade portion becomes small, and Does not lead to an increase in the angle of attack loss.

【0008】[0008]

【実施例】以下、本発明の第1の実施例を図1により説
明する。図1は本発明の静翼を子午面で見た場合の図で
ある。図1より明らかなように、軸方向傾き角δの半径
方向分布を翼前縁4の方向に突き出るような弓型形状に
なるように分布させている。ここで、軸方向傾き角δは
図1に示すように各半径位置における翼前縁接線と回転
軸に垂直な前縁を通る線とのなす角度である。図1によ
る流路形状の変化を示すために、図2に静翼を側壁から
離れるに連れて上流側へ移動した場合の翼面傾斜を示
す。図1に示したように、軸方向傾き角δの半径方向分
布を翼前縁方向に突き出るような弓型形状とすること
で、静翼の曲がり部から下流側にかけての翼面は、流れ
を側壁方向に押しつけるような流路形状となる。この結
果、側壁に発達する境界層や翼間流路に発生する二次流
れ渦を抑制するような翼間流れを実現することができ
る。しかも、翼前縁方向に突き出るような弓型形状とす
ることで、流出角に大きな影響を与えずに側壁境界層や
翼間流路に発生する二次流れ渦の発達を抑制できる。こ
の結果、静翼で発生する流れの損失分布は、図3に示す
ように低減される。図3において、aは従来の静翼で弓
型形状をしていない静翼、bは本発明の静翼で軸方向に
弓型形状とした場合、cは公知技術である周方向に弓型
形状にした場合の翼長方向の損失分布である。図3から
明らかなように、本発明の静翼損失は従来翼に比べて損
失が小さく、周方向に弓型形状にした場合に比べても遜
色ないことが分かる。図4は、静翼流出部の流出角の翼
長方向分布を示す図であり、aは従来の静翼で弓型形状
をしていない静翼、bは本発明の静翼で軸方向に弓型形
状とした場合、cは公知技術である周方向に弓型形状に
した場合の翼長方向の流出角分布である。cの周方向に
のみ弓型形状とした静翼では、aの従来の静翼で弓型形
状をしていない静翼の流出角分布と大きく異なっている
が、bの本発明の静翼の流出角分布は、cの周方向に弓
型形状とした場合に比べると、従来の静翼の流出角分布
からの偏向は小さくなり、軸方向に弓型形状とした本発
明によれば、流出角を従来の静翼の流出角とほとんど同
じにしたままで、流れの損失を低減することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a view of the vane of the present invention viewed from the meridian plane. As is apparent from FIG. 1, the radial distribution of the inclination angle δ in the axial direction is distributed so as to have an arched shape protruding in the direction of the blade leading edge 4. Here, the axial inclination angle δ is an angle formed by the tangent line of the blade leading edge at each radial position and a line passing through the leading edge perpendicular to the rotation axis as shown in FIG. In order to show the change of the flow path shape according to FIG. 1, FIG. 2 shows the blade surface inclination when the stationary blade is moved to the upstream side as it is separated from the side wall. As shown in FIG. 1, by making the radial distribution of the axial tilt angle δ into an arched shape that projects toward the blade leading edge direction, the blade surface from the bent portion of the stationary blade to the downstream side is The flow path shape is such that it is pressed in the side wall direction. As a result, it is possible to realize the inter-blade flow that suppresses the secondary flow vortices generated in the boundary layer that develops on the side wall and the inter-blade flow path. Moreover, the arcuate shape protruding toward the blade leading edge can suppress the development of the secondary flow vortices generated in the sidewall boundary layer and the blade-to-blade flow passage without significantly affecting the outflow angle. As a result, the flow loss distribution generated in the vanes is reduced as shown in FIG. In FIG. 3, a is a conventional vane which is not a bow-shaped vane, b is a vane of the present invention which is bow-shaped in the axial direction, and c is a known bow in the circumferential direction. This is the loss distribution in the blade length direction when it is shaped. As is clear from FIG. 3, the vane loss of the present invention is smaller than that of the conventional vane, and is comparable to the case of the arcuate shape in the circumferential direction. FIG. 4 is a view showing the distribution of the outflow angle of the stationary blade outflow portion in the blade length direction, where a is a conventional stationary blade having no arched shape, and b is a stationary blade of the present invention in the axial direction. In the case of the arched shape, c is the outflow angle distribution in the blade length direction when the arched shape is formed in the circumferential direction, which is a known technique. In the stationary blade having the arched shape only in the circumferential direction of c, the outflow angle distribution of the stationary blade of the conventional stationary blade having no arched shape is significantly different from that of the stationary blade of the present invention of b. The outflow angle distribution has a smaller deviation from the outflow angle distribution of the conventional vane than that in the arcuate shape in the circumferential direction of c. The flow loss can be reduced while keeping the angle almost the same as the outflow angle of a conventional vane.

【0009】実際の軸流型ターボ機械の翼間流れでは、
翼スパン方向中央部で上半分と下半分の流れが対称流れ
になることはない。また、上流側の段落の流れの状況に
よっては、根元近傍に損失の大きくなる流動が現れた
り、逆に先端近傍に損失の大きくなる流動が現れたりす
る。このような流れに対処するための本発明の実施例を
以下に示す。
In an actual inter-blade flow of an axial turbomachine,
The upper half flow and the lower half flow do not become symmetrical in the central part of the blade span direction. In addition, depending on the flow conditions in the upstream paragraph, a flow with a large loss may appear near the root, or conversely, a flow with a large loss may appear near the tip. An embodiment of the present invention for coping with such a flow will be shown below.

【0010】本発明の第2の実施例を図5に示す。本実
施例は、翼根元部の側壁境界層や二次流れが大きい場合
に対処できるようにしたものであり、図5は図1と同
様、本発明の静翼を子午面で見た場合の図である。図5
に示すように、翼根元部の側壁境界層や二次流れが大き
い場合には、翼根元方向で軸方向の傾き角を大きくする
ことで、静翼翼間流れの全体的な性能を良好にすること
ができる。
A second embodiment of the present invention is shown in FIG. The present embodiment is designed to deal with the case where the side wall boundary layer at the blade root portion and the secondary flow are large, and FIG. 5 shows the vane of the present invention viewed from the meridional plane, as in FIG. It is a figure. Figure 5
As shown in Fig. 5, when the sidewall boundary layer at the blade root and the secondary flow are large, the overall tilt-blade flow performance is improved by increasing the axial tilt angle in the blade root direction. be able to.

【0011】本発明の第3の実施例を図6に示す。本実
施例は、翼先端部の側壁境界層や二次流れが大きい場合
に対処できるようにしたものであり、図6は図1と同
様、本発明の静翼を子午面で見た場合の図である。図6
に示すように、翼先端部の側壁境界層や二次流れが大き
い場合には、翼先端方向での軸方向の傾き角を大きくす
ることで、静翼翼間流れの全体的な性能を良好にするこ
とができる。
FIG. 6 shows a third embodiment of the present invention. This embodiment is designed to deal with the case where the side wall boundary layer at the tip of the blade and the secondary flow are large, and FIG. 6 shows the vane of the present invention when viewed from the meridional plane, as in FIG. It is a figure. Figure 6
As shown in Fig. 4, when the sidewall boundary layer at the blade tip and the secondary flow are large, the overall tilt-blade flow performance is improved by increasing the axial tilt angle in the blade tip direction. can do.

【0012】以上、本発明の実施例を述べてきたが、実
際の軸流型ターボ機械の静翼に適用する場合には、弓型
形状の凸部の大きさに適切な限界がある。今、図7に示
すような本発明の静翼を考え、翼長をH,子午面におけ
る翼根元の軸方向位置から軸方向弓型形状の最大変位を
Fとする。図8は、F/Hと損失に関する関係である。
0<F/H<0.2 であれば、F=0の従来翼の場合よ
りも流動損失は低減できる。この結果から、本発明の効
果が発揮される範囲は、0<F/H<0.2 と規定でき
る。なお、前記範囲を越えるようなFの値を用いると、
三次元流路形状が所定の翼機能を果たすことができなく
なるため、逆にF=0の場合よりも流動損失は増加す
る。
The embodiments of the present invention have been described above. However, when the invention is applied to a stationary blade of an actual axial flow type turbomachine, there is an appropriate limit to the size of the bow-shaped convex portion. Considering the stationary blade of the present invention as shown in FIG. 7, the blade length is H, and the maximum displacement of the axial bow shape from the axial position of the blade root on the meridian plane is F. FIG. 8 shows the relationship between F / H and loss.
If 0 <F / H <0.2, the flow loss can be reduced as compared with the case of the conventional blade with F = 0. From this result, the range in which the effects of the present invention are exhibited can be defined as 0 <F / H <0.2. If a value of F that exceeds the above range is used,
On the contrary, the flow loss increases as compared with the case of F = 0 since the three-dimensional flow path shape cannot perform the predetermined blade function.

【0013】以上に述べた弓型形状は曲線で構成される
のが一般的であるが、製作の簡便化を図る目的で、弓型
形状を複数個の直線群で近似しても、曲線で構成した場
合と同等の機能を発生させることは可能である。その例
を図9に示す。図9は、二つの直線で弓型形状を近似し
た場合を示している。
The above-mentioned bow shape is generally composed of a curved line, but even if the bow shape is approximated by a plurality of straight line groups for the purpose of simplifying the manufacture, a curved line is formed. It is possible to generate the same function as in the case of configuration. An example thereof is shown in FIG. FIG. 9 shows a case where the bow shape is approximated by two straight lines.

【0014】[0014]

【発明の効果】本発明によれば、軸方向傾き角δの半径
方向分布を翼前縁方向に突き出るような弓型形状になる
ように分布させることで、流れを側壁側に押しつけ、し
かも流出角を大きく変化させること無く、側壁境界層の
発達を抑制すると同時に翼間流れに発生する二次流れ渦
を減少させることができる。
According to the present invention, the radial distribution of the inclination angle δ in the axial direction is distributed so as to have an arcuate shape protruding toward the leading edge of the blade, so that the flow is pressed against the side wall side and further flows out. It is possible to suppress the development of the sidewall boundary layer and reduce the secondary flow vortices generated in the inter-blade flow without significantly changing the angle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静翼を子午面で見た場合の図である。FIG. 1 is a view of a vane of the present invention viewed from a meridian plane.

【図2】静翼を側壁から離れるに連れて上流側へ移動し
た場合の翼面傾斜を示す図である。
FIG. 2 is a view showing a blade surface inclination when the stationary blade moves to the upstream side as it separates from the side wall.

【図3】静翼で発生する流れの損失分布の比較図であ
る。
FIG. 3 is a comparative diagram of a flow loss distribution generated in a stationary blade.

【図4】静翼流出角分布の比較図である。FIG. 4 is a comparison diagram of the vane outflow angle distribution.

【図5】本発明の静翼を子午面で見た図である。FIG. 5 is a view of the vane of the present invention as viewed from the meridian plane.

【図6】本発明の静翼を子午面で見た図である。FIG. 6 is a view of the vane of the present invention as seen from the meridian plane.

【図7】本発明の寸法説明図である。FIG. 7 is a dimensional explanatory view of the present invention.

【図8】F/Hと損失に関する関係を示す図である。FIG. 8 is a diagram showing a relationship between F / H and loss.

【図9】本発明の他の実施例を示す図である。FIG. 9 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…上部ダイヤフラム、2…下部ダイヤフラム、3…静
翼、4…静翼前縁、5…静翼後縁、6…流れ方向、7…
側壁での静翼、8…側壁から離れた位置での静翼。
1 ... Upper diaphragm, 2 ... Lower diaphragm, 3 ... Static vane, 4 ... Static vane leading edge, 5 ... Static vane trailing edge, 6 ... Flow direction, 7 ...
A vane on the side wall, 8 ... A vane at a position away from the side wall.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】環状流路内に複数個配置された軸流型ター
ボ機械の静翼において、前記静翼の軸方向傾き角δを半
径方向に変化させ、前記静翼の子午面における形状が静
翼前縁方向に突き出るような弓状になるようにしたこと
を特徴とする軸流型ターボ機械の静翼。
1. A stator blade of an axial flow type turbomachine, wherein a plurality of stator blades are arranged in an annular flow path, wherein an axial inclination angle δ of the stator blade is changed in a radial direction so that a shape of the stator blade on a meridian plane is changed. Stator blade A stator blade for an axial-flow turbomachine characterized by having an arcuate shape that protrudes toward the leading edge direction.
【請求項2】環状流路内に複数個配置された軸流型ター
ボ機械の静翼において、前記静翼の軸方向傾き角δの半
径方向分布を翼スパン中央部に対して対称とならないよ
うに設定し、静翼の弓型形状を子午面で見ても前記翼ス
パン中央部に対して対称とならないことを特徴とする軸
流型ターボ機械の静翼。
2. In a stationary blade of an axial flow type turbomachine arranged in a plurality of annular passages, the radial distribution of the axial inclination angle δ of the stationary blade is not symmetrical with respect to the central portion of the blade span. The stator vane of an axial-flow turbomachine according to claim 1, wherein even if the arched shape of the vane is viewed from the meridional plane, the vane is not symmetrical with respect to the central portion of the blade span.
【請求項3】請求項1又は2において、翼長をH,子午
面における翼根元の軸方向位置から軸方向弓型形状の最
大変位をFとして、最大変位量を0<F/H<0.2 と
したことを特徴とする軸流型ターボ機械の静翼。
3. The maximum displacement amount according to claim 1, wherein the blade length is H, and the maximum displacement of the axial bow shape is F from the axial position of the blade root in the meridian plane, and the maximum displacement amount is 0 <F / H <0. A stator blade for an axial-flow turbomachine characterized in that
【請求項4】請求項1,2又は3において、弓状の静翼
形状を複数個の直線群で近似して形成したことを特徴と
する軸流型ターボ機械の静翼。
4. A stator blade for an axial-flow turbomachine according to claim 1, 2 or 3, wherein the arched stator blade shape is formed by approximating a plurality of straight line groups.
JP22420093A 1993-09-09 1993-09-09 Stator of axial flow turbomachine Pending JPH0777009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22420093A JPH0777009A (en) 1993-09-09 1993-09-09 Stator of axial flow turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22420093A JPH0777009A (en) 1993-09-09 1993-09-09 Stator of axial flow turbomachine

Publications (1)

Publication Number Publication Date
JPH0777009A true JPH0777009A (en) 1995-03-20

Family

ID=16810098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22420093A Pending JPH0777009A (en) 1993-09-09 1993-09-09 Stator of axial flow turbomachine

Country Status (1)

Country Link
JP (1) JPH0777009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2471152A (en) * 2009-06-17 2010-12-22 Dresser Rand Co Use of Bowed Vanes to reduce Acoustic Signature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2471152A (en) * 2009-06-17 2010-12-22 Dresser Rand Co Use of Bowed Vanes to reduce Acoustic Signature
GB2471152B (en) * 2009-06-17 2016-08-10 Dresser-Rand Company Use of bowed nozzle vanes to reduce acoustic signature

Similar Documents

Publication Publication Date Title
JP3621216B2 (en) Turbine nozzle
JP3462870B2 (en) Impeller for radial turbine
JP5777531B2 (en) Airfoil blades for axial turbomachinery
JPH0874502A (en) Turbine blade
KR19980024999A (en) Axial flow machine wing
JP2007120494A (en) Variable geometry inlet guide vane
GB2256901A (en) Impeller for centrifugal pumps.
CN111577655B (en) Blade and axial flow impeller using same
JPH0681603A (en) Stator structure of axial flow turbomachine
JPH0610610A (en) Turbine blade assembly
CN106256994B (en) Axial flow turbine
JPH10131707A (en) Axial turbine blade group
JPH06323105A (en) Leaking and flowing passage structure for axial-flow turbo-machinery
JPH10331791A (en) Vane for axial flow compressor and axial flow compressor using the vane
JPH03189304A (en) axial fluid machine
JPH0777009A (en) Stator of axial flow turbomachine
JPH09112203A (en) Turbine nozzle
JPH11173104A (en) Turbine blade
JP4869099B2 (en) Nozzle blades and axial turbine
JPH01318790A (en) Water return vane of multistage pump
JPH01247798A (en) high speed centrifugal compressor
JP2000204903A (en) Axial flow turbine
JPH1061405A (en) Stator vane for axial flow turbomachine
CN215860843U (en) Axial flow compressor
JPH05312003A (en) Stationary blade of axial turbo machine