JPH0772928B2 - Magnetic head - Google Patents
Magnetic headInfo
- Publication number
- JPH0772928B2 JPH0772928B2 JP60063743A JP6374385A JPH0772928B2 JP H0772928 B2 JPH0772928 B2 JP H0772928B2 JP 60063743 A JP60063743 A JP 60063743A JP 6374385 A JP6374385 A JP 6374385A JP H0772928 B2 JPH0772928 B2 JP H0772928B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- plane
- magnetic
- magnetic head
- oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 claims description 112
- 239000013078 crystal Substances 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 29
- 239000000956 alloy Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 description 28
- 230000007797 corrosion Effects 0.000 description 28
- 239000000758 substrate Substances 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 230000004907 flux Effects 0.000 description 13
- 239000010408 film Substances 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910017082 Fe-Si Inorganic materials 0.000 description 5
- 229910017133 Fe—Si Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910000676 Si alloy Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜磁性材料を用いた磁気ヘッドに関し、特に
耐食性の高い結晶面を薄膜表面と一致するように配向さ
せた磁性薄膜を用いることにより、磁気ヘッド製造プロ
セスにおいて歩留まりの向上をはかる薄膜磁気ヘッドに
関する。Description: FIELD OF THE INVENTION The present invention relates to a magnetic head using a thin film magnetic material, and in particular, by using a magnetic thin film in which a crystal face having high corrosion resistance is oriented so as to coincide with the thin film surface, The present invention relates to a thin film magnetic head capable of improving yield in a magnetic head manufacturing process.
近年、磁気記録技術の進展には著しいものがあり、特に
垂直磁気記録方式の出現によって磁気記録密度は大幅に
向上しつつある。この垂直磁気記録再生に用いられてい
る磁気ヘッドについて、特開昭59−71115号公報に開示
されている従来の代表的な一例を第4図に示す。図にお
いて、垂直磁気記録用磁気ヘッドの磁気回路の一部は極
めて薄い主磁極2によって構成されており、この主磁極
2は高い飽和磁束密度を有する磁性薄膜により作製され
ている。飽和磁束密度の高い磁性材料としては、Fe−Al
−Si系合金,Fe−Ni系合金,Fe−Si系合金あるいはFe,Co,
Niの少なくとも一種に、B,C,N,Al,Si,Pなどを含有させ
た金属−非金属系非晶質合金、もしくはFe,Co,Niの少な
くとも一種にY,Ti,Zr,Hf,Nb,Taなどを含有させた金属−
金属系非晶質合金などが従来から用いられている。これ
らの材料のうち、金属−非金属系および金属−金属系非
晶質合金は、磁歪定数および結晶化温度などの制限によ
り、10〜15キロガウス(KG)の飽和磁束密度のものが実
用的に使用可能である。また、Fe−Al−Si系合金は飽和
磁束密度が約10KG、Fe−Ni系合金は約8KGである。一
方、Fe−Si系合金は飽和磁束密度が約18KGで、他の磁性
材料に比較して極めて高い飽和磁束密度を有している。
約15KG以上の高い飽和磁束密度を示す磁性材料はFeを主
成分とするものに限られており、飽和磁束密度を高める
ためにはFeの含有量を多くする必要がある。しかし、一
般にFe主成分とする合金は耐食性に問題があり、これら
の合金の薄膜を用いて磁気ヘッドを製造する場合には、
磁気ヘッド製造工程における磁性薄膜のパターン形成工
程、あるいは洗浄工程などにおいて磁性薄膜が腐食さ
れ、製品の歩留りが低減してしまうという問題があっ
た。In recent years, the progress of magnetic recording technology has been remarkable, and in particular, the advent of the perpendicular magnetic recording system has significantly improved the magnetic recording density. FIG. 4 shows a typical conventional example of the magnetic head used in the perpendicular magnetic recording / reproducing disclosed in Japanese Patent Laid-Open No. 59-71115. In the figure, a part of the magnetic circuit of the magnetic head for perpendicular magnetic recording is composed of an extremely thin main pole 2, and this main pole 2 is made of a magnetic thin film having a high saturation magnetic flux density. Fe-Al is a magnetic material with a high saturation magnetic flux density.
-Si alloy, Fe-Ni alloy, Fe-Si alloy or Fe, Co,
At least one of Ni, B, C, N, Al, Si, P-containing metal-nonmetallic amorphous alloy, or Fe, Co, Ni at least one of Y, Ti, Zr, Hf, Metal containing Nb, Ta, etc.
Metal-based amorphous alloys have been conventionally used. Among these materials, metal-nonmetal and metal-metal amorphous alloys with a saturation magnetic flux density of 10 to 15 kilogauss (KG) are practically usable due to restrictions such as magnetostriction constant and crystallization temperature. It can be used. Further, the saturation magnetic flux density of the Fe-Al-Si alloy is about 10KG, and the Fe-Ni alloy is about 8KG. On the other hand, the Fe-Si alloy has a saturation magnetic flux density of about 18 KG, which is extremely high compared to other magnetic materials.
Magnetic materials having a high saturation magnetic flux density of about 15 kg or more are limited to those containing Fe as a main component, and it is necessary to increase the Fe content in order to increase the saturation magnetic flux density. However, in general, alloys containing Fe as a main component have problems in corrosion resistance, and when a magnetic head is manufactured using thin films of these alloys,
There has been a problem that the magnetic thin film is corroded in the magnetic thin film pattern forming process or the cleaning process in the magnetic head manufacturing process, and the product yield is reduced.
上記の問題は、垂直磁気記録用の薄膜磁気ヘッドのみで
なく、従来の内面磁気記録用の薄膜磁気ヘッドにおいて
も同様であり、高飽和磁束密度を有し、磁気ヘッド製造
プロセスに耐える耐食性を持つ磁性薄膜が望まれてい
た。The above-mentioned problem is not limited to the thin-film magnetic head for perpendicular magnetic recording, but is also the same in the conventional thin-film magnetic head for inner surface magnetic recording, has a high saturation magnetic flux density, and has corrosion resistance to endure the magnetic head manufacturing process. A magnetic thin film has been desired.
本発明の目的は、上述した従来技術の問題点を解消し、
飽和磁束密度の高い磁性薄膜の耐食性を改善することに
よって、薄膜磁気ヘッドの製造工程における磁性薄膜の
腐食を低減して、製品歩留りの向上をはかるものであ
る。The object of the present invention is to solve the above-mentioned problems of the prior art,
By improving the corrosion resistance of the magnetic thin film having a high saturation magnetic flux density, the corrosion of the magnetic thin film in the manufacturing process of the thin film magnetic head is reduced, and the product yield is improved.
上記の目的を達成するために、本発明においては体心立
方構造を有する金属磁性材料を用い、この金属結晶の耐
食性のよい{110}面もしくは{111}面がほぼ磁性薄膜
の膜面と一致するように配向させた磁性薄膜を磁気ヘッ
ドに使用することを骨子とするものである。In order to achieve the above object, in the present invention, a metal magnetic material having a body-centered cubic structure is used, and the {110} or {111} plane of this metal crystal having good corrosion resistance is substantially coincident with the film surface of the magnetic thin film. The main idea is to use the magnetic thin film oriented as described above in a magnetic head.
本発明の磁性薄膜において、高い飽和磁束密度を得るた
めにはFeまたはFeを主成分とする合金を使用する必要が
あり、これらの合金は一般的に体心立方構造を有するも
のである。本発明者らは、体心立方構造を有する金属あ
るいは合金の結晶面による腐食速度の差について調査し
た結果、{110}面もしくはこの近傍の面、あるいは{1
11}面もしくはこの近傍の面は、{100}面もしくはこ
の近傍の面に比較して著しく腐食速度が遅いことを知見
し本発明を完成するに至った。In order to obtain a high saturation magnetic flux density in the magnetic thin film of the present invention, it is necessary to use Fe or an alloy containing Fe as a main component, and these alloys generally have a body-centered cubic structure. As a result of investigating a difference in corrosion rate between crystal planes of a metal or an alloy having a body-centered cubic structure, the present inventors have found that the {110} plane or a plane near this plane, or {1} plane.
The inventors have completed the present invention by finding that the 11} plane or a plane in the vicinity thereof has a significantly slower corrosion rate than the {100} plane or a plane in the vicinity thereof.
本発明に使用する磁性薄膜は、例えばFe,Fe−6wt(重
量)%Si合金およびFe−6wt%Al−9wt%Si合金であっ
て、第1表にこれらの金属あるいは合金の結晶面におけ
る腐食速度の変化を示す。この場合、腐食液としては塩
酸と塩化第2鉄の水溶液を用い、各磁性材料の{100}
面における腐食速度を1とした。The magnetic thin film used in the present invention is, for example, Fe, Fe-6 wt% Si alloy and Fe-6 wt% Al-9 wt% Si alloy, and Table 1 shows corrosion of these metals or alloys on the crystal plane. The change in speed is shown. In this case, an aqueous solution of hydrochloric acid and ferric chloride is used as the corrosive liquid, and {100} of each magnetic material is used.
The corrosion rate on the surface was 1.
第1表から明らかなように、FeまたはFeを主成分とする
体心立方構造の金属の{100}面の腐食速度に比較し
て、{110}面の腐食速度は約1/10,{111}面は約1/5で
あり、{110}面および{111}面は{100}面に比較し
て著しく耐食性が良好であることが判明した。したがっ
て、これら体心立方構造を有する金属結晶の{110}面
および{111}面が薄膜面にほぼ一致するように配向さ
せた磁性薄膜は、{100}面が薄膜表面となる場合に比
較して著しく耐食性の優れたものとなる。また、{11
0}面が薄膜表面に一致するように配向した薄膜は、{1
11}面が薄膜表面に一致するように配向した薄膜よりも
約2倍の耐食性を有しており、より好ましい。このよう
に、{110}面あるいは{111}面が薄膜表面に一致する
ように配向した磁性薄膜を用いた磁気ヘッドは、磁気ヘ
ッド製造工程における磁性薄膜パターニングの工程ある
いは洗浄の工程などにおいて腐食が生じにくく、製品の
歩留りを向上させることができるという利点がある。 As is clear from Table 1, the corrosion rate of the {110} plane is about 1/10 of the corrosion rate of the {100} plane of Fe or a body-centered cubic structure containing Fe as the main component. The {111} plane was about 1/5, and it was found that the {110} plane and the {111} plane had significantly better corrosion resistance than the {100} plane. Therefore, a magnetic thin film oriented so that the {110} and {111} planes of a metal crystal having a body-centered cubic structure are substantially aligned with the thin film plane is compared to the case where the {100} plane is the thin film surface. And has extremely excellent corrosion resistance. Also, {11
A thin film oriented so that the {0} plane matches the thin film surface is {1
It is more preferable because it has about twice as much corrosion resistance as a thin film oriented so that the 11} plane is aligned with the thin film surface. As described above, the magnetic head using the magnetic thin film oriented so that the {110} plane or the {111} plane is aligned with the thin film surface is not corroded in the magnetic thin film patterning process or the cleaning process in the magnetic head manufacturing process. It is less likely to occur and has an advantage that the yield of products can be improved.
本発明に用いられる磁性材料は、上述のように体心立方
構造を有する磁性金属あるいは合金であり、さらに具体
的には、FeあるいはFeを主成分とする金属あるいは合金
である。例えば、重量%で、Be<1.4%,Al<34%,Si<1
5%,Ti<2%,V<100%,Cr<100%,Mn<3%,Co<75%,
Ni<30%,Zn<8%,Ge<16%,As<10%,Mo<5%,Ru<1
0%,Rh<65%,Sn<5%,W<8%,Re<29%,Os<35%,Ir
<40%,Pt<46%,Ce<6%などの添加元素を含有するFe
合金は体心立方構造を有しており、これらの添加元素は
1種のみならず2種以上を同時に添加されることもあ
る。なお、これらの添加元素の内Al,V,Crに関しては、F
e合金への添加量を多くすると飽和磁束密度が低くな
り、薄膜磁気ヘッドに適しなくなるため、それぞれの含
有量を20wt%以下、45wt%以下、50wt%以下とすること
が望ましい。The magnetic material used in the present invention is a magnetic metal or alloy having a body-centered cubic structure as described above, and more specifically, Fe or a metal or alloy containing Fe as a main component. For example, in weight%, Be <1.4%, Al <34%, Si <1
5%, Ti <2%, V <100%, Cr <100%, Mn <3%, Co <75%,
Ni <30%, Zn <8%, Ge <16%, As <10%, Mo <5%, Ru <1
0%, Rh <65%, Sn <5%, W <8%, Re <29%, Os <35%, Ir
Fe containing additional elements such as <40%, Pt <46%, Ce <6%
The alloy has a body-centered cubic structure, and these additive elements may be added not only in one kind but in two or more kinds at the same time. Of these additive elements, Al, V and Cr are F
If the addition amount to the e-alloy is increased, the saturation magnetic flux density becomes low and it becomes unsuitable for a thin-film magnetic head.
また、本発明において、スパッタリング法あるいは真空
蒸着法などにより作製した薄膜は、熱的に非平衡状態に
ある場合が多いために、結晶構造な体心立方構造のま
ま、添加元素が上記の含有量以上に過飽和の状態で固溶
する場合もある。さらにまた、Feに固溶した場合に、体
心立法構造以外の析出物を生じる上記添加元素以外の元
素を添加し、スパッタリング法あるいは真空蒸着法など
により薄膜を作製した場合においても均一な体心立方構
造をとる場合がある。Further, in the present invention, a thin film produced by a sputtering method or a vacuum evaporation method is often in a thermally non-equilibrium state. In some cases, it may form a solid solution in the supersaturated state. Furthermore, even if a thin film is formed by a sputtering method or a vacuum deposition method by adding an element other than the above-mentioned additional element that produces a precipitate other than a body-centered cubic structure when solid-dissolved in Fe, the uniform body-center It may have a cubic structure.
本発明において、体心立方構造を有する金属および合金
の結晶方位を配向せしめた薄膜を作製する方法として
は、基板に単結晶を使用し、この単結晶の種類と結晶面
を選択する方法、さらに薄膜の作製条件を選択する方法
などがある。単結晶基板の種類としては、FeまたはFeを
主成分とする磁性合金の結晶の{110}面あるいは{11
1}面の原子配列の対称性および周期と類似する原子配
列の対称性および周期を有する単結晶基板を用いること
が望ましい。In the present invention, as a method for producing a thin film in which the crystal orientation of the metal and alloy having a body-centered cubic structure is oriented, a single crystal is used for the substrate, and a method for selecting the type and crystal plane of the single crystal, There is a method of selecting the manufacturing conditions of the thin film. The types of single crystal substrates include {110} planes or {11} faces of crystals of Fe or magnetic alloys containing Fe as a main component.
It is desirable to use a single crystal substrate having an atomic arrangement symmetry and period similar to the atomic arrangement symmetry and period of the 1} plane.
なお、本発明における薄膜の形成方法としては、真空蒸
着法,スパッタリング法,イオンプレーティング法,CVD
法,あるいは各種のめっき法などを用いることができ
る。The thin film forming method in the present invention includes vacuum deposition method, sputtering method, ion plating method, and CVD method.
Or various plating methods can be used.
以下に、本発明の一実施例を挙げさらに詳細に説明す
る。Hereinafter, one embodiment of the present invention will be described in more detail.
(実施例 1) 基板として、表面が{100}面にほぼ一致したSi単結晶
を用い、この基板上にイオンビームスパッタリング装置
を用いて、Fe薄膜を被着した。スパッタリングガスとし
てはArを用い、Arガス圧は1×10-4Torrとした。また、
イオンの加速電圧1.1kV,イオン電流を60mAとした。基板
温度は約40℃とし、膜厚は0.3μmとした。このFe薄膜
をX線回折法により測定した結果を第1図(a)に示
す。なお、ターゲットはCu用いた。図において、縦軸は
最大回折線強度(Imax)と各回折線強度(I)の比を示
し、横軸は回折角〔2θ(deg)〕を示す。(Example 1) As a substrate, a Si single crystal whose surface was substantially aligned with the {100} plane was used, and an Fe thin film was deposited on this substrate using an ion beam sputtering apparatus. Ar was used as the sputtering gas, and the Ar gas pressure was 1 × 10 −4 Torr. Also,
The ion acceleration voltage was 1.1 kV and the ion current was 60 mA. The substrate temperature was about 40 ° C. and the film thickness was 0.3 μm. The result of measuring this Fe thin film by the X-ray diffraction method is shown in FIG. The target was Cu. In the figure, the vertical axis represents the ratio between the maximum diffraction line intensity (I max ) and each diffraction line intensity (I), and the horizontal axis represents the diffraction angle [2θ (deg)].
なお、比較例としてガラス基板を用いて、本実施例と同
様の条件でFe薄膜を作製した。このFe薄膜のX線回折パ
ターンを第1図(b)に示す。As a comparative example, using a glass substrate, an Fe thin film was prepared under the same conditions as in this example. The X-ray diffraction pattern of this Fe thin film is shown in FIG.
本発明の基板表面が{100}面と一致したSi単結晶基板
を用いた場合には、第1図(a)に示すごとく、ほぼ
{110}面のみが薄膜面と平行になるように結晶が配向
したFe薄膜が得らている。一方、比較例であるガラス基
板を用いた場合には、第1図(b)に示すごとく、{11
0}面,{100}面,{211}面,{310}面,{111}面
などがFe薄膜面と平行に存在している。In the case of using a Si single crystal substrate in which the substrate surface of the present invention coincides with the {100} plane, as shown in FIG. 1 (a), the crystal is formed so that almost only the {110} plane is parallel to the thin film plane. An Fe thin film with orientated is obtained. On the other hand, when a glass substrate which is a comparative example is used, as shown in FIG.
The 0} plane, {100} plane, {211} plane, {310} plane, and {111} plane exist in parallel with the Fe thin film plane.
次に、第1図(a)に示した、Si単結晶基板を用い、Fe
薄膜を形成しながら、薄膜形成用以外の第2のイオンガ
ンを用いて、薄膜表面をエッチングする操作を行なっ
た。この方法により作製した膜をX線回折法により測定
した。なお、第2のイオンガンの加速電圧は200V,電流
密度を0.1mA/cm2とした。この方法によって作製したFe
薄膜のX線回折パターンは、第1図(a)に示した場合
とほぼ同様であったが、第1図(a)の場合には{11
0}面回折ピークの半値幅が約1度(゜)であったのに
対し、第2のイオンガンを用いて同時にエッチング操作
を行なった場合には半値幅が約0.2゜となり、薄膜形成
を行ないながら、同時にエッチング操作を行なうことに
より、より結晶配向性の優れた磁性薄膜が得られること
が判明した。Next, using the Si single crystal substrate shown in FIG.
While forming the thin film, an operation of etching the surface of the thin film was performed using the second ion gun other than the one for forming the thin film. The film produced by this method was measured by the X-ray diffraction method. The acceleration voltage of the second ion gun was 200 V and the current density was 0.1 mA / cm 2 . Fe produced by this method
The X-ray diffraction pattern of the thin film was almost the same as that shown in Fig. 1 (a), but in the case of Fig. 1 (a), {11
The half-value width of the 0} plane diffraction peak was about 1 degree (°), whereas when the etching operation was simultaneously performed using the second ion gun, the half-value width was about 0.2 °, and a thin film was formed. However, it was revealed that a magnetic thin film having a more excellent crystal orientation can be obtained by simultaneously performing the etching operation.
上述のように、Si単結晶基板を用い薄膜面と一致するよ
うに{110}面が配向し、薄膜表面が{110}面により構
成されたFe薄膜と、ガラス基板上に作製した{110}面
が配向していないFe薄膜とを、磁気ヘッド製造工程にお
ける洗浄工程において純水を用いて5分間洗浄した結
果、ガラス基板上の無配向Fe薄膜は約40個/cm2の密度の
局部腐食を生じ、一方、{110}面が配向したSi単結晶
基板上のFe薄膜は局部腐食の数が約5個/cm2に減少し
た。As described above, using the Si single crystal substrate, the {110} plane was oriented so as to match the thin film plane, and the thin film surface was composed of the {110} plane. As a result of cleaning the Fe thin film whose surface is not oriented with pure water for 5 minutes in the cleaning process in the magnetic head manufacturing process, the non-oriented Fe thin film on the glass substrate has a local corrosion of a density of about 40 pieces / cm 2. On the other hand, in the Fe thin film on the Si single crystal substrate with the {110} plane oriented, the number of localized corrosion was reduced to about 5 / cm 2 .
さらに、第2のイオンガンを用いて、エッチング操作を
行ないながら薄膜形成を行なったFe薄膜においては、局
部腐食の数が約3個/cm2に減少した。Further, in the Fe thin film formed by etching using the second ion gun while performing the etching operation, the number of localized corrosions was reduced to about 3 / cm 2 .
以上説明したごとく、{110}面が薄膜面に一致するよ
うに配向したFe薄膜を用いることにより、薄膜の耐食性
を著しく向上させることができ、これを用いた磁気ヘッ
ドの製造プロセスにおける歩留まりを大幅に向上できる
ことを確認した。As explained above, by using the Fe thin film oriented so that the {110} plane matches the thin film surface, the corrosion resistance of the thin film can be significantly improved, and the yield in the manufacturing process of the magnetic head using this can be significantly improved. It was confirmed that it can be improved.
(実施例 2) 基板として、表面が{111}面にほぼ一致したSi単結晶
を用い、この基板上にイオンビームスパッタリング装置
を用いてFe薄膜を被着した。スパッタリング条件は、上
述の実施例1と同様に、Arガス圧力1×10-4Torr,イオ
ン加速電圧1.1kV,電流60mA,基板温度約40℃,膜厚は0.3
μmとした。このFe薄膜のX線回折パターンは第2図に
示すごとく、{222}からの回折ピークが最も強く、薄
膜表面が{111}面となるように優先的に配向している
ことが判明した。この薄膜にはまた、{110},{20
0},{211},{220}面からの回析線も観察され、{1
10},{211},{100}面などの面が薄膜表面に一致す
るような結晶粒も存在している。一方、完全な無配向の
Fe多結晶から得られる各面のX線回折線強度比では、AS
TM回折データカード6−0696(American Society for T
esting Materials 発行)によれば第2表に示すように
なっている。(Example 2) As a substrate, a Si single crystal whose surface was substantially aligned with the {111} plane was used, and an Fe thin film was deposited on this substrate using an ion beam sputtering apparatus. The sputtering conditions are the same as in Example 1 above, Ar gas pressure 1 × 10 −4 Torr, ion acceleration voltage 1.1 kV, current 60 mA, substrate temperature about 40 ° C., film thickness 0.3.
μm. As shown in FIG. 2, the X-ray diffraction pattern of this Fe thin film was found to have the strongest diffraction peak from {222} and was preferentially oriented so that the thin film surface became the {111} plane. This film also has {110} and {20
Diffraction lines from the 0}, {211}, and {220} planes were also observed, and {1
There are also crystal grains whose planes such as the 10}, {211}, and {100} planes coincide with the thin film surface. On the other hand, completely unoriented
The X-ray diffraction line intensity ratio of each surface obtained from Fe polycrystal is AS
TM Diffraction Data Card 6-0696 (American Society for T
According to esting Materials), it is as shown in Table 2.
第2表に示すごとく、無配向の多結晶の場合には{22
2}面の回折線強度{110}面の回折線強度との比I
{222}/I{110}は0.06であるのに対し、第2図に示し
た薄膜はI{222}/I{110}は2となっており、この薄
膜は薄膜表面が{111}面に一致するように結晶粒が強
く配向していると言える。 As shown in Table 2, in the case of non-oriented polycrystalline {22
Diffraction line intensity on 2} plane Ratio to diffraction line intensity on {110} plane I
{222} / I {110} is 0.06, whereas the thin film shown in Fig. 2 has I {222} / I {110} of 2. This thin film has a thin film surface of {111} plane. It can be said that the crystal grains are strongly oriented so that
上記のように、{111}面が薄膜表面と一致するように
配向したFe薄膜を、上述の実施例1と同様の方法で、純
水を用いて5分間洗浄した結果、約10個/cm2の数の局部
腐食を生じ、これに対しガラス基板上に作製した第1図
(b)に示したFe薄膜に比較して大幅に局部腐食の密度
を減少できることが明らかとなった。As described above, the Fe thin film oriented so that the {111} plane was aligned with the thin film surface was washed with pure water for 5 minutes in the same manner as in Example 1 above, and as a result, about 10 pieces / cm 2 were obtained. It was clarified that the local corrosion of the number of 2 occurred, and on the contrary, the density of the local corrosion can be significantly reduced as compared with the Fe thin film shown in FIG. 1 (b) formed on the glass substrate.
以上のように、結晶粒{111}面が薄膜面と一致するよ
うに配向せしめたFe薄膜は大幅に耐食性が向上し、これ
を用いた薄膜磁気ヘッドは、製造歩留まりを大きく向上
できることを確認した。As described above, it has been confirmed that the Fe thin film in which the crystal grain {111} plane is oriented so as to coincide with the thin film surface has a significantly improved corrosion resistance, and the thin film magnetic head using the Fe thin film can greatly improve the manufacturing yield. .
(実施例 3) 基板としてガラス基板を用い、この基板上に高周波二極
スパッタリング装置を用いてFe−Si合金薄膜を被着し
た。ターゲットにはFe−6.5重量(wt)%Si合金を用い
た。Arガス圧力を5×-3Torrから5×10-2Torrまで変化
して作製した膜のX線回析パターンを第3図(a),
(b),(c)に示す。なお、基板温度は350℃とし
た。(Example 3) A glass substrate was used as a substrate, and a Fe-Si alloy thin film was deposited on the substrate using a high frequency bipolar sputtering device. A Fe-6.5 weight (wt)% Si alloy was used as the target. The X-ray diffraction pattern of the film prepared by changing the Ar gas pressure from 5 × -3 Torr to 5 × 10 -2 Torr is shown in FIG. 3 (a).
Shown in (b) and (c). The substrate temperature was 350 ° C.
Arガス圧力が5×10-2Torrの第3図(c)およびArガス
圧力が3×10-2Torrの第3図(b)においては、薄膜表
面が種々の結晶面で構成される多結晶からなっているの
に対して、Arガス圧力が2×10-2Torr以下の条件で作製
した薄膜は、第3図(a)に示すように、薄膜表面が
{110}面に一致する結晶粒のみからなっていることが
判明した。これらのFe−Si合金薄膜を、上述の実施例1
と同様の方法で純水を用いて5分間洗浄した結果、{11
0}面が薄膜表面と一致するように配向した第3図
(a)の薄膜は、局部腐食の密度が約6個/cm2であたの
に対して、{110}面な配向性の乏しい第3図(b)お
よび(c)に示す薄膜は約35個/cm2および約45個/cm2で
あった。以上のように、結晶粒の{110}面が薄膜表面
と一致するように配向せしめたFe−Si合金薄膜は、耐食
性が著しく向上し、この合金薄膜を用いた磁気ヘッドの
製造プロセスの歩留まりを大幅に向上できることを確認
した。In FIG. 3 (c) where the Ar gas pressure is 5 × 10 −2 Torr and in FIG. 3 (b) where the Ar gas pressure is 3 × 10 −2 Torr, the thin film surface is composed of various crystal planes. On the other hand, the thin film prepared under the conditions of Ar gas pressure of 2 × 10 -2 Torr or less, while being composed of crystals, has a thin film surface that coincides with the {110} plane, as shown in FIG. 3 (a). It was found that it consisted only of crystal grains. These Fe-Si alloy thin films were prepared using the above-mentioned Example 1
As a result of washing with pure water for 5 minutes in the same manner as in {11
The thin film of FIG. 3 (a) oriented so that the {0} plane was aligned with the thin film surface had a local corrosion density of about 6 pieces / cm 2 , whereas the thin film of FIG. The thin films shown in FIGS. 3 (b) and (c), which were poor, were about 35 / cm 2 and about 45 / cm 2 . As described above, the Fe-Si alloy thin film in which the {110} planes of the crystal grains are aligned with the thin film surface has significantly improved corrosion resistance, and the yield of the magnetic head manufacturing process using this alloy thin film is improved. It was confirmed that it could be greatly improved.
なお、本発明において薄膜の結晶粒の配向の状況は、上
述したX線回折パターンにより測定することができる。
すなわち、完全に無配向の薄膜においては、各結晶面か
らのX線回折強度は上述の第2表に示すごとくなり、結
晶粒の{110}面が薄膜面と一致するように優先的に配
向した薄膜においては、{110}面以外の面のX線回折
強度が弱くなり、I{hkl}/I{110}が無配向膜の場合
に比較して小さくなる。そして、完全に{110}面のみ
が薄膜面に一致するように配向した薄膜では{110}面
以外の面からの回折線は観察されなくなる。また、{11
1}面が薄膜面と一致するように優先的に配向した薄膜
においてはI{222}/I{100}が無配向の薄膜に比して
大きくなり、完全に{111}面のみが薄膜面と一致する
ように配向した薄膜においては、{111}面以外の面の
回折線が観察されなくなる。本発明において、結晶粒の
{110}面あるいは{111}面が薄膜面と一致するように
安全に配向した薄膜を磁気ヘッドに用いることは、耐食
性を向上し、磁気ヘッド製造プロセスにおける歩留まり
を向上する上で好ましいが、結晶粒の{110}面あるい
は{111}面が薄膜面と一致するように、無配向の薄膜
に比較して優先的に配向した薄膜を磁気ヘッドに用いる
場合においても耐食性は向上し、磁気ヘッド製造プロセ
スにおける歩留まりを向上する上で効果がある。In the present invention, the state of crystal grain orientation of the thin film can be measured by the X-ray diffraction pattern described above.
That is, in a completely non-oriented thin film, the X-ray diffraction intensity from each crystal face is as shown in Table 2 above, and the {110} faces of the crystal grains are preferentially oriented so that they coincide with the thin film face. In the thin film, the X-ray diffraction intensity of the planes other than the {110} plane becomes weak, and I {hkl} / I {110} becomes smaller than that of the non-oriented film. Then, in the thin film oriented so that only the {110} plane completely matches the thin film plane, diffraction lines from planes other than the {110} plane are not observed. Also, {11
In a thin film that is preferentially oriented so that the 1} plane coincides with the thin film plane, I {222} / I {100} becomes larger than that of a non-oriented thin film, and only the {111} plane is the thin film plane. In the thin film oriented so as to coincide with, the diffraction lines of planes other than the {111} plane are not observed. In the present invention, the use of a thin film in which a {110} plane or a {111} plane of a crystal grain is safely oriented so as to coincide with a thin film plane in a magnetic head improves corrosion resistance and yield in a magnetic head manufacturing process. Corrosion resistance even when using a thin film that is preferentially oriented as compared to a non-oriented thin film so that the {110} face or {111} face of the crystal grain matches the thin film face in the magnetic head. And is effective in improving the yield in the magnetic head manufacturing process.
本発明の効果は、上述した実施例のみならず、体心立方
構造を有する金属および合金において得られ、特にFeま
たはFeを主成分とする体心立方構造を有する金属および
合金を用いた場合に、飽和磁束密度が高く、耐食性の優
れた磁性薄膜が得られるため、これを用いた磁気ヘッド
は記録特性に優れ、かつ磁気ヘッド製造プロセスにおけ
る歩留まりが高いものとなる。The effects of the present invention are obtained not only in the above-described examples but also in metals and alloys having a body-centered cubic structure, and particularly when using a metal and an alloy having a body-centered cubic structure containing Fe or Fe as a main component. Since a magnetic thin film having a high saturation magnetic flux density and excellent corrosion resistance can be obtained, a magnetic head using the magnetic thin film has excellent recording characteristics and a high yield in the magnetic head manufacturing process.
以上詳細に説明したごとく、本発明の磁気ヘッドの磁性
薄膜として、体心立方構造を有する金属または合金、特
にFeまたはFeを主成分とする合金を用い、その結晶面で
ある{110}面または{111}面が、薄膜面とほぼ一致す
るように配向させることによって、飽和磁束密度が高
く、その上耐食性に優れた磁性薄膜が得られるため、こ
れを用いた磁気ヘッドは記録特性に優れ、かつ磁気ヘッ
ド製造プロセスにおける歩留まりの大幅な向上をはかる
ことができ、産業上の利用価値は極めて大きい。As described in detail above, as the magnetic thin film of the magnetic head of the present invention, a metal or alloy having a body-centered cubic structure, particularly Fe or an alloy containing Fe as a main component, is used, and the crystal plane {110} plane or By orienting the {111} plane so that it is substantially aligned with the thin film surface, a magnetic thin film having a high saturation magnetic flux density and excellent corrosion resistance can be obtained. In addition, the yield in the magnetic head manufacturing process can be greatly improved, and its industrial utility value is extremely large.
第1図(a)は本発明の実施例1における磁性薄膜のX
線回折パターンを示す図、第1図(b)はその比較例に
おけるX線回折パターンを示す図、第2図は本発明の実
施例2における磁性薄膜のX線回折パターンを示す図、
第3図(a),(b),(c)は本発明の実施例3にお
けるX線回折パターンを示す図、第4図は従来の垂直磁
気記録用薄膜磁気ヘッドの構造の一例を示す縦断面図で
ある。 1……非磁性基板、2……主磁極 3……無機絶縁物層、4……導体コイル 5……有機絶縁物層、6……上部磁性層FIG. 1A shows X of the magnetic thin film in Example 1 of the present invention.
The figure which shows a line diffraction pattern, FIG.1 (b) is a figure which shows the X-ray diffraction pattern in the comparative example, FIG.2 is the figure which shows the X-ray diffraction pattern of the magnetic thin film in Example 2 of this invention,
3 (a), (b), and (c) are diagrams showing an X-ray diffraction pattern in Example 3 of the present invention, and FIG. 4 is a longitudinal section showing an example of the structure of a conventional thin film magnetic head for perpendicular magnetic recording. It is a side view. 1 ... Non-magnetic substrate, 2 ... Main magnetic pole 3 ... Inorganic insulator layer, 4 ... Conductor coil 5 ... Organic insulator layer, 6 ... Upper magnetic layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 憲雄 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭59−207608(JP,A) 特開 昭59−9905(JP,A) 特開 昭58−111119(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Ota 1-280, Higashi Koigakubo, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-59-207608 (JP, A) JP-A-59 -9905 (JP, A) JP-A-58-111119 (JP, A)
Claims (3)
いた磁気ヘッドにおいて、上記磁性薄膜の少なくとも一
部に、FeもしくはFeを主成分とする金属もしくは合金か
らなり、該金属または合金の結晶の{110}面が、上記
磁性薄膜の薄膜面とほぼ一致するように配向させた磁性
薄膜を用いることを特徴とする磁気ヘッド。1. A magnetic head using a magnetic thin film for at least part of a magnetic circuit, wherein at least part of the magnetic thin film is made of Fe or a metal or alloy containing Fe as a main component, and a crystal of the metal or alloy. The magnetic head is characterized by using a magnetic thin film oriented so that the {110} plane of is substantially aligned with the thin film surface of the magnetic thin film.
は体心立方構造を有することを特徴とする特許請求の範
囲第1項記載の磁気ヘッド。2. The magnetic head according to claim 1, wherein the metal or alloy forming the magnetic thin film has a body-centered cubic structure.
i、Ti、V、Cr、Mn、Co、Ni、Zn、Ge、As、Mo、Ru、R
h、Sn、W、Re、Os、Ir、Pt、Ceの中から選択された少
なくとも1種を含有することを特徴とする特許請求の範
囲第2項記載の磁気ヘッド。3. The alloy containing Fe as a main component is Be, Al or S.
i, Ti, V, Cr, Mn, Co, Ni, Zn, Ge, As, Mo, Ru, R
3. The magnetic head according to claim 2, further comprising at least one selected from h, Sn, W, Re, Os, Ir, Pt, and Ce.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60063743A JPH0772928B2 (en) | 1985-03-29 | 1985-03-29 | Magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60063743A JPH0772928B2 (en) | 1985-03-29 | 1985-03-29 | Magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61224115A JPS61224115A (en) | 1986-10-04 |
JPH0772928B2 true JPH0772928B2 (en) | 1995-08-02 |
Family
ID=13238189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60063743A Expired - Lifetime JPH0772928B2 (en) | 1985-03-29 | 1985-03-29 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0772928B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0744110B2 (en) * | 1988-09-02 | 1995-05-15 | 松下電器産業株式会社 | High saturation magnetic flux density soft magnetic film and magnetic head |
JP2698814B2 (en) * | 1989-07-10 | 1998-01-19 | 富士写真フイルム株式会社 | Soft magnetic thin film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58111119A (en) * | 1981-12-25 | 1983-07-02 | Comput Basic Mach Technol Res Assoc | Thin film magnetic head |
JPS59207608A (en) * | 1983-05-11 | 1984-11-24 | Hitachi Ltd | High permeability magnetic thin film |
-
1985
- 1985-03-29 JP JP60063743A patent/JPH0772928B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61224115A (en) | 1986-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1930884A1 (en) | Ni-X, NI-Y, and NI-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording | |
US5935347A (en) | FE-base soft magnetic alloy and laminated magnetic core by using the same | |
JP3229718B2 (en) | Soft magnetic alloys, soft magnetic thin films and multilayer films | |
JP2004311925A (en) | FePt magnetic thin film having perpendicular magnetic anisotropy and method of manufacturing the same | |
US8158276B2 (en) | FePtP-alloy magnetic thin film | |
US5302469A (en) | Soft magnetic thin film | |
JPH05311390A (en) | Method for producing Fe16N2 iron nitride having high saturation magnetization | |
US3625849A (en) | Manufacture of magnetic medium | |
JPH0772928B2 (en) | Magnetic head | |
JP3236171B2 (en) | Soft magnetic multilayer | |
JPH04124246A (en) | Dial | |
JP2750722B2 (en) | High permeability material | |
JPH043905A (en) | Magnetic material film | |
JPH0368744A (en) | Thin magnetic film | |
JP2674435B2 (en) | Metal magnetic film and manufacturing method thereof | |
JPH05263197A (en) | Fe series soft magnetic alloy with high saturation magnetic flux density | |
JPH09115729A (en) | Ultramicrocrystal magnetic film and its manufacture | |
JP2774702B2 (en) | Soft magnetic thin film and thin film magnetic head using the same | |
JP2707213B2 (en) | Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same | |
EP0187169A2 (en) | Process of manufacturing magnetic recording media and the media | |
JPH1060607A (en) | High hardness ferrous soft magnetic alloy | |
JP2842683B2 (en) | Soft magnetic thin film material | |
JP2774708B2 (en) | Soft magnetic thin film and thin film magnetic head using the same | |
JP3233538B2 (en) | Soft magnetic alloys, soft magnetic thin films and multilayer films | |
JP2574901B2 (en) | Thin film magnetic head and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |