[go: up one dir, main page]

JPH0766907B2 - Semiconductor crystal growth method - Google Patents

Semiconductor crystal growth method

Info

Publication number
JPH0766907B2
JPH0766907B2 JP59153975A JP15397584A JPH0766907B2 JP H0766907 B2 JPH0766907 B2 JP H0766907B2 JP 59153975 A JP59153975 A JP 59153975A JP 15397584 A JP15397584 A JP 15397584A JP H0766907 B2 JPH0766907 B2 JP H0766907B2
Authority
JP
Japan
Prior art keywords
growth
semiconductor
single crystal
tank
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59153975A
Other languages
Japanese (ja)
Other versions
JPS6134925A (en
Inventor
潤一 西澤
仁志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59153975A priority Critical patent/JPH0766907B2/en
Priority to GB8518842A priority patent/GB2162207B/en
Priority to FR858511516A priority patent/FR2582149B1/en
Priority to DE19853526888 priority patent/DE3526888A1/en
Publication of JPS6134925A publication Critical patent/JPS6134925A/en
Priority to GB8718942A priority patent/GB2200137B/en
Priority to GB8718943A priority patent/GB2200138B/en
Priority to US07/357,695 priority patent/US4975252A/en
Priority to US08/212,551 priority patent/US5443033A/en
Priority to US08/396,589 priority patent/US6464793B1/en
Publication of JPH0766907B2 publication Critical patent/JPH0766907B2/en
Priority to US08/904,347 priority patent/US20010001952A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体の単結晶成長層を単分子層の単位で形成
する半導体結晶成長方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor crystal growth method for forming a semiconductor single crystal growth layer in units of a monomolecular layer.

〔先行技術とその問題点〕[Prior art and its problems]

従来から半導体の薄膜結晶を得るための気相エピタキシ
ー技術として、有機金属気相成長法(以下、MO−CVD法
と呼ぶ)、分子線エピタキシー法(以下、MBE法と呼
ぶ)、原子層エピタキシー法(以下、ALE法と呼ぶ)な
どが知られている。しかし、MO−CVD法はソースとしてI
II族、V族元素を水素ガス等をキャリアとして、同時に
反応室へ導入し、熱分解によって成長させるため、成長
層の品質が悪い。また、単分子層オーダーの制御が困難
である等の欠点がある。
Conventionally, metal-organic vapor phase epitaxy (hereinafter referred to as MO-CVD method), molecular beam epitaxy (hereinafter referred to as MBE method), atomic layer epitaxy method as vapor phase epitaxy technology for obtaining a semiconductor thin film crystal (Hereinafter referred to as ALE method) is known. However, MO-CVD method
Since the Group II and V elements are simultaneously introduced into the reaction chamber using hydrogen gas as a carrier and are grown by thermal decomposition, the quality of the growth layer is poor. Further, there are drawbacks such that it is difficult to control the order of monomolecular layer.

一方、超高真空を利用した結晶成長法としてよく知られ
るMBE法は、物理吸着を第一段階とするために、結晶の
品質は化学反応を利用した気相成長法に劣る。GaAsのよ
うなIII−V族間の化合物半導体を成長する時には、III
族、V族元素をソースとして用い、ソース源自体を成長
室の中に設置している。このため、ソース源を加熱して
得られる放出ガスと蒸発量の制御、および、ソースの補
給が困難であり、成長速度を長時間一定に保つことが困
難である。また、蒸発物の排気など真空装置が複雑にな
る。更には、化合物半導体の化学量論的組成(ストイキ
オメトリー)を精密に制御することが困難で、結局、高
品質の結晶を得ることができない欠点がある。
On the other hand, the MBE method, which is well known as a crystal growth method using ultra-high vacuum, is inferior to the vapor phase growth method using a chemical reaction because the physical adsorption is the first step. When growing a III-V compound semiconductor such as GaAs, III
Group and V group elements are used as sources, and the source source itself is installed in the growth chamber. Therefore, it is difficult to control the emission gas and evaporation amount obtained by heating the source source, and to replenish the source, and it is difficult to keep the growth rate constant for a long time. Further, the vacuum device such as evacuation of the evaporated material becomes complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of the compound semiconductor, and as a result, high quality crystals cannot be obtained.

更にALE法は、T.Suntola(ツオモ・サントラ)らがU.S.
P.No.4058430(1977)(特開昭51−77589号公報)で説
明しているように、MBE法を改良し半導体元素のそれぞ
れをパルス状に交互に供給し、薄膜を成長させるもの
で、高精度で膜厚を制御できる利点があるが、MBE法の
延長でありMBEと同様に結晶性が良くない。また成長し
た薄膜もCdTe、ZnTe等のII−IV族化合物半導体の多結晶
やアモルファスに限られ、現在超LSI等の半導体装置の
主力であるGaAs等のIII−V族化合物半導体に関しては
原料ガスの蒸気圧等の問題から単原子吸着層を得るのが
困難で成功していない。Si等の単元素半導体はALE法の
原理からは成長できない欠点があった。ALEを改良して
分子層を吸着し、表面での化学反応を利用した成長も試
みられてはいるが、ZnSの多結晶やTa2O5のアモルファス
の薄膜の成長であり、単結晶成長技術とはなっていな
い。ALE法による成長ではガス導入1サイクル当り1/3分
子層以下の小さな膜厚しか成長せず、完全な100%の表
面吸着層形成による自己停止機能による成長にはなって
いない欠点があった。さらにALE法の成長は特開昭55−1
30896号公報に示されるように成長表面に関して不活性
なガス相媒体(キャリアガス)を用いて拡散バリヤを形
成しないと、原料ガス交互導入時の交換表面反応の場合
の、反応工程の分離ができない欠点があった。
In addition, the ALE method is used by T. Suntola (Tsuomo Soundtrack) et al.
As described in P. No. 4058430 (1977) (Japanese Patent Laid-Open No. 51-77589), the MBE method is improved so that each of the semiconductor elements is alternately supplied in a pulse shape to grow a thin film. However, it has an advantage that the film thickness can be controlled with high accuracy, but it is an extension of the MBE method and the crystallinity is not good like MBE. Also, the grown thin film is limited to polycrystal or amorphous of II-IV group compound semiconductors such as CdTe and ZnTe, and the source gas for III-V group compound semiconductors such as GaAs, which is currently the main force of semiconductor devices such as ULSI. Due to problems such as vapor pressure, it is difficult to obtain a monatomic adsorption layer and it has not been successful. Single element semiconductors such as Si have the drawback that they cannot grow according to the principle of the ALE method. Although attempts have been made to improve ALE by adsorbing a molecular layer and using chemical reaction on the surface, it is the growth of ZnS polycrystal or Ta 2 O 5 amorphous thin film. Is not. In the growth by the ALE method, only a small film thickness of 1/3 molecular layer or less was grown per gas introduction cycle, and there was a drawback that the growth was not achieved by the self-stop function by completely forming the surface adsorption layer. Furthermore, the growth of the ALE method is JP-A-55-1.
As shown in Japanese Patent No. 30896, if a diffusion barrier is not formed using a gas phase medium (carrier gas) which is inert with respect to the growth surface, the reaction process cannot be separated in the case of exchange surface reaction when the source gases are alternately introduced. There was a flaw.

ところで、半導体デバイスを製造するに際しては、その
製造過程において、設定通りの結晶が成長しているか否
か評価することが、高品質の半導体デバイスを得る上で
重要になってくる。しかし、従来の評価法は、一旦成長
槽から半導体を取り出し、分析装置にかける等の方法を
とらなければならなかったため、操作が煩雑で評価効率
が悪く良好な品質管理が行なえなかった。また、新しい
デバイスを製造する際には、その評価に手間取り、製造
が大巾に遅れる不具合があった。
By the way, in manufacturing a semiconductor device, it is important to evaluate whether or not a crystal grows as set in the manufacturing process in order to obtain a high quality semiconductor device. However, in the conventional evaluation method, it was necessary to take out the semiconductor from the growth tank once and put it in an analyzer, so that the operation was complicated, the evaluation efficiency was poor, and good quality control could not be performed. In addition, when manufacturing a new device, it takes time to evaluate the device and the manufacturing is significantly delayed.

このように、従来の結晶成長ではいずれも高品質の半導
体結晶を効率良く形成することが極めて困難であった。
As described above, it has been extremely difficult to efficiently form a high-quality semiconductor crystal in any conventional crystal growth.

〔発明の目的〕[Object of the Invention]

本発明は上記従来技術の欠点を除き、高品質の単結晶層
を単分子層の単位で形成できると共に、その結晶成長過
程を逐次追跡評価して半導体を効率良く製造することの
できる半導体結晶成長方法を提供することを目的とす
る。
The present invention is capable of forming a high-quality single crystal layer in units of a monomolecular layer, except for the above-mentioned drawbacks of the prior art, and a semiconductor crystal growth capable of efficiently manufacturing a semiconductor by sequentially evaluating the crystal growth process. The purpose is to provide a method.

〔発明の概要〕[Outline of Invention]

本発明は、半導体単結晶基板をその上部に保持する基板
支持台と、該基板支持台をその内部に配置した成長槽
と、該成長槽の一部に接続されたバルブと、前記バルブ
に接続された排気装置と、検出部先端部が前記半導体単
結晶基板を望むように前記成長槽内上部に配設された質
量分析器と、前記質量分析器の検出部周辺および前記ノ
ズル先端部周辺に配置されたシュラウドと、該シュラウ
ドに接続された冷媒槽と、前記成長槽の外部より導入さ
れて先端部が前記半導体単結晶基板を望むように配設さ
れた少なく共2本のノズルと、前記半導体単結晶基板の
みを加熱する加熱源と、前記成長槽の外部において前記
ノズルのそれぞれに配設されたガス導入用バルブとを備
えた成長装置により半導体結晶を成長させる方法であっ
て、 該方法は、前記ガス導入用バルブの開閉と、前記排気装
置による前記成長槽の真空排気により、少なく共2種類
の原料ガスを交互に導入し、排気して前記半導体単結晶
基板の成長表面上で交換表面反応を実現し、該交換表面
反応の1サイクルに付き少なく共1分子層の半導体単結
晶薄膜を形成するサイクルを繰り返すことにより、所望
の分子層数の単結晶エピタキシャル成長層を1分子層単
位で形成すると共に、前記成長槽内において発生する反
応生成物を含む離脱分子等のうち前記質量分析器に導入
される以外の余分のガスを前記シュラウドに吸着させる
と同時に、前記成長表面からの少なく共反応生成物を含
む離脱分子等の過渡応答を前記質量分析器で測定するこ
とにより、前記成長表面における表面反応を遂次追跡評
価しながら半導体結晶を成長させることを特徴としてい
る。
The present invention relates to a substrate supporting base for holding a semiconductor single crystal substrate on the upper side thereof, a growth tank having the substrate supporting base arranged therein, a valve connected to a part of the growth tank, and a valve connected to the valve. Exhaust device, a mass analyzer disposed in the upper part of the inside of the growth chamber so that the tip of the detection part desires the semiconductor single crystal substrate, and around the detection part of the mass analyzer and the tip of the nozzle. A shroud arranged, a coolant tank connected to the shroud, at least two nozzles which are introduced from the outside of the growth tank and whose tips are arranged so as to desire the semiconductor single crystal substrate, A method for growing a semiconductor crystal by a growth apparatus comprising a heating source for heating only a semiconductor single crystal substrate and a gas introduction valve provided in each of the nozzles outside the growth tank, the method comprising: Is the above At least two kinds of raw material gases are alternately introduced and exhausted by opening / closing a gas introduction valve and evacuating the growth tank by the exhaust device to cause an exchange surface reaction on the growth surface of the semiconductor single crystal substrate. This is realized and the cycle of forming a semiconductor single crystal thin film of a comonolayer less than one cycle of the exchange surface reaction is repeated to form a single crystal epitaxial growth layer of a desired number of molecular layers in a unit of one molecular layer. Of the desorbed molecules containing the reaction product generated in the growth tank, the excess gas other than that introduced into the mass spectrometer is adsorbed to the shroud, and at the same time, a small amount of co-reaction product from the growth surface is absorbed. By measuring the transient response of detached molecules and the like with the mass spectrometer, the semiconductor crystal is grown while the surface reaction on the growth surface is successively traced and evaluated. It is characterized in that.

〔発明の実施例〕Example of Invention

第1図は本発明の一実施例に適用される半導体結晶成長
装置の構成図を示したもので、1は成長槽で材質はステ
ンレス等の金属、2はゲートバルブ等のバルブ、3は成
長槽1内を超高真空に排気するための排気装置、4,5はI
II−V族化合物半導体のIII族、V族の成分元素の化合
物から成る原料ガスを導入するノズル、6,7はノズル4,5
を開閉するガス導入用バルブ、8はIII族の成分元素を
含む化合物から成る原料ガス、9はV族の成分元素を含
む化合物から成る原料ガス、10は基板加熱用のヒーター
で石英ガラスに封入したタングステン(W)線であり、
基板支持台を兼ねている。電線等は図示省略している。
11は測温用の熱電対、12は半導体の単結晶基板、13は成
長槽内の真空圧を測るための圧力計である。また、ノズ
ル4,5は第1図に示したように単結晶基板12の表面方向
にその先端部を向け、しかもできるだけ単結晶基板12の
表面に近づけて配置されている。このように構成するこ
とにより、ノズル4,5から導入される原料ガス8,9の単結
晶基板表面での交換表面反応が実現される。すなわち、
ガスは基板表面のみ大部分が到達し、それ以外の部分に
廻り込むことが少なくなるので残渣ガスや、成長槽壁面
に付着するガスが無くなり、原料ガス8,9の同時干渉が
なくなる。14は評価手段としての質量分析器、15は質量
分析器の制御装置、16はいくつかのガス分子種を同時に
検出できる多重イオン検出器、17は前記多重イオン検出
器の出力を記憶させる多ペンレコーダである。
FIG. 1 is a block diagram of a semiconductor crystal growth apparatus applied to one embodiment of the present invention, in which 1 is a growth tank and the material is metal such as stainless steel, 2 is a valve such as a gate valve, and 3 is growth. Exhaust device for evacuating the inside of tank 1 to ultra-high vacuum, 4,5 are I
Nozzles for introducing raw material gas composed of compounds of group III and group V elements of II-V group compound semiconductors, 6 and 7 are nozzles 4,5
A gas introduction valve for opening and closing, a raw material gas composed of a compound containing a group III constituent element, a raw material gas composed of a compound containing a group V constituent element, and 10 a heater for heating a substrate sealed in quartz glass Tungsten (W) wire,
Also serves as a substrate support. Electric wires and the like are omitted in the drawing.
11 is a thermocouple for temperature measurement, 12 is a semiconductor single crystal substrate, and 13 is a pressure gauge for measuring the vacuum pressure in the growth tank. Further, as shown in FIG. 1, the nozzles 4 and 5 are arranged so that their tips are directed toward the surface of the single crystal substrate 12 and as close to the surface of the single crystal substrate 12 as possible. With this structure, the exchange surface reaction of the source gases 8 and 9 introduced from the nozzles 4 and 5 on the surface of the single crystal substrate is realized. That is,
Most of the gas reaches the surface of the substrate and is less likely to enter the other parts, so that the residual gas and the gas adhering to the wall surface of the growth tank are eliminated, and the simultaneous interference of the source gases 8 and 9 is eliminated. 14 is a mass analyzer as an evaluation means, 15 is a controller for the mass analyzer, 16 is a multiple ion detector capable of simultaneously detecting several gas molecular species, and 17 is a multi-pen for storing the output of the multiple ion detector. It is a recorder.

以上の構成で、多重イオン検出器16を具備した質量分析
器14によって結晶成長過程を逐次追跡評価しながらの分
子層エピタキシャル成長は以下のように実施する。な
お、単結晶基板12に結晶成長させる半導体としてはGaA
s、そのため導入する原料ガス8としてIII族化合物のTM
G(トリメチルガリウム)、原料ガス9としてV族化合
物のAsH3(アルシン)を用いた例について説明する。
With the above configuration, the molecular layer epitaxial growth while sequentially tracking and evaluating the crystal growth process by the mass analyzer 14 equipped with the multiple ion detector 16 is carried out as follows. GaA is used as a semiconductor for crystal growth on the single crystal substrate 12.
s, TM of a group III compound as the source gas 8 to be introduced therefor
An example in which G (trimethylgallium) and a group V compound AsH 3 (arsine) are used as the source gas 9 will be described.

基板12を成長槽1内に設定後、排気装置3により成長槽
1内を10-7〜10-8Pascal(以下、Paと略す)程度に排気
する。その後、質量分析装置14〜17を起動させる。この
とき多重イオン検出器16のピークセレクターには導入原
料ガス分子種のAsH3やTMG(Me=114)、更に反応生成物
分子種であるCH4(M/e=16)などを選び設定する。次
に、GaAs基板12を例えば300〜800℃にヒーター10により
加熱し、Gaを含む原料ガスとしてTMG(トリメチルガリ
ウム)8を成長槽1内の圧力が10-1〜10-7Paになる範囲
で、0.5〜10秒間から導入用バルブ6を開けて1分子層
吸着量よりも導入する。その後、ガス導入用バルブ6を
閉じて成長槽1内のガスを排気後、今度はAsを含む原料
ガスとしてAsH3(アルシン)9を成長槽1内の圧力が10
-1〜10-7Paになる範囲で、2〜200秒間ガス導入用バル
ブ7を開けて1分子吸着量よりも多く導入する。これに
より、基板12上にGaAsが少なくとも1分子層成長でき
る。1分子吸着量よりも多い原料ガスは空着せず真空排
気される。以上の操作を繰り返し、単分子層を次々と成
長させることにより、所望の分子層数のGaAsの単結晶成
長層を単分子層の単位で成長させることができる。
After setting the substrate 12 inside the growth tank 1, the inside of the growth tank 1 is evacuated to about 10 −7 to 10 −8 Pascal (hereinafter abbreviated as Pa) by the exhaust device 3. Then, the mass spectrometers 14 to 17 are activated. At this time, the peak selector of the multiple ion detector 16 is set by selecting AsH 3 or TMG (Me = 114) as the introduced source gas molecular species and CH 4 (M / e = 16) as the reaction product molecular species. . Next, the GaAs substrate 12 is heated to, for example, 300 to 800 ° C. by the heater 10, and TMG (trimethylgallium) 8 is used as a source gas containing Ga so that the pressure in the growth tank 1 becomes 10 -1 to 10 -7 Pa. Then, the introduction valve 6 is opened from 0.5 to 10 seconds to introduce more than the adsorption amount of one molecular layer. After that, the gas introduction valve 6 was closed and the gas in the growth tank 1 was exhausted. Then, AsH 3 (arsine) 9 was used as a source gas containing As to reduce the pressure in the growth tank 1 to 10
Within a range of -1 to 10 -7 Pa, the gas introduction valve 7 is opened for 2 to 200 seconds to introduce more than one molecule adsorption amount. As a result, at least one molecular layer of GaAs can be grown on the substrate 12. The raw material gas, which is larger than the adsorption amount of one molecule, is vacuum-exhausted without air-depositing. By repeating the above operation and growing the monomolecular layers one after another, it is possible to grow a single crystal growth layer of GaAs having a desired number of molecular layers in units of the monomolecular layers.

一方、この結晶成長過程において、TMGとAsH3を交互に
導入すると、導入ガスであるTMG、AsH3だけでなく反応
生成物であるCH4(メタン)が検出でき、成長が進行し
ていく過程を逐時多重イオン検出器16で追跡していくこ
とができた。
On the other hand, in this crystal growth process, if TMG and AsH 3 are introduced alternately, not only the introduced gases TMG and AsH 3 but also the reaction product CH 4 (methane) can be detected, and the process of growth progresses. Could be tracked with the multiple ion detector 16 at a time.

第2図は上述のようにしてTMGとAsH3を交互に導入した
時のAsH3(M/e=78)、TMG(M/e=114)とCH4(M/e=1
6)の過渡応答を多重イオン検出器16でとらえたもので
ある。なお、この図はTMGを圧力として10-3Pa、ガス導
入用バルブ6を2秒間開けて導入する一方、AsH3を圧力
として10-2Pa、ガス導入用バルブ7を10秒間開けて導入
する操作を交互に繰り返した場合の過渡応答パルス波形
のデータである。第2図においてTMGのパルスの立ち上
がりがなまっているがこれは表面吸着に特有ななまり
で、表面反応が変化するとこのパル波形がかわるので表
面反応の正確なモニタリングができる。表面吸着が無い
時はパルス波形は矩形に近くなる。CH4のパルスは先端
部にノッチが見られる。TMG導入初期により多くの表面
反応が生じ、その結果導入初期により多くのCH4が生成
され離脱していることを示している。
Figure 2 shows AsH 3 (M / e = 78), TMG (M / e = 114) and CH 4 (M / e = 1) when TMG and AsH 3 were alternately introduced as described above.
The transient response of 6) is captured by the multiple ion detector 16. In this figure, TMG is used as a pressure of 10 -3 Pa and the gas introduction valve 6 is opened for 2 seconds, while AsH 3 is used as a pressure of 10 -2 Pa and the gas introduction valve 7 is opened for 10 seconds and introduced. It is data of a transient response pulse waveform when the operation is alternately repeated. In Fig. 2, the rising edge of the TMG pulse is blunt, but this is a peculiar curve for surface adsorption. When the surface reaction changes, this pulse waveform changes, so that the surface reaction can be accurately monitored. When there is no surface adsorption, the pulse waveform is close to a rectangle. Pulse CH 4 notch is seen in the distal end portion. It is shown that more surface reactions occur in the early stage of TMG introduction, and as a result, more CH 4 is generated and released in the early stage of introduction.

ところで、Gaを含む化合物から成る原料ガスとしてTMG
やGaCl3を用いる場合、室温での蒸気圧が低いため、成
長槽の真空壁との相互作用が大きく、導入したガスが基
板以外に成長槽の壁にも付着する。更にそれが時間と共
に離脱してくるため基板からの離脱ガスと区別できなく
なる場合が生じる。
By the way, as a source gas composed of a compound containing Ga, TMG
When GaCl 3 or GaCl 3 is used, since the vapor pressure at room temperature is low, the interaction with the vacuum wall of the growth chamber is large, and the introduced gas adheres to the growth chamber wall in addition to the substrate. Further, since it is released with time, it may be impossible to distinguish from the released gas from the substrate.

このような不具合を解決したのが第3図に示す実施例で
あって、ノズル4,5の先端部周囲には、そのノズル孔に
合せた開口部を有するシュラウド18を設けると共に、そ
のシュラウド18を冷却するためシュラウド端部に冷媒槽
19を設け、その注入口20より槽19内に冷媒21を注入す
る。同様に、質量分析器14の検出部の先端部にも検出開
口部を有するシュラウド22を設けると共に、そのシュラ
ウド22を冷却するため端部に冷媒槽23を設け、その注入
口24より槽23内に冷媒21を注入する。尚、シュラウドを
冷却する手段としては、液体窒素のような冷媒に限らず
小型冷凍機などでもよい。第3図に示したように質量分
析器14の検出部の先端部は単結晶基板12からの輻射の影
響を受けない範囲において、単結晶基板12になるべく近
づけることが重要である。
The embodiment shown in FIG. 3 solves such a problem. A shroud 18 having an opening matching the nozzle hole is provided around the tip of the nozzle 4, 5 and the shroud 18 is provided. To cool the shroud end the refrigerant bath
19 is provided, and the refrigerant 21 is injected into the tank 19 through the injection port 20. Similarly, a shroud 22 having a detection opening is also provided at the tip of the detection part of the mass spectrometer 14, and a coolant tank 23 is provided at the end for cooling the shroud 22, and the inside of the tank 23 is supplied from its inlet 24. The refrigerant 21 is injected into. The means for cooling the shroud is not limited to a refrigerant such as liquid nitrogen, but may be a small refrigerator or the like. As shown in FIG. 3, it is important that the tip of the detection part of the mass spectrometer 14 is brought as close as possible to the single crystal substrate 12 within a range where it is not affected by radiation from the single crystal substrate 12.

これにより、ガス導入用ノズル4,5から成長槽1内に導
入されるガスのうち余分のガスはシュラウド18,22に吸
着されてしまい、単結晶基板12からの離脱分子のみ質量
分析器14に捕えられ、成長層の正しい分析が可能とな
る。
As a result, excess gas of the gas introduced into the growth tank 1 from the gas introduction nozzles 4 and 5 is adsorbed by the shrouds 18 and 22, and only the molecules desorbed from the single crystal substrate 12 are transferred to the mass spectrometer 14. Captured, allowing correct analysis of the growth layer.

以上のようにして、単結晶基板12上に半導体の結晶を分
子層ずつ成長させると共に、その成長過程を成長槽1に
取り付けた質量分析装置で反応生成物や中間生成物等の
離脱分子を逐次追跡評価していくことにより、高品質の
半導体デバイスを効率良く製造できるようになる。
As described above, a semiconductor crystal is grown on the single crystal substrate 12 by each molecular layer, and the growth process is sequentially performed by the mass spectrometer attached to the growth tank 1 to remove the detached molecules such as reaction products and intermediate products. By tracking and evaluating, high quality semiconductor devices can be efficiently manufactured.

尚、単結晶基板12およびそこに成長させる半導体はGaAs
に限らないことは言う迄もない。また、成長槽1に導入
するガスも2種類に限らず、ノズル本数を増し、更に多
くのガスを導入することによって、不純物添加、混晶等
の操作を行ない得ることも勿論のことである。
The single crystal substrate 12 and the semiconductor grown on it are GaAs.
It goes without saying that it is not limited to. Further, the gases introduced into the growth tank 1 are not limited to two kinds, and it is needless to say that the operations such as impurity addition and mixed crystal can be performed by increasing the number of nozzles and introducing more gases.

また、前記実施例では基板12の加熱源を成長槽1内に設
けた例について示したが、赤外ランプ等を使用して成長
槽1の外へ設けることもできる。
Further, in the above-mentioned embodiment, the example in which the heating source for the substrate 12 is provided inside the growth tank 1 is shown, but it may be provided outside the growth tank 1 by using an infrared lamp or the like.

更に、単結晶基板12を加熱すると同時に光を照射するよ
うにしてもよく、そうすることにより、基板温度を下げ
更に品質を改善することができる。
Furthermore, the single crystal substrate 12 may be heated and irradiated with light at the same time, which can lower the substrate temperature and further improve the quality.

〔発明の効果〕〔The invention's effect〕

以上のように本願発明によれば、ガス導入1サイクルに
付き少なく共1分子層成長できるので、ALE法に比して
短い時間で所望の膜厚を得ることができる。また、ガス
導入1サイクルで完全な(100%)の分子吸着層が形成
できるので、ガス導入量やガス導入圧力が1分子吸着層
に必要な量や圧力を越えて導入されこの過剰な範囲で変
動しても膜厚が変化しない、いわゆる自己停止機能によ
る成長が可能となり、膜厚制御が極めて高精度に行なえ
る。また、ALE法では不可能であった蒸気圧の低いTMGや
GaCl3等のガスによる交換表面反応とその直接モニタリ
ングが可能なのでGaAs等のIII−V族化合物半導体の成
長が可能となる。また、ALE法で必要な不活性ガスによ
るガス相拡散バリヤを形成する必要もないので装置の構
成が簡単になり、しかも不活性ガスによる活性ガス分子
の吸着の阻害や、不活性ガス分子が成長層に取り込まれ
ることもなくなり、結晶の完全性が高められる。さら
に、結晶成長層を一分子層ずつ成長できること、化学量
的組成を満たすことが容易で良質な結晶を得ることがで
きること、不純物の添加を一分子層ずつ行なうことがで
きるので、非常に急峻な不純物密度分布を得ることがで
きる等、高品質な半導体デバイスが得られるようになる
と共に、質量分析装置を設けたので、その結晶成長過程
に伴う反応生成物等の離脱分子をその場で評価できるよ
うになり、npn構造などの多層エピタキシャル成長にお
ける不純物添加のモニタリング等に有効で、半導体デバ
イスを効率良く製造できるようになる。
As described above, according to the invention of the present application, it is possible to grow a co-monolayer in as little as one cycle of gas introduction, so that a desired film thickness can be obtained in a shorter time than the ALE method. In addition, since a complete (100%) molecular adsorption layer can be formed in one cycle of gas introduction, the amount of gas introduced and the gas introduction pressure exceed the amount and pressure required for one molecule adsorption layer, and in this excess range Even if the film thickness fluctuates, the film thickness does not change, so that the growth can be achieved by the so-called self-stop function, and the film thickness control can be performed with extremely high accuracy. In addition, TMG with low vapor pressure, which was impossible with the ALE method,
Since the exchange surface reaction by a gas such as GaCl 3 and the like can be directly monitored, a III-V group compound semiconductor such as GaAs can be grown. Moreover, since it is not necessary to form a gas phase diffusion barrier by the inert gas required by the ALE method, the device configuration is simplified, and the adsorption of the active gas molecules by the inert gas is inhibited and the inert gas molecules grow. It is also not incorporated into the layer and the crystal integrity is increased. Furthermore, the crystal growth layer can be grown monolayer by monolayer, a stoichiometric composition can be easily obtained to obtain a good quality crystal, and impurities can be added monolayer by monolayer, which is very steep. High quality semiconductor devices such as impurity density distribution can be obtained, and a mass spectroscope is provided so that the detached molecules such as reaction products accompanying the crystal growth process can be evaluated in situ. As a result, it is effective for monitoring the impurity addition in the multilayer epitaxial growth of the npn structure and the like, and the semiconductor device can be efficiently manufactured.

また、質量分析器の検出部周辺および前記ノズル先端部
周辺にシュラウドを配置し、そこに冷媒を流すようにし
たので、成長槽内に導入されるガスのうち余分のガスは
前記シュラウドに吸着されて成長層表面からの離脱分子
のみ前記質量分析計で測定でき、正しい分析による高品
質の半導体の結晶成長が可能となる。
Further, since the shroud is arranged around the detection part of the mass spectrometer and around the tip of the nozzle, and the refrigerant is allowed to flow there, extra gas of the gas introduced into the growth tank is adsorbed by the shroud. Therefore, only the molecules desorbed from the surface of the growth layer can be measured by the mass spectrometer, and high-quality semiconductor crystal growth can be performed by correct analysis.

さらに、成長表面からの共反応生成物を含む離脱分子の
イオンおよび前記原料ガスのイオンの過渡応答を同時
に、前記質量分析器および前記多重イオン検出部で測定
するようにしたので、成長が進行していく過程が追跡評
価でき、表面反応の正確なモニタリングによる高品質の
半導体の結晶成長が可能となる。
Furthermore, since the transient response of the ions of the detached molecule including the co-reaction product from the growth surface and the ions of the source gas are simultaneously measured by the mass analyzer and the multiple ion detector, the growth progresses. The growth process can be tracked and evaluated, and high-quality semiconductor crystal growth is possible by accurately monitoring surface reactions.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に適用される半導体結晶成長
装置の構成図、第2図は第1図の質量分析装置で得られ
る波形図、第3図は本発明の他の実施例に係る半導体結
晶成長装置の構成図である。 1……成長槽、2……ゲートバルブ、3……排気装置、
4,5……ノズル、6,7……ガス導入用バルブ、8,9……化
合物から成る原料ガス、10……基板支持台兼ヒーター、
11……熱電対、12……基板、13……圧力計、14……質量
分析器、15……制御装置、16……多重イオン検出器、17
……多ペンレコーダー、18,22……シュラウド、19,23…
…冷媒槽、20……注入口、21……冷媒。
1 is a block diagram of a semiconductor crystal growth apparatus applied to one embodiment of the present invention, FIG. 2 is a waveform diagram obtained by the mass spectrometer of FIG. 1, and FIG. 3 is another embodiment of the present invention. It is a block diagram of the semiconductor crystal growth apparatus concerning. 1 ... Growth tank, 2 ... Gate valve, 3 ... Exhaust device,
4,5 ... Nozzle, 6,7 ... Gas introduction valve, 8,9 ... Compound source gas, 10 ... Substrate support / heater,
11 ... Thermocouple, 12 ... Substrate, 13 ... Pressure gauge, 14 ... Mass analyzer, 15 ... Controller, 16 ... Multiple ion detector, 17
…… Multi-pen recorder, 18,22 …… Shroud, 19,23…
… Refrigerant tank, 20 …… Inlet, 21 …… Refrigerant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 仁志 宮城県仙台市緑ヶ丘1丁目22番11号 (56)参考文献 特開 昭55−130896(JP,A) 電気学会研究会資料 EFM81−41, (1981.10.27)P.79〜83 日経エレクトロニクス 1981年11月9日 号 第86〜88頁 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Abe 1-22-11 Midorigaoka, Sendai City, Miyagi Prefecture (56) Reference JP-A-55-130896 (JP, A) Institute of Electrical Engineers of Japan Material EFM81-41, (Oct. 27, 1981) P. 79-83 Nikkei Electronics November 9, 1981 Issue 86-88

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体単結晶基板をその上部に保持する基
板支持台と、該基板支持台をその内部に配置した成長槽
と、該成長槽の一部に接続されたバルブと、前記バルブ
に接続された排気装置と、検出部先端部が前記半導体単
結晶基板を望むように前記成長槽内上部に配設された質
量分析器と、前記質量分析器の検出部周辺および前記ノ
ズル先端部周辺に配置されたシュラウドと、該シュラウ
ドに接続された冷媒槽と、前記成長槽の外部より導入さ
れて先端部が前記半導体単結晶基板を望むように配設さ
れた少なく共2本のノズルと、前記半導体単結晶基板の
みを加熱する加熱源と、前記成長槽の外部において前記
ノズルのそれぞれに配設されたガラス導入用バルブとを
備えた成長装置により半導体結晶を成長させる方法であ
って、 該方法は、前記ガス導入用バルブの開閉と、前記排気装
置による前記成長槽の真空排気により、少なく共2種類
の原料ガスを交互に導入、排気して前記半導体単結晶基
板の成長表面上で交換表面反応を実現し、該交換表面反
応の1サイクルに付き少なく共1分子層の半導体単結晶
薄膜を形成するサイクルを繰り返すことにより、所望の
分子層数の単結晶エピタキシャル成長層を1分子層単位
で形成すると共に、前記成長槽内において発生する反応
生成物を含む離脱分子等のうち前記質量分析器に導入さ
れる以外の余分のガスを前記シュラウドに吸着させると
同時に、前記成長表面からの少なく共反応生成物を含む
離脱分子等の過渡応答を前記質量分析器で測定すること
により、前記成長表面における表面反応を遂時追跡評価
しながら半導体結晶を成長させることを特徴とする半導
体結晶成長方法。
1. A substrate supporting base for holding a semiconductor single crystal substrate on an upper portion thereof, a growth tank in which the substrate supporting base is arranged, a valve connected to a part of the growth tank, and the valve. A connected exhaust device, a mass analyzer whose detection tip is located in the upper part of the inside of the growth chamber so that the semiconductor single crystal substrate is desired, the detection part periphery of the mass analyzer and the nozzle tip part periphery A shroud disposed in the shroud, a coolant tank connected to the shroud, and at least two nozzles which are introduced from the outside of the growth tank and whose tips are arranged so as to desire the semiconductor single crystal substrate. A method for growing a semiconductor crystal by a growth apparatus comprising a heating source for heating only the semiconductor single crystal substrate, and a glass introduction valve provided in each of the nozzles outside the growth tank, comprising: The method is At least two kinds of source gases are alternately introduced and evacuated by opening and closing the gas introduction valve and evacuating the growth chamber by the exhaust device to cause an exchange surface reaction on the growth surface of the semiconductor single crystal substrate. This is realized and the cycle of forming a semiconductor single crystal thin film of a co-monolayer is reduced in one cycle of the exchange surface reaction to form a single crystal epitaxial growth layer of a desired number of molecular layers in units of one molecular layer. Of the desorbed molecules containing the reaction product generated in the growth tank, the excess gas other than that introduced into the mass spectrometer is adsorbed to the shroud, and at the same time, a small amount of co-reaction product from the growth surface is absorbed. By measuring the transient response of dissociated molecules and the like with the mass spectrometer, the semiconductor crystal is grown while the surface reaction on the growth surface is evaluated by tracking. Semiconductor crystal growth method according to claim Rukoto.
【請求項2】特許請求の範囲第1項記載において、 前記質量分析器に多重イオン検出器を接続し、前記サイ
クルの期間中常に前記成長表面からの、少なく共反応生
成物を含む離脱分子のイオンおよび前記少なく共2種類
の原料ガスのイオンの過渡応答を同時に、前記質量分析
器および前記多重イオン検出部で測定することを特徴と
する半導体結晶成長方法。
2. The mass analyzer according to claim 1, wherein a multi-ion detector is connected to the mass spectrometer, and the number of detached molecules containing less co-reaction products from the growth surface is constantly maintained during the cycle. A method for growing a semiconductor crystal, wherein transient responses of ions and ions of at least two kinds of source gases are simultaneously measured by the mass analyzer and the multiple ion detector.
【請求項3】特許請求の範囲第1または2項記載におい
て、 前記単結晶エピタキシャル成長層がIII−V族化合物半
導体であることを特徴とする半導体結晶成長方法。
3. The semiconductor crystal growth method according to claim 1, wherein the single crystal epitaxial growth layer is a III-V group compound semiconductor.
JP59153975A 1984-07-26 1984-07-26 Semiconductor crystal growth method Expired - Fee Related JPH0766907B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59153975A JPH0766907B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth method
GB8518842A GB2162207B (en) 1984-07-26 1985-07-25 Semiconductor crystal growth apparatus
FR858511516A FR2582149B1 (en) 1984-07-26 1985-07-26 APPARATUS FOR GROWING A SEMICONDUCTOR CRYSTAL
DE19853526888 DE3526888A1 (en) 1984-07-26 1985-07-26 SEMICONDUCTOR CRYSTAL GROWING DEVICE
GB8718943A GB2200138B (en) 1984-07-26 1987-08-11 Semiconductor crystal growth apparatus
GB8718942A GB2200137B (en) 1984-07-26 1987-08-11 Semiconductor crystal growth apparatus
US07/357,695 US4975252A (en) 1984-07-26 1989-05-26 Semiconductor crystal growth apparatus
US08/212,551 US5443033A (en) 1984-07-26 1994-03-11 Semiconductor crystal growth method
US08/396,589 US6464793B1 (en) 1984-07-26 1995-03-01 Semiconductor crystal growth apparatus
US08/904,347 US20010001952A1 (en) 1984-07-26 1997-07-31 Semiconductor crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153975A JPH0766907B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPS6134925A JPS6134925A (en) 1986-02-19
JPH0766907B2 true JPH0766907B2 (en) 1995-07-19

Family

ID=15574167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153975A Expired - Fee Related JPH0766907B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JPH0766907B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI57975C (en) * 1979-02-28 1980-11-10 Lohja Ab Oy OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日経エレクトロニクス1981年11月9日号第86〜88頁
電気学会研究会資料EFM81−41,(1981.10.27)P.79〜83

Also Published As

Publication number Publication date
JPS6134925A (en) 1986-02-19

Similar Documents

Publication Publication Date Title
US4975252A (en) Semiconductor crystal growth apparatus
Ploog Molecular beam epitaxy of III–V compounds
Nishizawa et al. Mechanism of surface reaction in GaAs layer growth
US5190913A (en) Apparatus for producing superconducting oxide film
JPS6134929A (en) Growing device of semiconductor device
Ploog et al. In situ characterization of MBE grown GaAs and Al x Ga1− x As films using RHEED, SIMS, and AES techniques
Karam et al. Direct writing of GaAs monolayers by laser‐assisted atomic layer epitaxy
JPH0766907B2 (en) Semiconductor crystal growth method
JP2001081569A (en) Vapor phase growth system
JP2577542B2 (en) Semiconductor crystal growth equipment
Ares et al. Growth mechanisms in atomic layer epitaxy of GaAs
US5573592A (en) Method for forming pure group III-V compound semi-conductor films
Maa et al. Surface reactions in the atomic layer epitaxy of GaAs using monoethylarsine
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JPH07120625B2 (en) Method for forming compound semiconductor single crystal thin film
JPH0556650B2 (en)
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JP2577543B2 (en) Single crystal thin film growth equipment
Squire et al. Reactions in Omcvd: Detection of Gas Phase Radicals In Gaas Deposition Under Single Gas-Surface Collision Conditions
JPH0766908B2 (en) Semiconductor single crystal growth method
JP2654608B2 (en) Method for manufacturing GaAs semiconductor diode
JPH0728079B2 (en) Method for manufacturing semiconductor laser
JPH0713966B2 (en) Method for manufacturing GaAs semiconductor diode
Hübner et al. GaN patterned film synthesis: Carbon depletion by hydrogen atoms produced from NH3 activated by electron impact
Nishizawa et al. Mass spectrometric analysis of gas molecule adsorption on solid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees