[go: up one dir, main page]

JPH0767603B2 - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting

Info

Publication number
JPH0767603B2
JPH0767603B2 JP63042720A JP4272088A JPH0767603B2 JP H0767603 B2 JPH0767603 B2 JP H0767603B2 JP 63042720 A JP63042720 A JP 63042720A JP 4272088 A JP4272088 A JP 4272088A JP H0767603 B2 JPH0767603 B2 JP H0767603B2
Authority
JP
Japan
Prior art keywords
immersion nozzle
gas
nozzle
alumina
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63042720A
Other languages
Japanese (ja)
Other versions
JPH01215448A (en
Inventor
俊雄 手嶋
融 北川
幹雄 鈴木
俊雄 政岡
孝志 森
一生 沖本
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP63042720A priority Critical patent/JPH0767603B2/en
Priority to US07/199,018 priority patent/US4898226A/en
Priority to DE8888108690T priority patent/DE3861110D1/en
Priority to EP88108690A priority patent/EP0293830B1/en
Publication of JPH01215448A publication Critical patent/JPH01215448A/en
Publication of JPH0767603B2 publication Critical patent/JPH0767603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は浸漬ノズル内壁への介在物の付着・成長を抑
制し、連続鋳造の酸化物系介在物起因の欠陥発生を防止
する浸漬ノズルに関するものである。
TECHNICAL FIELD The present invention relates to an immersion nozzle that suppresses adhesion and growth of inclusions on the inner wall of the immersion nozzle and prevents generation of defects due to oxide inclusions in continuous casting. It is a thing.

[従来の技術] 連続鋳造での浸漬ノズル内壁への介在物の付着は、時間
の経過とともに増大し、操業時間の制約するだけでな
く、数ミクロンの溶鋼中の脱酸生成物が粗大化し、しば
しば製品欠陥を誘発させる。浸漬ノズル内壁へ付着に関
しては浸漬ノズル材質大きく影響し、例えば溶融シリカ
質の浸漬ノズルにはほとんど介在物の付着は認められな
い。しかし溶融シリカ質の浸漬ノズルは鋼中のMnなどと
反応し、溶損するため操業のトラブルが発生しやすく鋳
片品質にも問題となる。従って一般のアルミキルド鋼の
連続鋳造ではアルミナグラファイトあるいはアルミナグ
ラファイトとジルコニア質の組み合わせ材質の浸漬ノズ
ルが使用されている。アルミナグラファイト質浸漬ノズ
ルを使用する場合には酸化物系介在物の付着、燒結、成
長が急速に進行するため、浸漬ノズル内へ不活性ガスと
してはアルゴンガスを吹き込み洗浄することによって、
この進行を抑制している。更に、最近では浸漬ノズルの
材質的検討がなされている。その一例として、鋳造開始
時の熱衝撃の対策としてアルミナグラファイト内に20〜
30%のSiO2が混合されているが、鋳造時の強還元性雰囲
気のもとでは SiO2(s)+C(s)→SiO(g)+CO(g) となり、Siがガス化しこれが鋼中へ酸素供給源となり、
介在物を生成し、介在物の付着、成長を誘発する可能性
があるため、浸漬ノズルの材質をSiO2からSiCとカーボ
ンに置き換える。又は、ジルコニア質の浸漬ノズルにつ
いては、熱伝導性が低い、脱酸生成物の付着性がし
にくい等の理由で、最近はジルコニア質の浸漬ノズルを
使用していることが多い。第6図は従来の2つの吐出孔
2の中心を通る浸漬ノズル1の断面図で、(イ)は2つ
の吐出孔2の中心を通る浸漬ノズル1の平面切断図、
(ロ)は第6図の(イ)の2つの吐出孔2の中心を通る
浸漬ノズル1の縦断面図(A−A′)、(ハ)は第6図
の(ロ)の2つの吐出孔2の中心を通る浸漬ノズル1の
縦断面図(A−A′)の直角方向の縦断面(B−B′)
である。浸漬ノズル1の使用後の溶湯流通路4の内壁側
3のアルミナ付着厚4は浸漬ノズル1の吐出孔2の上端
から40mmの縦断面図A−A′と直角方向の縦断面図B−
B′で測定した。浸漬ノズル1の材質をアルミナグラフ
ァイトとジルコニアの使用結果について説明する。第7
図は鋳造時間と浸漬ノズルの使用後の溶湯流通路の内壁
側のアルミナ付着厚の関係を示すグラフ図である。○印
と△印は、アルミナグラファイト質ノズルで、●印と▲
印はジルコニアノズルである。○印と●印は浸漬ノズル
1の縦断面図A−A′で、△印と▲印は浸漬ノズル1の
縦断面図B−B′である。第8図はノズル内の管内流速
と浸漬ノズルの使用後の溶湯流通路の内壁側のアルミナ
付着厚の関係を示すグラフ図である。ここで示した管内
流速とは溶湯通過量(m3/sec)を浸漬ノズル内断面積
(m2)で割った平均流速を示している。第8図において
浸漬ノズル1の縦断面図A−A′では管内流速の上昇で
アルミナ付着厚が減少しているが、縦断面図B−B′で
は管内流速とアルミナ付着厚とに明瞭な相関が見られな
い。この理由は溶湯通過量が増大し管内流速も当然増大
するはずにもかかわらず、浸漬ノズル1の縦断面図B−
B′の下流域ではその壁近傍に吐出孔による急激な断面
変化に伴う減速域が存在し、多少の溶湯通過量の増大で
は流速変化が生じないため溶湯中のアルミナが流れより
排出され減速域に入り、そこで付着成長したためであ
る。第9図は浸漬ノズルの上部からのアルゴンガス吹き
込み量とアルミナ付着厚との関係を示すグラフ図であ
る。第7図,第8図,第9図から明らかなように、浸漬
ノズル1の吐出孔2の縦断面図A−A′では、浸漬ノズ
ル1の材質のジルコニア化、浸漬ノズル1内の溶湯流速
の増大、浸漬ノズルの上部からのアルゴンガス吹き込み
量の増大によってアルミナ付着厚は軽減されるが、これ
に対して浸漬ノズル1の吐出孔2の縦断面図B−B′で
は、浸漬ノズル1の材質のジルコニア化、浸漬ノズル1
内の溶湯流速の増大、浸漬ノズルの上部からのアルゴン
ガス吹き込み量の増大させても、アルミナ付着厚はほと
んど軽減されないために、製品に予期せぬ欠陥が発生す
ることが多い。
[Prior Art] The adhesion of inclusions to the inner wall of the immersion nozzle in continuous casting increases with the passage of time, not only restricting the operation time, but also deoxidizing products in molten steel of several microns coarsen, Often induces product defects. Regarding the adhesion to the inner wall of the immersion nozzle, the material of the immersion nozzle has a great influence, and, for example, the inclusion of inclusions is hardly recognized in the immersion nozzle made of fused silica. However, the molten siliceous dipping nozzle reacts with Mn in steel and melts, causing operational troubles and causing problems with the quality of the slab. Therefore, in general continuous casting of aluminum killed steel, an immersion nozzle made of alumina graphite or a combination material of alumina graphite and zirconia is used. When an alumina graphite immersion nozzle is used, the adhesion, sintering, and growth of oxide-based inclusions proceed rapidly, so by blowing argon gas as an inert gas into the immersion nozzle for cleaning,
This progress is suppressed. Furthermore, recently, the material of the immersion nozzle has been studied. For example, as a measure against thermal shock at the start of casting,
Although 30% of SiO 2 is mixed, it becomes SiO 2 (s) + C (s) → SiO (g) + CO (g) under a strong reducing atmosphere during casting, Si is gasified and this is in the steel. Becomes an oxygen source to
The material of the immersion nozzle is changed from SiO 2 to SiC and carbon because it may generate inclusions and induce the adhesion and growth of inclusions. Alternatively, for zirconia-based immersion nozzles, recently, zirconia-based immersion nozzles are often used because of their low thermal conductivity and difficulty in adhering deoxidized products. FIG. 6 is a sectional view of a conventional immersion nozzle 1 passing through the centers of two discharge holes 2, and FIG. 6A is a plan sectional view of the immersion nozzle 1 passing through the centers of two discharge holes 2.
(B) is a vertical sectional view (AA ') of the immersion nozzle 1 passing through the centers of the two discharge holes 2 in (A) of FIG. 6, and (C) is the two discharges of (B) in FIG. A vertical cross section (BB ') of a vertical cross section (AA') of the immersion nozzle 1 passing through the center of the hole 2.
Is. The alumina adhesion thickness 4 on the inner wall side 3 of the molten metal flow passage 4 after the use of the immersion nozzle 1 is 40 mm from the upper end of the discharge hole 2 of the immersion nozzle 1 and the vertical sectional view A-A 'and the vertical sectional view B-
It was measured at B '. The results of using alumina graphite and zirconia as the material of the immersion nozzle 1 will be described. 7th
The figure is a graph showing the relationship between the casting time and the alumina adhesion thickness on the inner wall side of the molten metal flow passage after the use of the immersion nozzle. The ○ and △ marks are alumina graphite nozzles, and ● and ▲
The mark is a zirconia nozzle. The ◯ mark and the ● mark are vertical cross-sectional views AA ′ of the immersion nozzle 1, and the Δ marks and ▲ marks are vertical cross-sectional views BB ′ of the immersion nozzle 1. FIG. 8 is a graph showing the relationship between the in-pipe flow velocity in the nozzle and the alumina adhesion thickness on the inner wall side of the molten metal flow passage after the use of the immersion nozzle. The in-pipe flow velocity shown here is the average flow velocity obtained by dividing the molten metal passage amount (m 3 / sec) by the immersion nozzle internal cross-sectional area (m 2 ). In FIG. 8, in the vertical sectional view AA ′ of the immersion nozzle 1, the alumina deposition thickness decreases due to the increase in the pipe flow velocity, but in the vertical sectional view BB ′, there is a clear correlation between the pipe flow velocity and the alumina deposition thickness. Can't be seen. The reason for this is that although the molten metal passage amount should increase and the flow velocity in the pipe should naturally increase, a vertical sectional view B- of the immersion nozzle 1
In the downstream region of B ', there is a deceleration region near the wall due to a sudden cross-sectional change due to the discharge hole, and since the flow velocity does not change with a slight increase in the amount of molten metal passing through, alumina in the molten metal is discharged from the flow and the deceleration region. This is because they entered and grew there. FIG. 9 is a graph showing the relationship between the amount of argon gas blown from the upper part of the immersion nozzle and the alumina adhesion thickness. As is clear from FIGS. 7, 8 and 9, in the longitudinal sectional view AA ′ of the discharge hole 2 of the immersion nozzle 1, the material of the immersion nozzle 1 is changed to zirconia, the flow velocity of the molten metal in the immersion nozzle 1 is increased. And the amount of argon gas blown from the upper part of the immersion nozzle is reduced, the alumina deposition thickness is reduced. On the other hand, in the vertical sectional view BB ′ of the discharge hole 2 of the immersion nozzle 1, Zirconia material, immersion nozzle 1
Even if the flow velocity of the molten metal in the inside is increased or the amount of argon gas blown from the upper part of the immersion nozzle is increased, the alumina adhesion thickness is hardly reduced, so that an unexpected defect often occurs in the product.

第10図は従来の2つの吐出孔2の中心を通る浸漬ノズル
で、底部にスリットノズル設置したノズル断面図で、
(イ)は2つの吐出孔の中心を通る浸漬ノズルの平面切
断図、(ロ)は第10図の(イ)の2つの吐出孔の中心を
通る浸漬ノズルの縦断面図(A−A′)、(ハ)は第10
図の(ロ)の2つの吐出孔の中心を通る浸漬ノズルの縦
断面図(A−A′)の直角方向の縦断面図(B−B′)
を示す図である。この対策として,第10図に示すような
浸漬ノズル1の底部11全面よりスリットノズル16によっ
てアルゴンガスを溶湯に吹き込む方法が取られている。
FIG. 10 is a cross-sectional view of a conventional immersion nozzle that passes through the centers of two discharge holes 2 and has a slit nozzle installed at the bottom.
(A) is a plane cutaway view of the immersion nozzle passing through the centers of the two discharge holes, and (b) is a vertical cross-sectional view (AA 'of FIG. 10) showing the immersion nozzle passing through the centers of the two discharge holes. ), (C) is the 10th
The vertical cross-sectional view (BB ') of the immersion nozzle passing through the centers of the two discharge holes in (B) of the drawing, which is taken at a right angle in the vertical cross-sectional view (AA').
FIG. As a countermeasure against this, a method of blowing argon gas into the molten metal through a slit nozzle 16 from the entire bottom surface 11 of the immersion nozzle 1 as shown in FIG.

[発明が解決しようとする課題] しかしながらこの方法では、両吐出孔2の中心を通る浸
漬ノズル1の直角方向の縦断面(B−B′)のアルミナ
付着厚は減少するが、このような広範囲の領域より均一
にアルゴンガスを吹き込むには、多量のアルゴンガスが
必要となる。又、このように浸漬ノズル1の上部からの
アルゴンガスの吹き込みも必要で(吹き込みを実施しな
いと浸漬ノズル1の上部でアルミナ付着が進行する)、
その吹き込み量は各々6〜10Nl/minとなり、トータルに
すれば12〜20Nl/minが必要である。アルゴンガスの吹き
込み量が多すぎると鋳片のノロカミ、ブローといった表
面欠陥を発生させる。第11図は浸漬ノズル1の上方タン
デイッシュ内の溶鋼注入口にポーラス体を設けアルゴン
ガスを吹いた事例で、この場合一部はタンデイッシュ内
へ浮上するアルゴン量もあるが、2〜5ton/minでの鋳造
を行った時のアルゴンガスを溶湯に吹き込む量と鋳片表
面のブロー数の関係を示すグラフ図である。この図から
明らかなようにアルゴンガスの吹き込み量に比例してブ
ロー数が増加している。アルゴンガスの吹き込み量を5N
l/min以下のときは、鋳造時の浸漬ノズル1内にアルミ
ナが付着し、ノズル閉塞を起こすという問題があった。
[Problems to be Solved by the Invention] However, according to this method, although the alumina adhesion thickness of the vertical cross section (BB ') of the immersion nozzle 1 passing through the centers of both discharge holes 2 is reduced, such a wide range is achieved. A large amount of argon gas is required to blow the argon gas more uniformly from the region. In addition, it is necessary to blow argon gas from the upper part of the immersion nozzle 1 as described above (if the blowing is not carried out, alumina adheres at the upper part of the immersion nozzle 1).
The blowing amount is 6 to 10 Nl / min, and a total of 12 to 20 Nl / min is required. If the amount of blown-in argon gas is too large, surface defects such as slag slagging and blowing will occur. Fig. 11 shows an example in which a porous body is provided at the molten steel injection port in the upper tundish of the immersion nozzle 1 and argon gas is blown. In this case, a part of the amount of argon floats in the tundish, but 2 to 5 ton / FIG. 4 is a graph showing the relationship between the amount of argon gas blown into the molten metal and the number of blows on the surface of the slab when casting was performed at min. As is clear from this figure, the blow number increases in proportion to the blowing amount of the argon gas. Argon gas blowing amount 5N
When it was less than 1 / min, there was a problem that alumina adhered to the inside of the immersion nozzle 1 during casting and the nozzle was clogged.

この発明はかかる事情に鑑みてなされたものであって、
アルゴンガスの吹き込み方法によって鋳片のノロカミ、
ブローといった表面欠陥を増大させることなく浸漬ノズ
ル内にアルミナ付着を防止することを目的とする。
The present invention has been made in view of such circumstances,
Norokami of slab, depending on the method of blowing argon gas
The purpose is to prevent alumina adhesion in the immersion nozzle without increasing surface defects such as blowing.

[課題を解決するための手段及び作用] この発明の連続鋳造用浸漬ノズルはタンデイッシュ内の
溶湯を鋳型内に注入する浸漬ノズルにおいて、浸漬ノズ
ル本体の内壁の2個の吐出孔から90度ずれ、かつガス流
出部上端レベルと吐出孔の溶湯入側上端レベルとの間隔
が、0〜+100mmの高さ方向の範囲の位置に設けられた
ガス流出部と、前記ガス流出部に接続されたガス流通路
と、前記ガス流通路にガスを供給するガス供給手段とを
具備したことを特徴とする。上記において、ガス流出部
は浸漬ノズル内壁へのガス吹き込みが出来る細孔、又は
ガス透過層が配設されている部分である。
[Means and Actions for Solving the Problem] The immersion nozzle for continuous casting according to the present invention is a immersion nozzle for injecting the molten metal in a tundish into a mold, which is offset by 90 degrees from two discharge holes in the inner wall of the immersion nozzle body. A gas outflow portion provided at a position in the height range of 0 to +100 mm between the upper end level of the gas outflow portion and the upper end level of the discharge hole on the molten metal inlet side, and the gas connected to the gas outflow portion. It is characterized by comprising a flow passage and a gas supply means for supplying gas to the gas flow passage. In the above, the gas outflow portion is a portion in which a gas blown into the inner wall of the immersion nozzle or a gas permeable layer is provided.

そして、トータルガス吹き込み量を5〜10Nl/minから変
えずに浸漬ノズルの2個の吐出孔から90度ずれ、かつガ
ス流出部上端レベルと吐出孔の溶湯入側上端レベルとの
間隔が0〜+100mmの高さ方向の範囲の位置に設けられ
たガス流出部を設ける。ここでガス流出部上端レベルと
吐出孔の溶湯入側上端レベルとの間隔を限定した理由は
0mm未満及び100mm超の場合はアルミナ付着厚が増加する
ためである。その結果鋳片のノロカミ、ブローといった
表面欠陥を発生させることなく、浸漬ノズルの内壁への
アルミナ付着を防止できる。
And, the total gas blowing amount is not changed from 5 to 10 Nl / min, and it is shifted by 90 degrees from the two discharge holes of the immersion nozzle, and the gap between the gas outflow upper end level and the melt inlet side upper end level of the discharge hole is 0. Provide a gas outlet that is located in the +100 mm height range. Here, the reason why the interval between the upper end level of the gas outlet and the upper end level of the discharge hole on the molten metal inlet side is limited is
This is because when the thickness is less than 0 mm or more than 100 mm, the alumina adhesion thickness increases. As a result, it is possible to prevent alumina from adhering to the inner wall of the immersion nozzle without causing surface defects such as slagging and blow of the slab.

[実施例] 以下添付図を参照してこの発明の実施例について説明す
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明の実施例に係わる浸漬ノズルの断面図
で、(イ)は2つのアルゴンを吹き込むガス流出部を含
む平面断面図、(ロ)は第1図の(イ)の2つの吐出孔
の中心を通る浸漬ノズルの縦断面図(A−A′)、
(ハ)は第1図の(ロ)の2つの吐出孔の中心を通る浸
漬ノズルの縦断面図(A−A′)の直角方向の縦断面図
(B−B′)を示す図である。1は浸漬ノズル、2は吐
出孔、11は浸漬ノズルの底部、12はガス流出部、13はガ
ス流通路、14はガス供給管、15はガス供給手段である。
FIG. 1 is a sectional view of an immersion nozzle according to an embodiment of the present invention, (a) is a plan sectional view including two gas outflow parts for blowing in argon, and (b) is the two sectional views of (a) of FIG. A vertical sectional view (A-A ') of the immersion nozzle passing through the center of the discharge hole,
(C) is a view showing a vertical cross-sectional view (BB ') in the direction perpendicular to the vertical cross-sectional view (AA') of the immersion nozzle passing through the centers of the two discharge holes in (b) of FIG. . Reference numeral 1 is an immersion nozzle, 2 is a discharge hole, 11 is the bottom of the immersion nozzle, 12 is a gas outlet, 13 is a gas flow passage, 14 is a gas supply pipe, and 15 is a gas supply means.

浸漬ノズル1の吐出孔2は丸型で、浸漬ノズルの底部の
プール型のである。浸漬ノズル1は耐火物で作られてお
り、その下部に2個の相対向する吐出孔2が設置されて
いる。ここにガス供給手段15からアルゴンガスをガス供
給接続管14を通して、ガス流通路13に導き、更にガス流
通路13に接続されているガス流出口部12よりアルゴンガ
スが流出される。
The discharge hole 2 of the immersion nozzle 1 has a round shape, and has a pool shape at the bottom of the immersion nozzle. The immersion nozzle 1 is made of a refractory material, and has two discharge holes 2 facing each other at the bottom thereof. Argon gas is introduced from the gas supply means 15 into the gas flow passage 13 through the gas supply connection pipe 14, and the argon gas is discharged from the gas flow outlet portion 12 connected to the gas flow passage 13.

(実施例1) 図示しないタンデイッシュから浸漬ノズル1に溶湯を供
給し、2個の相対向する吐出孔2から鋳型(図示せず)
内に注入される。そしてガス供給手段15からアルゴンガ
スを2Nl/min程度供給するとガス供給接続管14を通して
ガス流通路13に導き、更にガス流出部12に接続されてい
る。浸漬ノズル1の内側内壁の2個のガス流出部12より
気泡状になって溶湯内に吹き込まれる。この時従来のア
ルゴン吹き込み位置からもタンディッシュ注入口から、
浸漬ノズル1の上部かけての内壁へのアルミナ付着厚防
止するために5〜8Nl/minのアルゴンを吹き込む。ノズ
ルの溶湯内に吹き込まれるトータルのアルゴン流量は5
〜10Nl/minなので第8図に示すように鋳片表面のブロー
数を増大させることなく、かつガス流出部12付近のアル
ミナ付着厚も防止できる。ガス流出口12の範囲は30mm×
100mmである。吐出孔の径は800Φである。
(Example 1) Molten metal was supplied to a submerged nozzle 1 from a tundish (not shown), and a mold (not shown) was provided from two discharge holes 2 facing each other.
Injected inside. Then, when an argon gas of about 2 Nl / min is supplied from the gas supply means 15, it is guided to the gas flow passage 13 through the gas supply connection pipe 14 and further connected to the gas outflow portion 12. Bubbles are blown into the molten metal from the two gas outflow portions 12 on the inner wall of the immersion nozzle 1. At this time, from the conventional argon blowing position and from the tundish inlet,
Argon of 5 to 8 Nl / min is blown in to prevent the thickness of alumina adhered to the inner wall over the upper part of the immersion nozzle 1. The total flow rate of argon blown into the melt of the nozzle is 5
Since it is up to 10 Nl / min, it is possible to prevent the alumina adhesion thickness in the vicinity of the gas outflow portion 12 without increasing the number of blows on the surface of the slab as shown in FIG. The range of the gas outlet 12 is 30 mm ×
It is 100 mm. The diameter of the discharge hole is 800Φ.

ガス流出部12の吹き込み位置についてノズルのガス流出
部12の上端レベルと吐出孔2の上端レベルは同一レベル
にした。
Regarding the blowing position of the gas outflow portion 12, the upper end level of the gas outflow portion 12 of the nozzle and the upper end level of the discharge hole 2 were set to the same level.

この結果アルミナ付着厚は、1/3に減少した。As a result, the alumina adhesion thickness was reduced to 1/3.

(実施例2) 次にガス流出部の吹き込み位置を変更して、アルミナ付
着厚の関係を調査した。吐出孔の溶湯入側の上端とガス
流出部の上端と間隔を、−30〜+150mmの高さ方向の範
囲で変更した。第2図はこのガス流出部の吹き込み位置
を変更した水準を示した浸漬ノズルの断面図である。
(a)はノズルのガス流出部12の上端と吐出孔2の上端
との間隔が30mm下方に離れているもの。(b)はノズル
のガス流出部12の上端と吐出孔2の上端同一レベルのも
の。(c)はノズルのガス流出部12の上端レベルと吐出
孔2の上端レベルとの間隔が30mm上方に離れているも
の。(d)はノズルのガス流出部12の上端レベルと吐出
孔2の上端レベルとの間隔が100mm上方に離れているも
の。(e)はノズルのガス流出部12の上端レベルと吐出
孔2の上端レベルとの間隔が150mm上方に離れているも
のを示している。
(Example 2) Next, the blowing position of the gas outflow portion was changed and the relationship of the alumina adhesion thickness was investigated. The interval between the upper end of the discharge hole on the molten metal inlet side and the upper end of the gas outflow portion was changed within the range of −30 to +150 mm in the height direction. FIG. 2 is a sectional view of the immersion nozzle showing a level in which the blowing position of the gas outflow portion is changed.
In (a), the distance between the upper end of the gas outlet 12 of the nozzle and the upper end of the discharge hole 2 is 30 mm downward. (B) is the same level as the upper end of the gas outlet 12 of the nozzle and the upper end of the discharge hole 2. In (c), the distance between the upper end level of the gas outlet 12 of the nozzle and the upper end level of the discharge hole 2 is 30 mm upward. In (d), the distance between the upper end level of the gas outlet 12 of the nozzle and the upper end level of the discharge hole 2 is 100 mm upward. (E) shows that the distance between the upper end level of the gas outlet 12 of the nozzle and the upper end level of the discharge hole 2 is 150 mm above.

第3図は第2図に示すガス流出部の吹き込み位置の違い
とアルミナ付着厚の関係を示すグラフ図である。この図
から明らかなように吐出孔の溶湯入側の上端レベルとガ
ス流出部の上端レベルとの間隔を、−0〜+100mmの高
さ方向の範囲のときがアルミナ付着厚が少ない。
FIG. 3 is a graph showing the relationship between the difference in the blowing position of the gas outflow portion shown in FIG. 2 and the alumina adhesion thickness. As is clear from this figure, when the distance between the upper end level of the discharge hole on the molten metal inlet side and the upper end level of the gas outlet portion is in the range of −0 to +100 mm in the height direction, the alumina adhesion thickness is small.

この理由は第4図と第5図から説明する。第4図は従来
の浸漬ノズルの断面図で、(a)は浸漬ノズルの平面断
面図で、(b)は第4図の(a)のX−X′縦断面図で
ある。第4図(a)の○印は吐出孔方向(X−X′)の
管内流速で、△印は吐出孔から90度ずれた方向(Y−
Y′)の管内流速である。なお管内流速の測定箇所はイ
及びホは浸漬ノズル内壁近傍部、ハは浸漬ノズルの中心
部、ロ及びニは浸漬ノズル内壁近傍部と浸漬ノズルの中
心部の間である。第4図(b)の直線A−A′は吐出孔
2の上端部で、直線B−B′は吐出孔2の上端から30mm
の位置で、直線C−C′は吐出孔2の上端から150mmの
位置である。第5図は第4図における測定位置別の管内
流速分布の関係を示すグラフ図である。第5図の(a)
は第4図(b)の直線A−A′部の管内流速分布で、第
5図の(b)は第4図(b)の直線B−B′部の管内流
速分布で、第5図の(c)は第4図(c)の直線C−
C′部の管内流速分布である。この図から明らかなよう
に、吐出孔方向(X−X′)の管内流速は直線A−
A′、直線B−B′、直線C−C′部ともあまり変わら
ないが、吐出孔から90度ずれた方向(Y−Y′)の管内
流速分布は、第5図の(a)及び(b)に示す一部に点
線で示すように減速域をもつ流動分布状態となる。これ
は吐出孔の上端(内側)から30mm以下で著しくなる。そ
の上はほぼ第5図の(c)ような流動分布状態となる。
従ってその範囲にガスを吹き込み側壁を洗浄することが
アルミナ付着防止には有効である。
The reason for this will be described with reference to FIGS. 4 and 5. FIG. 4 is a sectional view of a conventional immersion nozzle, (a) is a plan sectional view of the immersion nozzle, and (b) is a vertical sectional view taken along line XX ′ of (a) of FIG. In FIG. 4 (a), the circles indicate the flow velocity in the pipe in the discharge hole direction (XX-X '), and the triangles indicate the direction shifted by 90 degrees from the discharge hole (Y-).
Y ') is the flow velocity in the pipe. The measurement points of the in-pipe flow velocity are a and e for the vicinity of the inner wall of the immersion nozzle, c for the center of the immersion nozzle, and b and d for the vicinity of the inner wall of the immersion nozzle and the center of the immersion nozzle. The straight line AA ′ in FIG. 4B is the upper end of the discharge hole 2, and the straight line BB ′ is 30 mm from the upper end of the discharge hole 2.
In this position, the straight line C-C 'is 150 mm from the upper end of the discharge hole 2. FIG. 5 is a graph showing the relationship of the flow velocity distribution in the pipe for each measurement position in FIG. (A) of FIG.
Is the flow velocity distribution in the pipe of the straight line AA 'in FIG. 4 (b), and FIG. 5 (b) is the flow velocity distribution in the pipe of the straight line BB' in FIG. 4 (b). (C) is the straight line C- in FIG.
It is a flow velocity distribution in the pipe of C'section. As is clear from this figure, the flow velocity in the pipe in the discharge hole direction (XX ′) is straight line A−.
Although it does not change much at A ', straight line BB', and straight line CC ', the flow velocity distribution in the pipe in the direction (Y-Y') deviated by 90 degrees from the discharge hole is shown in Figs. The flow distribution state has a deceleration region as shown by a dotted line in a part shown in b). This becomes remarkable when the distance from the upper end (inside) of the discharge hole is 30 mm or less. On top of that, a flow distribution state as shown in FIG.
Therefore, it is effective to blow gas into the range and clean the side wall to prevent the adhesion of alumina.

即ち吐出孔の溶湯入側の上端レベルとガス流出部の上端
レベルとの間隔を、−0〜+100mmの高さ方向の範囲の
ときがアルミナ付着厚が少ない。
That is, when the interval between the upper end level of the discharge hole on the molten metal inlet side and the upper end level of the gas outlet portion is in the range of −0 to +100 mm in the height direction, the alumina adhesion thickness is small.

この結果アルミナ付着厚は、1/3〜1/5に減少した。As a result, the alumina deposition thickness was reduced to 1/3 to 1/5.

[発明の効果] この発明によれば、浸漬ノズル本体の内壁の2個の吐出
孔から90度ずれ、かつ吐出孔の溶湯入側の上端レベルと
ガス流出部の上端レベルとの間隔が、0〜+100mmの高
さ方向の範囲の位置に設けられたガス流出部からアルゴ
ンを流すのでその部分のよどみがなくなり、アルミナ付
着厚が少なくなる。
[Effects of the Invention] According to the present invention, the gap between the upper end level of the melt inlet side and the upper end level of the gas outflow portion of the discharge holes is 0 degrees, which is offset by 90 degrees from the two discharge holes. Since argon flows from the gas outlet provided in a position in the height direction of up to +100 mm, the stagnation of that portion is eliminated and the alumina adhesion thickness is reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例に係わる浸漬ノズルの断面
図、第2図はこのガス流出部の吹き込み位置を変更した
水準を示した浸漬ノズルの断面図、第3図は第2図に示
すガス流出部の吹き込み位置の違いとアルミナ付着厚の
関係を示すグラフ図、第4図は従来の浸漬ノズルの断面
図、第5図は第4図における測定位置別の管内流速分布
の関係を示すグラフ図、第6図は従来の2つの吐出孔の
中心を通る浸漬ノズルの断面図、第7図は鋳造時間と浸
漬ノズルの使用後の溶湯流通路の内壁側のアルミナ付着
厚の関係を示すグラフ図、第8図はノズル内の管内流速
と浸漬ノズルの使用後の溶湯流通路の内壁側のアルミナ
付着厚の関係を示すグラフ図、第9図は浸漬ノズルの上
部からのアルゴンガス吹き込み量とアルミナ付着厚との
関係を示すグラフ図、第10図は従来の2つの吐出孔の中
心を通る浸漬ノズルで、底部にスリットノズル設置した
ノズルの断面図、第11図は浸漬ノズルの上方タンデイッ
シュ内の溶鋼注入口からアルゴンガスを溶湯に吹き込む
量と鋳片表面のブロー数の関係を示すグラフ図である。 1……浸漬ノズル、2……吐出孔、11……浸漬ノズルの
底部、12……ガス流出部、13……ガス流通路、14……ガ
ス供給接続管、15……ガス供給手段。
FIG. 1 is a sectional view of an immersion nozzle according to an embodiment of the present invention, FIG. 2 is a sectional view of the immersion nozzle showing a level in which the blowing position of the gas outflow portion is changed, and FIG. 3 is shown in FIG. FIG. 4 is a graph showing the relationship between the difference in the blowing position of the gas outflow portion and the thickness of the deposited alumina, FIG. 4 is a cross-sectional view of a conventional immersion nozzle, and FIG. 5 shows the relationship of the flow velocity distribution inside the pipe for each measurement position in FIG. FIG. 6 is a cross-sectional view of a conventional immersion nozzle that passes through the centers of two discharge holes, and FIG. 7 shows the relationship between the casting time and the alumina deposition thickness on the inner wall side of the molten metal flow passage after the immersion nozzle is used. Fig. 8 is a graph showing the relationship between the flow velocity in the nozzle and the thickness of the alumina deposit on the inner wall of the molten metal flow passage after the immersion nozzle is used. Fig. 9 is the amount of argon gas blown from the upper part of the immersion nozzle. Graph showing the relationship between the thickness and the alumina adhesion thickness Fig. 10 is a cross-sectional view of a conventional immersion nozzle that passes through the center of two discharge holes, with a slit nozzle installed at the bottom, and Fig. 11 shows argon gas from the molten steel injection port in the upper tundish of the immersion nozzle to melt argon gas. It is a graph which shows the relationship between the blow-in amount and the number of blows on the surface of the slab. 1 ... Immersion nozzle, 2 ... Discharge hole, 11 ... Bottom of immersion nozzle, 12 ... Gas outflow part, 13 ... Gas flow passage, 14 ... Gas supply connection pipe, 15 ... Gas supply means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 孝志 東京都千代田区丸ノ内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 沖本 一生 東京都千代田区丸ノ内1丁目1番2号 日 本鋼管株式会社内 審査官 沼沢 幸雄 (56)参考文献 特開 昭59−47053(JP,A) 実開 昭59−190456(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takashi Mori Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Issei Okimoto 1-21-2 Marunouchi Chiyoda-ku, Tokyo Yukio Numasawa (56) References Japanese Steel Pipe Co., Ltd. References JP 59-47053 (JP, A) JP 59-190456 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タンデイッシュ内の溶湯を鋳型内に注入す
る浸漬ノズルにおいて、浸漬ノズル本体の内壁の2個の
吐出孔から90度ずれ、かつガス流出部上端レベルと吐出
孔の溶湯入側上端レベルとの間隔が、0〜+100mmの高
さ方向の範囲の位置に設けられたガス流出部と、前記ガ
ス流出部に接続されたガス流通路と、前記ガス流通路に
ガスを供給するガス供給手段とを具備し、前記ガス流出
部を設けた内壁高さ位置の周面他部にはガス流出手段を
設けないようにしたことを特徴とする連続鋳造用浸漬ノ
ズル。
1. A submerged nozzle for injecting the molten metal in a tundish into a mold, which is offset by 90 degrees from the two discharge holes in the inner wall of the main body of the immersion nozzle, and has a gas outflow upper end level and a melt inlet side upper end. A gas outflow portion provided at a position in a height range of 0 to +100 mm, a gas flow passage connected to the gas outflow portion, and a gas supply for supplying gas to the gas flow passage. Means, and the gas outflow means is not provided in the peripheral surface other portion at the height position of the inner wall where the gas outflow portion is provided, the immersion nozzle for continuous casting.
JP63042720A 1987-06-01 1988-02-25 Immersion nozzle for continuous casting Expired - Lifetime JPH0767603B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63042720A JPH0767603B2 (en) 1988-02-25 1988-02-25 Immersion nozzle for continuous casting
US07/199,018 US4898226A (en) 1987-06-01 1988-05-26 Immersion nozzle for continuous casting of steel
DE8888108690T DE3861110D1 (en) 1987-06-01 1988-05-31 SUBMERSIBLE SPOUT FOR CONTINUOUS STEEL.
EP88108690A EP0293830B1 (en) 1987-06-01 1988-05-31 Immersion pipe for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042720A JPH0767603B2 (en) 1988-02-25 1988-02-25 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPH01215448A JPH01215448A (en) 1989-08-29
JPH0767603B2 true JPH0767603B2 (en) 1995-07-26

Family

ID=12643905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042720A Expired - Lifetime JPH0767603B2 (en) 1987-06-01 1988-02-25 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH0767603B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947053A (en) * 1982-09-10 1984-03-16 Akechi Ceramic Kk Nozzle for continuous casting

Also Published As

Publication number Publication date
JPH01215448A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US3954134A (en) Apparatus for treating metal melts with a purging gas during continuous casting
WO2004011175A1 (en) Casting nozzle
US20030201587A1 (en) Submerged nozzle for continuous thin-slab casting
US4898226A (en) Immersion nozzle for continuous casting of steel
JPH0659533B2 (en) Immersion nozzle for continuous casting
JPH0767603B2 (en) Immersion nozzle for continuous casting
JPH1110301A (en) High precision flow control stopper device and continuous casting method and device using the same
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JPH0330461B2 (en)
JPH0230122Y2 (en)
JPH0767602B2 (en) Continuous casting immersion nozzle
JPH08117939A (en) Method of blowing bubbles into molten steel
JPH0243551Y2 (en)
JPH09164457A (en) Immersion nozzle for continuous casting of wide and thin slab and continuous casting method
JP2976848B2 (en) Highly clean method for molten steel in tundish
JP2710946B2 (en) Continuous ribbon casting machine
JP4595186B2 (en) Continuous casting method
RU2098223C1 (en) Ladle submersible nozzle
JPS62279059A (en) Submerged nozzle
JP2000126849A (en) Immersion nozzle for continuous casting and continuous casting method for steel
JPS61150759A (en) Casting nozzle for steel making
JP3458226B2 (en) Immersion nozzle for continuous casting
KR19980076164A (en) Wing type immersion nozzle for preventing mold slag inflow
JPH0133258Y2 (en)
JPH11277194A (en) Immersion nozzle for continuous casting of steel and continuous casting method of steel using the same