[go: up one dir, main page]

JPH077309B2 - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPH077309B2
JPH077309B2 JP59062428A JP6242884A JPH077309B2 JP H077309 B2 JPH077309 B2 JP H077309B2 JP 59062428 A JP59062428 A JP 59062428A JP 6242884 A JP6242884 A JP 6242884A JP H077309 B2 JPH077309 B2 JP H077309B2
Authority
JP
Japan
Prior art keywords
current
circuit
constant current
winding
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59062428A
Other languages
Japanese (ja)
Other versions
JPS60205729A (en
Inventor
芳彦 原藤
秀樹 山元
克彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp filed Critical NEC Corp
Priority to JP59062428A priority Critical patent/JPH077309B2/en
Priority to US06/712,990 priority patent/US4644458A/en
Priority to DE8585103167T priority patent/DE3585392D1/en
Priority to EP85103167A priority patent/EP0157282B1/en
Publication of JPS60205729A publication Critical patent/JPS60205729A/en
Publication of JPH077309B2 publication Critical patent/JPH077309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は定電流回路、特にそれぞれ独立に電流値を制御
された定電流源を有しており複数個直列に接続して負荷
に定電流を供給するための定電流回路に関する。
The present invention relates to a constant current circuit, and more particularly to a constant current source having a constant current source whose current value is independently controlled and which is connected in series to supply a constant current to a load. Regarding the circuit.

第1図(a)および(b)はそれぞれ、従来の定電流回
路の構成例および使用例を示すブロック図である。定電
流回路1は、定電流源3が送出する電流I1を電流検出回
路4および制御回路6により予め定めた値になるよう制
御して、負荷7へ電流Iを供給する。すなわち、電流
検出回路4には可飽和リアクトルを有する磁気増幅器
(図示は省略)などが使用され、定電流源3が送出する
電流I1は電流検出用の直流巻線Wを通ったあと、負荷
分担用の抵抗Pへ流れる電流I2と、負荷7に向って流
れる電流Iとに分流する。電流検出回路4は、直流巻
線WのアンペアターンN・I1(但しNは直流巻線W
の巻回数を示す)に比例する出力電圧Vdを発生して、こ
れを制御回路6へ送る。従って、電流検出回路4の出力
電圧Vdと電流I1との関係は、 Vd=g・N・I1 ……(1) と表わされ、比例定数のgは直流励磁アンペアターン・
出力電圧変換比である。制御回路6は比較増幅器61を具
備しており、その一対の入力端のうちの一方には電流検
出回路4の出力電圧Vdが印加され他方には定電流制御の
基準となる基準電圧V0が印加されている。この基準電圧
は、電流I1について予め定めた値の電流I10に対し
て、 V=g・N・I10 ……(2) の関係を満たすよう設定してある。制御回路6は、出力
電圧Vdと基準電圧Vとの差に比例する電圧の制御信号
を定電流源3へ送り両者の差が零になるよう、すなわち
電流I1が電流I10に等しくなるよう定電流源3を制御す
る。
FIGS. 1A and 1B are block diagrams showing a configuration example and a usage example of a conventional constant current circuit, respectively. The constant current circuit 1 controls the current I 1 sent from the constant current source 3 to a predetermined value by the current detection circuit 4 and the control circuit 6, and supplies the current I L to the load 7. That is, a magnetic amplifier (not shown) having a saturable reactor is used for the current detection circuit 4, and the current I 1 sent from the constant current source 3 passes through the DC winding W D for current detection, The current is divided into a current I 2 flowing to the load sharing resistor P P and a current I L flowing toward the load 7. The current detection circuit 4 is ampere-turns N · I 1 (where N of the DC winding W D DC winding W D
The output voltage Vd is generated in proportion to the number of turns of the output voltage Vd and is sent to the control circuit 6. Therefore, the relationship between the output voltage Vd of the current detection circuit 4 and the current I 1 is expressed as Vd = gN · I 1 (1), and the proportional constant g is the DC excitation ampere-turn.
It is the output voltage conversion ratio. The control circuit 6 includes a comparison amplifier 61, one of the pair of input terminals of which the output voltage Vd of the current detection circuit 4 is applied, and the other of which a reference voltage V 0 serving as a reference for constant current control. Is being applied. The reference voltage V O is set so as to satisfy the relationship of V O = g · N · I 10 (2) with respect to the current I 10 having a predetermined value for the current I 1 . The control circuit 6, so that the difference between them sends a control signal of a voltage proportional to the difference between the output voltage Vd and the reference voltage V O to the constant current source 3 becomes zero, that is, the current I 1 is equal to current I 10 To control the constant current source 3.

このような定電流回路1を用いて同軸ケーブル方式ある
いは光ファイバ方式の中継装置に給電を行う場合には、
第1図(b)に示すごとく複数個直列に接続し(同図
(b)には2個直列接続した場合を例示する。なおダイ
オードD1およびD2はそれぞれ定電流回路1および1
の動作中断時のバイパス用である。)同時運転する冗長
構成をとり、信頼度向上および負荷分担を図る。定電流
回路1および1はいずれも同図(a)と同一の構成
を有する。この場合に、定電流回路1および1のそ
れぞれの定電流源3から送出される電流I1が定電流制御
精度の範囲内で変動しても、定電流回路1および1
の一方に過大な電力負荷を分担させぬようにするには、
以下に説明するごとく、抵抗Rをある値以下にする必
要がある。
When power is supplied to a coaxial cable type or optical fiber type repeater using such a constant current circuit 1,
A plurality of them are connected in series as shown in FIG. 1 (b) (two pieces are connected in series in FIG. 1 (b). The diodes D 1 and D 2 are constant current circuits 1 A and 1 B, respectively.
It is for bypass when the operation of the. ) Use a redundant configuration that operates simultaneously to improve reliability and share the load. Both the constant current circuit 1 A and 1 B have the same configuration as FIG. (A). In this case, even when the current I 1 that is transmitted from each of the constant current source 3 of the constant current circuit 1 A and 1 B is varied within the range of the constant current control precision, the constant current circuit 1 A and 1 B
To prevent one side from sharing an excessive power load,
As described below, it is necessary to set the resistance R P to a certain value or less.

第2図は、第1図(b)の接続時における動作特性を示
す特性図である。横軸は定電流回路1の出力電圧V
を示し、縦軸は負荷7への供給電流Iを示す。電圧V
LOおよび電流ILOはそれぞれ、負荷7の標準動作時にお
ける電圧および電流の値を示す。実線で示した特性A0
よびB0は、それぞれ定電流回路1および1の定電流
源3から送出される電流I1が所定の電流I10に等しい場
合の出力電圧対出力電流特性を示し、電流IAOおよびI
BOはいずれも電流I10に等しい。第1図(a)を参照す
れば明らかなように、 I=I1−I2=I1−(V/R) ……(3) が成立し、これをI1=I10の場合に定電流回路1に適
用すれば、 I=IAO−(V/R) ……(4) が成立する。これを図示したのが特性Aである。ま
た、負荷7の標準動作時においてはV=VLO−V
成立ち、この関係式と式(3)とを定電流回路1に適
用すれば、 I=IBO−(VLO/R)+(V/R) ……(5) が成立する。これを図示したのが特性BOである。この場
合の動作点は、特性AOおよびBの交点Pで与えられ
るが、このときの電圧VAOは明らかに電圧VLOの丁度半
分であり、定電流回路1および1の負荷分担は均等
である。
FIG. 2 is a characteristic diagram showing operation characteristics at the time of connection in FIG. 1 (b). Output voltage V A of the abscissa the constant current circuit 1 A
And the vertical axis represents the supply current I L to the load 7. Voltage V
LO and current I LO indicate the voltage and current values during the standard operation of load 7, respectively. The characteristics A 0 and B 0 shown by the solid lines are the output voltage vs. output current characteristics when the current I 1 sent from the constant current source 3 of the constant current circuits 1 A and 1 B is equal to the predetermined current I 10. Shown and currents I AO and I
BO is equal to the current I 10 . As is clear from FIG. 1 (a), I L = I 1 −I 2 = I 1 − (V / R P ) ... (3) holds, and I 1 = I 10 If it is applied to the constant current circuit 1 A in this case, I L = I AO − (V A / R P ) ... (4) holds. This is shown in the characteristic A O. Further, holds the V B = V LO -V A at the time of normal operation of the load 7, applying the this relation and Equation (3) to the constant current circuit 1 B, I L = I BO - (V LO / R P ) + (V A / R P ) ... (5) holds. This is illustrated in the characteristic BO. The operating point in this case is given by the intersection point P O of the characteristics AO and B O , but the voltage V AO at this time is obviously just half of the voltage V LO , and the load sharing of the constant current circuits 1 A and 1 B. Is even.

他方、破線で示した特性A1およびB1はそれぞれ、定電流
回路1および1の定電流源3の送出電流I1が定電流
制御精度の上限IA1まで変動した場合を示す。式(3)
から明らかなごとく、特性A1およびB1はおのおの特性A
およびBを△I1だけ上方および下方へ平行移動した
特性になる(但し、△I1=IA1−IAO=IBO−IB1であ
る。)この動作特性変動に伴って、動作点も特性A1およ
びB1の交点P1に移動し、電圧Vは均等に負荷分担して
いるときの電圧VAOから電圧VA1へ変動して負荷分担が
不均等になる。この電圧Vの変動分△V=VA1−V
AOは、定電流制御精度b=△I1/I10を用いて、 △V=R・△I1=R・b・I10 ……(6) と表され、定電流源3の送出電流I10,その制御精度b、
および抵抗Rのそれぞれに比例する大きさになる。通
常、制御精度bは使用部品の精度や安定度の面からの制
約によりある限度以下に小さくすることが不可能であ
る。従って、負荷電流が大きな方式で電流I10を大きく
とる必要がある場合に、電圧変動△Vを所望範囲内に
抑えるためには、抵抗Rを小さくせねばならない。例
えば、同軸ケーブルを用いたアナログ伝送方式の場合の
負荷電流は50ないし100mA程度であるのに対し、光ファ
イバを用いたディジタル伝送方式の場合の負荷電流はそ
れより一桁高い1ないし2Aに達する。後者の場合の電圧
変動△Vを、前者の場合と同程度の範囲内に抑えるに
は、抵抗Rを一桁低くする必要がある。第1図(a)
を参照すれば明らかなように、抵抗Rで消費される電
力すなわち電力損失Wは、 W=V2/R ……(7) と表わされるから、上記のごとく抵抗Rを一桁低くす
ると電力損失Wは一桁高くなり、抵抗Rが大形化する
と共に、抵抗Rの発熱量の増大に対処するための放熱
冷却手段が大規模化して、定電流回路を大形化せざるを
得ない。更に、上記の如く抵抗値を低くすると、第1図
(b)に示したごとく2個直列接続した定電流回路1
および1のうちの1個が動作中断する障害を生じたと
き、これに伴って生ずる電流Iの変動量が大きくな
る。例えば定電流回路1の動作中断を生じてダイオー
ドD2が導通状態になり、電圧Vが零となったとき、第
2図において動作点が特性A0上の点Q0に移行する。但し
点Q0は、特性A0と、負荷7の動作特性を示す直線I
(VLO/ILO)・V(第2図での図示は省略した)との
交点である。特性A0は勾配の絶対値が1/Rの右下りの
直線であるから、Rが減少すれば点Q0は同図上で左下
方へ移行し、負荷7の標準動作点からの隔たりが増大す
る。
On the other hand, the characteristics A 1 and B 1 shown by the broken lines show the case where the sending current I 1 of the constant current source 3 of the constant current circuits 1 A and 1 B fluctuates up to the upper limit I A1 of the constant current control accuracy. Formula (3)
As is clear from the characteristics, the characteristics A 1 and B 1 are
O and B O only △ I 1 becomes characteristic translated upward and downward (provided that △ I 1 = I A1 -I AO = I BO -I B1.) In accordance with this operating characteristic variations, the operation The point also moves to the intersection point P 1 of the characteristics A 1 and B 1 , and the voltage V A changes from the voltage V AO when the load is evenly distributed to the voltage V A1 and the load distribution becomes uneven. Variation of this voltage V A ΔV A = V A1 −V
AO is expressed as ΔV A = R P · ΔI 1 = R P · b · I 10 (6) using the constant current control accuracy b = ΔI 1 / I 10 , and the constant current source 3 Of the sending current I 10 , its control accuracy b,
And the resistance R P. Normally, the control accuracy b cannot be reduced below a certain limit due to restrictions in terms of accuracy and stability of parts used. Therefore, when the load current is necessary to increase the current I 10 in large systems, in order to suppress a voltage variation △ V A within the desired range, small no Senebanara resistance R P. For example, the load current in the case of the analog transmission method using the coaxial cable is about 50 to 100 mA, whereas the load current in the case of the digital transmission method using the optical fiber reaches 1 to 2 A, which is one digit higher than that. . In order to suppress the voltage fluctuation ΔV A in the latter case within the same range as in the former case, it is necessary to lower the resistance R P by one digit. Fig. 1 (a)
As is clear from the above, since the power consumed by the resistor R P , that is, the power loss W is expressed as W = V 2 / R P (7), the resistor R P is lowered by one digit as described above. Then, the power loss W increases by one digit, the resistance R P becomes large, and the heat dissipation cooling means for coping with the increase in the heat generation amount of the resistance R P becomes large in scale, and the constant current circuit becomes large. I have no choice. Further, if the resistance value is lowered as described above, two constant current circuits 1A connected in series as shown in FIG.
When one of B and 1 B causes a failure to interrupt the operation, the amount of fluctuation of the current I L accompanying this becomes large. For example, when the operation of the constant current circuit 1 B is interrupted and the diode D 2 becomes conductive and the voltage V B becomes zero, the operating point shifts to the point Q 0 on the characteristic A 0 in FIG. However, the point Q 0 is the characteristic A 0 and the straight line I L = showing the operating characteristic of the load 7.
It is the intersection with (V LO / I LO ) · VA (not shown in FIG. 2). Since characteristic A 0 is the linear absolute value of the right edge of the 1 / R P slope, the point Q 0 if R P is decreased, the process proceeds to the lower left on the diagram the same, from a standard operation point of the load 7 The gap increases.

このように従来の定電流回路は、特に負荷電流が大きい
場合に、負荷分担用抵抗での電力損失が大きく回路が大
形化すると共に、冗長構成の一部分に障害を生じたとき
の負荷電流変動が大きいという欠点を有する。
As described above, in the conventional constant current circuit, especially when the load current is large, the power loss in the load sharing resistor is large, the circuit becomes large, and the load current fluctuation when a failure occurs in a part of the redundant configuration. Has the drawback of being large.

本発明の目的は、上記欠点を除去し従来よりも負荷分担
用抵抗の電力損失が小さく且つ冗長構成の一部分に障害
を生じたときの負荷電流変動が小さい定電流回路を提供
することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a constant current circuit in which the power loss of the load sharing resistor is smaller than in the prior art and the load current fluctuation is small when a failure occurs in a part of the redundant configuration.

本発明の回路は、回路内の所定箇所の電流を検出する電
流検出回路と、該電流検出回路の検出値を示す信号に応
答して該検出値が所定値に収束するよう送出電流を制御
された定電流源と、負荷分担用の抵抗とを有する定電流
回路において、 前記電流検出回路は少くとも電流検出用の第1および第
2の巻線を有し、前記定電流源の前記送出電流が前記第
1の巻線を通ったあと前記抵抗に流れる第1の流路と外
部の負荷に流れる第2の流路とに分流するような接続を
有し、前記第1の流路には前記抵抗に直列接続され且つ
前記第1の流路の電流を側流させ前記第2の巻線に導く
よう接続されており前記側流する電流を所定値以下に制
限する電流制限回路を備えた回路である。
The circuit of the present invention has a current detection circuit for detecting a current at a predetermined location in the circuit and a sending current controlled so that the detection value converges to a predetermined value in response to a signal indicating the detection value of the current detection circuit. A constant current source having a constant current source and a load sharing resistor, the current detection circuit has at least first and second windings for current detection, and the delivery current of the constant current source Has a connection such that after passing through the first winding, the current is shunted to a first flow path that flows to the resistor and a second flow path that flows to an external load, and the first flow path is A current limiting circuit that is connected in series with the resistor and is connected so as to cause the current in the first flow path to flow into the second winding and to limit the current flowing into the second winding to a predetermined value or less. Circuit.

次に図面を参照して本発明を詳細に説明する。The present invention will now be described in detail with reference to the drawings.

第3図は本発明の第1の実施例を示すブロック図であ
る。同図に示す定電流回路2と、第1図(a)に示した
従来の定電流回路1との相違は、電流検出回路5に第2
の直流巻線WD2を追加して設けたことと、抵抗Rに電
流制限回路8を直列接続して設けたことである。電流検
出回路5の第1の直流巻線WD1には、従来と同様に定電
流源3が送出する電流I1を導く。電流I1は、第1の直流
巻線WD1を通ったあと、電流制限回路8を介して負荷分
担用の抵抗Rへ流れる電流I2と、負荷に向って流れる
電流Iとに分流する。電流制限回路8は、抵抗R
直列接続したツェナダイオードNDの両端を、電流I3を側
流するための抵抗Rを介して第2の直流巻線WD2に接
続した構成を有する。
FIG. 3 is a block diagram showing the first embodiment of the present invention. The difference between the constant current circuit 2 shown in the figure and the conventional constant current circuit 1 shown in FIG.
The DC winding W D2 is additionally provided, and the current limiting circuit 8 is provided in series with the resistor R P. The current I 1 sent from the constant current source 3 is led to the first DC winding W D1 of the current detection circuit 5 as in the conventional case. After passing through the first DC winding W D1 , the current I 1 is split into a current I 2 flowing to the load sharing resistor R P via the current limiting circuit 8 and a current I L flowing toward the load. To do. The current limiting circuit 8 has a configuration in which both ends of the Zener diode ND connected in series with the resistor R P are connected to the second DC winding W D2 via the resistor R S for side current I 3 .

電流検出回路5の出力電圧Vdは、第1および第2の直流
巻線WD1およびWD2のアンペアターンの和、すなわち
(N1・I1+N2・I3)に比例し、 Vd=g(N1・I1+N2・I3) ……(8) と表わされる。但し、N1およびN2はそれぞれ第1および
第2の直流巻線WD1およびWD2の巻回数を示す。制御回
路6は、この出力電圧Vdを受けてこれと、予め定めた値
の電流I10に対して、 V0=g・N1・I10 ……(9) で表わされる基準電圧V0との差に比例する電圧の制御信
号を定電流源3へ送り、アンペアターン(N1・I1+N2
I3)がアンペアターン(N1・I10)に等しくなるよう定
電流源3の送出電流I1を制御する。この制御により、 I1=I10−(N2/N1)・I3 ……(10) が成立する。
The output voltage Vd of the current detection circuit 5 is proportional to the sum of the ampere-turns of the first and second DC windings W D1 and W D2 , that is, (N 1 · I 1 + N 2 · I 3 ), and Vd = g (N 1 · I 1 + N 2 · I 3 ) ... (8) However, N 1 and N 2 indicate the number of turns of the first and second DC windings W D1 and W D2 , respectively. The control circuit 6 receives this output voltage Vd and, with respect to the current I 10 having a predetermined value, a reference voltage V 0 represented by V 0 = g · N 1 · I 10 (9) The control signal of the voltage proportional to the difference of is sent to the constant current source 3, and the ampere turn (N 1 · I 1 + N 2 · N
The sending current I 1 of the constant current source 3 is controlled so that I 3 ) becomes equal to the ampere-turn (N 1 · I 10 ). By this control, I 1 = I 10 − (N 2 / N 1 ) · I 3 (10) holds.

一方、第2の直流巻線WD2に側流される電流I3は、ツェ
ナーダイオードZDの両端間電圧(V)がツェナ電圧
(V)未満のときには電流I2に等しく、またツェナダ
イオードZDの両端電圧(V)がツェナ電圧(V)に
到達したときには第2の直流巻線WD2の巻線抵抗は非常
に小さいため、(V/R)に等しい一定値になる。従
って、V<Vが成つときには、式(10)を参照し
て、 が成立ち、またV=Vが成立つときには、 L=I1−I2 =I10−(N2/N1)・(V/R)−(V−V)/R
……(13) が成立つ。式(11)および(13)を、第2図と同様に図
示したものが、第4図である。
On the other hand, the current I 3 shunted to the second DC winding W D2 is equal to the current I 2 when the voltage (V Z ) across the Zener diode ZD is less than the Zener voltage (V B ), and the Zener diode ZD When the voltage across both ends (V Z ) reaches the Zener voltage (V B ), the winding resistance of the second DC winding W D2 is very small, and therefore has a constant value equal to (V B / R S ). Therefore, when V Z <V B holds, referring to the equation (10), When V Z = V B holds, L L = I 1 −I 2 = I 10 − (N 2 / N 1 ) · (V B / R S ) − (V−V B ) / R P
(13) is established. FIG. 4 shows the equations (11) and (13) as in FIG.

第4図は本実施例の動作特性を示す特性図であり、定電
流回路2を第1図(b)のごとく2個直列接続した場合
の動作特性を示す。実線で示した特性A0およびB0はそれ
ぞれ、2個直列接続した定電流回路2Aおよび2Bの動作特
性を示し、電流IAOおよびIBOはいずれも所定の電流I
10に等しい。すなわち、特性A0(あるいはB0)は式(1
1)および(13)を定電流回路2A(あるいは2B)に適用
して図示したものである。電圧VACは、特性A0が式(1
1)の特性から式(13)の特性に移行する動作点におけ
る電圧Vであり、 と表わされる。式(11)および(13)から明らかなよう
に、特性A0の勾配の絶対値は、V<VACであれば1/R
であり、V<VACであれば1/Rである。
FIG. 4 is a characteristic diagram showing the operating characteristics of this embodiment, and shows the operating characteristics when two constant current circuits 2 are connected in series as shown in FIG. 1 (b). The characteristics A 0 and B 0 shown by the solid lines respectively indicate the operating characteristics of the two constant current circuits 2A and 2B connected in series, and the currents I AO and I BO are both the predetermined current I.
Equal to 10 . That is, the characteristic A 0 (or B 0 ) is expressed by the equation (1
1) and (13) are applied to the constant current circuit 2A (or 2B) for illustration. The voltage V AC has the characteristic A 0 expressed by the formula (1
The voltage V A at the operating point at which the characteristic of 1) shifts to the characteristic of formula (13), Is represented. As is clear from the equations (11) and (13), the absolute value of the slope of the characteristic A 0 is 1 / R if V A <V AC
And if V A <V AC , then 1 / R P.

式(12)を参照すれば、1/R<1/Rを満すように巻回数
比N2/N1を選定することができる。更に(14)式を参照
して、電圧VACを、特性A0およびB0の交点P0が1/Rの勾
配(絶対値)の部分にあり且つ特性A0および負荷特性
(すなわち直線I=(VLO/ILO)・VAO図示は省略し
た)の交点Q0が1/Rの勾配(絶対値)の部分にあるよ
う選定することができる。第4図はこのように選定した
例を示しており、その結果として抵抗RおよびR
の電力損失を従来よりも軽減でき、更に定電流回路2Aお
よび2Bのうちのいずれか一方が動作中断したときの電流
の変動量を従来より軽減できる。まず、定電流制御
範囲内での電流I1の変動に起因する電圧Vの変動△V
は、本実施例で電圧Vの変動が特性A0およびB0の1/
Rの勾配(絶対値)の部分内で生ずるようにしてあれ
ば、 △V=R・△I1=R・b・I10 ……(15) と表わされる。従来の回路の場合での式(8)と上式
(15)とを対照し且つ式(12)を参照すれば明らかなご
とく、本実施例での抵抗値(R+R)を従来の回路
での抵抗 倍に等しくしたときに同じ電圧変動△Vになる。従っ
て、抵抗RおよびRでの電力損失は本実施例では従
来の回路の場合のN1/(N1+N2)倍に低減する。更に、
従来の回路での特性A0は破線a0で示すごとく一直線にな
るから、定電流回路1Bの動作中断時における定電流回路
1Aの動作点は点q0になるが、本実施例では定電流回路2B
の動作中断時における定電流回路2Aの動作点は点Q0であ
る。点Q0は点q0よりも右上方にあり従って負荷7の標準
動作点に近付く。
Referring to the equation (12), the winding number ratio N 2 / N 1 can be selected so as to satisfy 1 / R P <1 / R. Further, referring to the equation (14), the voltage V AC is set such that the intersection P 0 of the characteristics A 0 and B 0 is at the slope (absolute value) of 1 / R and the characteristic A 0 and the load characteristic (that is, the straight line I). L = (V LO / I LO ) · V AO shown can be chosen so that the portion of the gradient of the intersection Q 0 is 1 / R P of omitted) (absolute value). Fig. 4 shows an example of such selection. As a result, the power loss in the resistors R S and R P can be reduced more than before, and one of the constant current circuits 2A and 2B operates. the variation of the current I L at the time of interruption can be reduced than conventionally. First, the fluctuation ΔV of the voltage V A caused by the fluctuation of the current I 1 within the constant current control range.
A indicates that the variation of the voltage V A is 1 / of the characteristics A 0 and B 0 in this embodiment.
If it occurs within the gradient (absolute value) part of R, it can be expressed as ΔV A = R · ΔI 1 = R · b · I 10 (15). As is clear by comparing the equation (8) and the above equation (15) in the case of the conventional circuit and referring to the equation (12), it is clear that the resistance value (R P + R P ) in the present embodiment is Resistance in the circuit The same voltage fluctuation ΔV A is obtained when they are made equal to each other. Therefore, the power loss in the resistors R S and R P is reduced to N 1 / (N 1 + N 2 ) times that in the conventional circuit in this embodiment. Furthermore,
Since the characteristic A 0 in the conventional circuit is a straight line as shown by the broken line a 0 , the constant current circuit when the operation of the constant current circuit 1B is interrupted
The operating point of 1A is point q 0 , but in this embodiment, the constant current circuit 2B
The operating point of the constant current circuit 2A at the time of the interruption of the operation is the point Q 0 . The point Q 0 is located on the upper right side of the point q 0 and therefore approaches the standard operating point of the load 7.

以上に説明したごとく、電流検出回路3に第2の直流巻
線WD2を追加して設け第1および第2の直流巻線WD1
よびWD2のアンペアターンが予め定めた大きさになるよ
う電流制御を行うことにより、負荷分担用抵抗Rおよ
びRの電力損失を低減でき、更に負荷分担用抵抗R
に流れる電流を電流制限回路8で側流させた電流を第2
の直流巻線WD2に流入させることにより、直列運転時に
一方の回路が断になった場合の負荷電流変動を低減でき
る。
As described above, so that the size of the ampere turns predetermined first and second DC windings W D1 and W D2 provided by adding a second DC winding W D2 to the current detection circuit 3 By controlling the current, the power loss of the load sharing resistors R S and R P can be reduced, and the load sharing resistor R S can be further reduced.
The current flowing in the current limiting circuit 8 to the second current
By causing the current to flow into the DC winding W D2 of, the load current fluctuation when one circuit is disconnected during series operation can be reduced.

第5図は本発明の第2の実施例を示すブロック図であ
る。本実施例の回路は、第1の実施例の回路で一方の出
力端を接地した場合に、電流制限回路8を接地側に接続
したものである。明らかに、動作原理は第1の実施例と
同じであるが、第3図における第2の直流巻線WD2にか
かる電圧は本実施例の場合の方が低くなるから、直流巻
線線WD2に対して従来のような高耐圧処理を施す必要が
なくなり、電流検出回路5の製作工数を減らすことがで
きるという利点がある。
FIG. 5 is a block diagram showing a second embodiment of the present invention. In the circuit of this embodiment, the current limiting circuit 8 is connected to the ground side when one output end is grounded in the circuit of the first embodiment. Obviously, the operating principle is the same as that of the first embodiment, but the voltage applied to the second DC winding W D2 in FIG. 3 is lower in this embodiment, so that the DC winding wire W There is an advantage that it is not necessary to subject the D2 to high withstand voltage processing as in the conventional case, and the number of manufacturing steps of the current detection circuit 5 can be reduced.

第6図は本発明の第3の実施例を示すブロック図であ
る。本実施例の回路では、基準電流Iを流すための基
準電流巻線Wを追加し設けた電流検出回路15により定
電流制御を行う。基準電流巻線Wには、第1および第
2の直流巻線WD1およびWD2のアンペアターンの和(N1
・I1+N2・I3)を打消す向きの基準電流Iを、定電流
源13から供給してある。基準電流巻線Wの巻回数をN
とすれば、電流検出回路15はアンペアターンの合成値
(N1・I1+N2・I3−N・I)に比例する出力電圧V
を発生し、これを制御回路6へ送る。本実施例では、
制御回路6での定電流制御基準電圧V0を零に設定してあ
る。すなわち、制御回路6は電圧Vに比例する電圧の
制御信号を定電流源3へ送り、制御信号の電圧が零にな
るよう、すなわち I1=(N/N1)・I(N2/N1)・I3 ……(16) と表わされる電流I1を送出するよう定電流源3を制御す
る。式(16)は、式(10)におけるI10を(N/N1)・
で置換えた式であるから、本実施例でも第1の実施
例と同様の定電流制御を行うことができ、従って第1の
実施例と同じ効果を得ることができる。
FIG. 6 is a block diagram showing a third embodiment of the present invention. In the circuit of this embodiment, constant current control is performed by the current detection circuit 15 additionally provided with the reference current winding W S for flowing the reference current I S. The reference current winding W S has a sum of ampere-turns of the first and second DC windings W D1 and W D2 (N 1
The constant current source 13 supplies the reference current I S for canceling (I 1 + N 2 · I 3 ). Set the number of turns of the reference current winding W S to N
If S, the current detection circuit 15 outputs a voltage proportional to the combined value of the ampere turns (N 1 · I 1 + N 2 · I 3 -N S · I S) V
d is generated and sent to the control circuit 6. In this embodiment,
The constant current control reference voltage V 0 in the control circuit 6 is set to zero. That is, the control circuit 6 sends a control signal having a voltage proportional to the voltage V d to the constant current source 3 so that the voltage of the control signal becomes zero, that is, I 1 = (N S / N 1 ) · I S (N The constant current source 3 is controlled so as to deliver the current I 1 expressed as 2 / N 1 ) · I 3 (16). The formula (16) is obtained by changing I 10 in the formula (10) to (N S / N 1 ) ·
Since the equation is replaced with I S , constant current control similar to that of the first embodiment can be performed in this embodiment as well, and therefore the same effect as that of the first embodiment can be obtained.

本実施例の回路を3個以上直列運転する場合も、同様な
効果が得られることは明らかである。また電流制限回路
8は第3図に例示した回路形成に限定せず、流入する電
流I2が予め定めた電流I20以下のときにはそのまま第2
の直流巻線WD2に側流させ、電流I2が予め定めた電流I
20を超えたときにはそのうち電流I20だけを第2の直流
巻線WD2に側流させるよう構成した回路であれば、同じ
効果が得られることは明らかである。
It is clear that the same effect can be obtained when three or more circuits of this embodiment are operated in series. The current limiting circuit 8 is Fig. 3 without limiting to the illustrated circuit formation, when the current I 2 flowing the current I 20 below a predetermined intact second
DC winding W D2 flowed side, the current I current I 2 is determined in advance
It is obvious that the same effect can be obtained if the circuit is configured so that only the current I 20 is diverted to the second DC winding W D2 when it exceeds 20 .

以上の説明から明らかなように、本発明には従来よりも
負荷分担用抵抗の電力損失が小さく且つ複数個直列運転
時に一部分障害を生じたときの負荷電流の変動が小さい
定電流回路を実現できるという効果がある。
As is apparent from the above description, the present invention can realize a constant current circuit in which the power loss of the load sharing resistor is smaller than that in the prior art and the fluctuation of the load current is small when a partial failure occurs during serial operation. There is an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)および(b)はそれぞれ従来の定電流回路
の構成例および使用例を示すブロック図、第2図は従来
の定電流回路の動作を示す特性図、第3図および第4図
はそれぞれ本発明の第1の実施例を示すブロック図およ
び特性図、第5図および第6図はそれぞれ本発明の第2
および第3の実施例を示すブロック図である。 1,1A,1B,2,2A,2B……定電流回路、3,13……定電流源、
4,5,15……電流検出回路、6……制御回路、7……負
荷、8……電流制御回路、W,WD1,WD2……直流巻線、
……基準電流巻線、R,R……抵抗、D1,D2……
ダイオード。
1A and 1B are block diagrams showing a configuration example and a usage example of a conventional constant current circuit, respectively, and FIG. 2 is a characteristic diagram showing an operation of the conventional constant current circuit, FIGS. 3 and 4 respectively. FIG. 5 is a block diagram and a characteristic diagram showing the first embodiment of the present invention, and FIG. 5 and FIG. 6 are the second diagram of the present invention.
It is a block diagram which shows and 3rd Example. 1,1A, 1B, 2,2A, 2B ... constant current circuit, 3,13 ... constant current source,
4,5,15 ...... current detection circuit, 6 ...... control circuit, 7 ...... load, 8 ...... current control circuit, W D, W D1, W D2 ...... DC winding,
W S …… Reference current winding, R S , R P …… Resistance, D 1 , D 2 ……
diode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 克彦 東京都武蔵野市緑町3丁目9番11号 日本 電信電話公社武蔵野電気通信研究所内 (56)参考文献 特開 昭54−36557(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Yamamoto 3-9-11 Midoricho, Musashino-shi, Tokyo Inside Nippon Telegraph and Telephone Public Corporation Musashino Telecommunications Research Laboratories (56) Reference JP-A-54-36557 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回路内の所定箇所の電流を検出する電流検
出回路と、該電流検出回路の検出値を示す信号に応答し
て該検出値が所定値に収束するよう送出電流を制御され
た定電流源と、負荷分担用の抵抗とを有する定電流回路
において、 前記電流検出回路は少くとも電流検出用の第1および第
2の巻線を有し、前記定電流源の前記送出電流が前記第
1の巻線を通ったあと前記抵抗に流れる第1の流路と外
部の負荷に流れる第2の流路とに分流するような接続を
有し、前記第1の流路には前記抵抗に直列接続され且つ
前記第1の流路の電流を側流させ前記第2の巻線に導く
よう接続されており前記側流する電流を所定値以下に制
限する電流制限回路を備えたことを特徴とする定電流回
路。
1. A current detection circuit for detecting a current at a predetermined location in a circuit, and a sending current controlled so that the detection value converges to a predetermined value in response to a signal indicating the detection value of the current detection circuit. In a constant current circuit having a constant current source and a load sharing resistor, the current detection circuit has at least first and second windings for current detection, and the delivery current of the constant current source is The first flow path has a connection for branching into a first flow path that flows through the resistance and a second flow path that flows through an external load after passing through the first winding. A current limiting circuit that is connected in series with the resistor and is connected so as to cause the current in the first flow path to flow to the second winding and to guide the current to the second winding; Constant current circuit characterized by.
JP59062428A 1984-03-19 1984-03-30 Constant current circuit Expired - Lifetime JPH077309B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59062428A JPH077309B2 (en) 1984-03-30 1984-03-30 Constant current circuit
US06/712,990 US4644458A (en) 1984-03-19 1985-03-18 Electric power supply circuit capable of reducing a loss of electric power
DE8585103167T DE3585392D1 (en) 1984-03-19 1985-03-19 ELECTRICAL POWER SWITCHING WHICH CAN REDUCE WASTE OF ELECTRICAL PERFORMANCE.
EP85103167A EP0157282B1 (en) 1984-03-19 1985-03-19 Electric power supply circuit capable of reducing a loss of electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062428A JPH077309B2 (en) 1984-03-30 1984-03-30 Constant current circuit

Publications (2)

Publication Number Publication Date
JPS60205729A JPS60205729A (en) 1985-10-17
JPH077309B2 true JPH077309B2 (en) 1995-01-30

Family

ID=13199881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062428A Expired - Lifetime JPH077309B2 (en) 1984-03-19 1984-03-30 Constant current circuit

Country Status (1)

Country Link
JP (1) JPH077309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298414A (en) * 1988-05-26 1989-12-01 Nec Corp Constant current circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436557A (en) * 1977-08-27 1979-03-17 Fujitsu Ltd Constant current circuit

Also Published As

Publication number Publication date
JPS60205729A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
US4644458A (en) Electric power supply circuit capable of reducing a loss of electric power
US4346341A (en) Method and apparatus for automatic voltage reduction control
GB2056199A (en) Controlling power supplies connected in parallel
US3303411A (en) Regulated power supply with constant voltage/current cross-over and mode indicator
SU1102497A3 (en) Dc electric drive
US4728807A (en) Power source system comprising a plurality of power sources having negative resistance characteristics
JPH077309B2 (en) Constant current circuit
US3026470A (en) Control apparatus
EP0113747B1 (en) A method for current supply to a subscriber telephone from a telephone exchange
JPH077310B2 (en) Constant current circuit
US2762964A (en) Regulating control system
JPH0715652B2 (en) Constant current circuit
JPH077308B2 (en) Constant current circuit
JPH0756610B2 (en) Constant current circuit
JPH0756611B2 (en) Constant current circuit
WO1983001355A1 (en) Detector circuit for communication lines
US3059121A (en) Regulated power supply arrangements
US3014171A (en) Automatic control of current division of paralleled rectifiers
JPH0574085B2 (en)
JPS61292715A (en) Constant current circuit
US2454165A (en) Regulating system
EP0792549B1 (en) Method and apparatus for determining the deviation of longitudinal signal components from a predetermined value
EP0155074B1 (en) Active impedance line feed circuit with improved ground fault protection
JPH01144359A (en) Switching power circuit
US2858483A (en) Reclosing circuit breaker systems