JPH0765843A - Organic electrolyte battery - Google Patents
Organic electrolyte batteryInfo
- Publication number
- JPH0765843A JPH0765843A JP6152993A JP15299394A JPH0765843A JP H0765843 A JPH0765843 A JP H0765843A JP 6152993 A JP6152993 A JP 6152993A JP 15299394 A JP15299394 A JP 15299394A JP H0765843 A JPH0765843 A JP H0765843A
- Authority
- JP
- Japan
- Prior art keywords
- atom
- organic
- electrolyte
- anion
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005486 organic electrolyte Substances 0.000 title claims abstract description 18
- 125000004429 atom Chemical group 0.000 claims abstract description 89
- 150000003839 salts Chemical class 0.000 claims abstract description 34
- 239000003792 electrolyte Substances 0.000 claims abstract description 31
- 150000001450 anions Chemical class 0.000 claims abstract description 27
- 125000001424 substituent group Chemical group 0.000 claims abstract description 19
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 14
- 150000001768 cations Chemical class 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- 239000008151 electrolyte solution Substances 0.000 claims description 38
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 150000001340 alkali metals Chemical class 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 14
- -1 for example Chemical class 0.000 abstract description 10
- XSMKYPKSPVGHCG-UHFFFAOYSA-L [Li+].[B+3].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O Chemical compound [Li+].[B+3].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O XSMKYPKSPVGHCG-UHFFFAOYSA-L 0.000 abstract description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 12
- 229910013063 LiBF 4 Inorganic materials 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 9
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 9
- 125000002524 organometallic group Chemical group 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910013684 LiClO 4 Inorganic materials 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 125000006575 electron-withdrawing group Chemical group 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 3
- 229960001860 salicylate Drugs 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002891 organic anions Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- HEWZVZIVELJPQZ-UHFFFAOYSA-N 2,2-dimethoxypropane Chemical compound COC(C)(C)OC HEWZVZIVELJPQZ-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013380 LiBS Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- FBDMJGHBCPNRGF-UHFFFAOYSA-M [OH-].[Li+].[O-2].[Mn+2] Chemical compound [OH-].[Li+].[O-2].[Mn+2] FBDMJGHBCPNRGF-UHFFFAOYSA-M 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- NCAIGTHBQTXTLR-UHFFFAOYSA-N phentermine hydrochloride Chemical compound [Cl-].CC(C)([NH3+])CC1=CC=CC=C1 NCAIGTHBQTXTLR-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機電解液電池に関す
るものであり、さらに詳しくは、貯蔵性の優れた有機電
解液電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolytic solution battery, and more particularly to an organic electrolytic solution battery having excellent storability.
【0002】[0002]
【従来の技術】二酸化マンガン−リチウム電池に代表さ
れる有機電解液電池は、高電圧、高エネルギー密度であ
ることから、ますます需要が増えている。2. Description of the Related Art Organic electrolyte batteries represented by manganese dioxide-lithium batteries are in high demand due to their high voltage and high energy density.
【0003】従来、この種の電池の有機電解液(以下、
電池を表すとき以外は、単に電解液という)には、電解
質として過塩素酸系のLiClO4 が用いられてきた
が、最近は電池の安全性が重視され、LiClO4 のよ
うな危険性の高いものは好まれない状況になってきた。Conventionally, organic electrolytes of batteries of this type (hereinafter,
Perchloric acid-based LiClO 4 has been used as an electrolyte in electrolytes except in the case of expressing a battery), but recently, the safety of the battery has been emphasized, and LiClO 4 is highly dangerous. Things have become unfavorable.
【0004】上記LiClO4 以外のリチウム塩として
は、たとえばLiBF4 やLiB(C6 H5 )4 などが
電解質として用いられている。As the lithium salt other than LiClO 4 , for example, LiBF 4 or LiB (C 6 H 5 ) 4 is used as an electrolyte.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
LiBF4 やLiB(C6 H5 )4 などを電解質として
用いた電解液は、貯蔵しておくと変色したり、一部の電
解液溶媒がポリマー化する。また、その電解液を電池に
用いた場合には電池の貯蔵性が低下する。However, the above-mentioned electrolytic solution using LiBF 4 , LiB (C 6 H 5 ) 4 or the like as an electrolyte may be discolored when stored and some of the electrolytic solution solvent may Polymerize. Further, when the electrolytic solution is used in a battery, the storage property of the battery is lowered.
【0006】したがって、本発明は、上記のような従来
の有機電解液電池における問題点を解決し、貯蔵性の優
れた有機電解液電池を提供することを目的とする。Therefore, an object of the present invention is to solve the above-mentioned problems in the conventional organic electrolytic solution battery and to provide an organic electrolytic solution battery having excellent storability.
【0007】[0007]
【課題を解決するための手段】本発明は、電解液の電解
質として、アニオン中心となるIII 族bからV族bの原
子に対して酸素原子が結合し、該酸素原子に電子求引性
の有機置換基が結合した有機金属塩を用いるか、または
アニオン中心となるIII 族bからV族bの原子に対して
電子求引性の有機置換基が結合した有機金属塩系の塩で
あって、かつ上記アニオン中心原子に対して対カチオン
を形成する金属原子とアニオン中心原子とのモル比〔金
属原子/アニオン中心原子(モル比)〕が1より大きい
有機金属塩を用いることによって、電池の貯蔵性を向上
させ、上記目的を達成したものである。According to the present invention, as an electrolyte of an electrolytic solution, an oxygen atom is bonded to an atom of group IIIb to group Vb, which is an anion center, and the oxygen atom has an electron withdrawing property. An organic metal salt having an organic substituent bonded thereto, or an organic metal salt-based salt having an electron-withdrawing organic substituent bonded to an atom of group IIIb to group V as an anion center, In addition, by using an organometallic salt having a molar ratio [metal atom / anion central atom (molar ratio)] of a metal atom forming a counter cation with respect to the anionic central atom [metal atom / anionic central atom (molar ratio)] of more than 1, The storability is improved to achieve the above object.
【0008】本発明において、上記特定の有機金属塩を
電解質として用いることによって、電池の貯蔵性を向上
させることができる理由を、上記特定の有機金属塩を具
体的に説明していくなかで、明らかにする。In the present invention, the reason why the storability of a battery can be improved by using the above-mentioned specific organic metal salt as an electrolyte is as follows. Make it clear.
【0009】アニオン中心となるIII 族bからV族bの
原子、たとえば、B(ホウ素)、N(窒素)、P(リ
ン)、Ga(ガリウム)、Al(アルミニウム)、Si
(ケイ素)などは、VI族原子のO(酸素)、S(イオ
ウ)などに比べて電気陰性度が低く、これらの原子がア
ニオン中心となる場合において、電池電圧が3V以上に
なると電気陰性度の低いぶん、電子を放出しやすくな
り、アニオンが酸化されてしまうため、電池の貯蔵性が
悪くなるという問題がある。なお、上記例示からも明ら
かなように、本発明において、III 族bからV族bの原
子とは周期律表のIII族bからV族bに属する元素の原
子である。An atom of group IIIb to group Vb serving as an anion center, for example, B (boron), N (nitrogen), P (phosphorus), Ga (gallium), Al (aluminum), Si
(Si) has a lower electronegativity than O (oxygen) and S (sulfur) of group VI atoms, and when these atoms become the anion center, the electronegativity becomes higher when the battery voltage becomes 3 V or more. However, there is a problem in that the storability of the battery deteriorates because electrons are more likely to be emitted and anions are oxidized. As is clear from the above examples, in the present invention, atoms of group IIIb to group Vb are atoms of elements belonging to group IIIb to group Vb of the periodic table.
【0010】上記のようなアニオンの酸化を防止する対
策として、アニオン中心となるIII族bからV族bの原
子に無機の電子求引性基を結合させて、アニオン中心と
なる原子を安定化させることが考えられる。この例とし
てはLiBF4 があるが、ある程度の安定化は得られる
ものの、後記の比較例2でも示すように、充分とはいえ
ない。As a measure to prevent the oxidation of the anion as described above, an inorganic electron-withdrawing group is bound to the atom of group IIIb to group V of the anion to stabilize the atom of the anion. It is possible to make it. LiBF 4 is an example of this, but although some stabilization is obtained, it cannot be said to be sufficient as shown in Comparative Example 2 below.
【0011】そこで、本発明では、さらに検討を重ね、
有機金属塩のアニオン中心となるIII 族bからV族bの
原子に対して酸素原子を結合させ、さらにその酸素原子
に電子求引性の有機置換基を結合させて、第一の態様の
発明を完成したのである。Therefore, in the present invention, further studies are conducted.
The invention according to the first aspect, wherein an oxygen atom is bonded to an atom of group IIIb to group Vb, which is the anion center of the organometallic salt, and an electron-withdrawing organic substituent is further bonded to the oxygen atom. Was completed.
【0012】上記発明において、アニオン中心の原子と
電子求引性の有機置換基とを直接結合させずに、その間
に酸素原子を介在させているのは、酸素原子の電気陰性
度が高く、酸素原子がアニオン中心の原子を安定化させ
る上に、2本しか結合を持たないため、立体障害が少な
い状態で電子求引性の有機置換基を結合させ得るからで
ある。そして、電子求引性の有機置換基はアニオン中心
の原子に対して酸素原子を介して電子を求引し、アニオ
ン中心の原子の電子密度を低下させて、アニオン中心か
ら電子を取り出しにくくすることによって、アニオンが
酸化されるのを防止する。In the above invention, the oxygen atom is not directly bonded to the atom at the center of the anion and the oxygen atom is interposed between the atom and the electron-withdrawing organic substituent, because the electronegativity of the oxygen atom is high. This is because the atom stabilizes the atom at the center of the anion, and since it has only two bonds, it is possible to bond an electron-withdrawing organic substituent with little steric hindrance. And, the electron-withdrawing organic substituent is capable of withdrawing an electron from the anion center by reducing the electron density of the anion center atom through the oxygen atom. Prevents the anion from being oxidized.
【0013】電子求引性の有機置換基としては、たとえ
ばカルボニル基、スルホニル基、アミノ基、シアノ基、
ハロゲン化アルキル基などがあるが、特にカルボニル
基、スルホニル基が容易に合成できることから適してい
る。Examples of the electron-withdrawing organic substituent include a carbonyl group, a sulfonyl group, an amino group, a cyano group,
Although there are halogenated alkyl groups and the like, carbonyl groups and sulfonyl groups are particularly suitable because they can be easily synthesized.
【0014】上記電子求引性の有機置換基と塩を形成す
る金属としては、たとえばリチウム、ナトリウム、カリ
ウムなどのアルカリ金属、マグネシウム、カルシウムな
どのアルカリ土類金属などがあるが、特にリチウムが好
ましい。また、この金属原子は上記有機アニオンのアニ
オン中心原子より、モル比が大きいことが好ましい。こ
の理由については後で詳述する。Examples of the metal that forms a salt with the electron-withdrawing organic substituent include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and lithium is particularly preferable. . The metal atom preferably has a larger molar ratio than the central atom of the anion. The reason for this will be described in detail later.
【0015】上記のような有機金属塩の具体例として
は、たとえば、LiBXX′やLiB(=O)X〔ここ
で、X、X′はB(ホウ素)原子に結合する酸素を有す
る電子求引性の有機置換基で、たとえば、X、X′=−
O−C(=O)−C6 H3 (R)−O−、−O−C(=
O)−R′−O−、などであり、Rはアルキル基または
H(水素)原子、R′はアルキレン基である〕、LiB
(Y1 )(Y2 )(Y3)(Y4 )〔ここで、Y1 ,Y
2 ,Y3 ,Y4 は−O−C(=O)−R、−O−R、−
C(=O)−O−Rなどであり、Y1 ,Y2 ,Y3 ,Y
4 のうち少なくとも1つは−O−C(=O)−Rであ
る〕、LiN〔−OC(=O)CF3 〕〔−C(=O)
CF3 〕などがあり、特に好ましいものとしては、リチ
ウムボロンジサリチレート〔LiB(−O−C(=O)
−C6 H4 −O−)2 〕が挙げられる。Specific examples of the above-mentioned organometallic salts include, for example, LiBXX 'and LiB (= O) X [where X and X'are electron withdrawing atoms having oxygen bonded to a B (boron) atom. Organic substituent, for example, X, X '=-
O-C (= O) -C 6 H 3 (R) -O -, - O-C (=
O) -R'-O-, etc., R is an alkyl group or an H (hydrogen) atom, and R'is an alkylene group], LiB
(Y 1 ) (Y 2 ) (Y 3 ) (Y 4 ) [where Y 1 , Y
2 , Y 3 , and Y 4 are -OC (= O) -R, -OR,-.
C (= O) -O-R and the like, Y 1, Y 2, Y 3, Y
At least one of 4 is -O-C (= O) -R], LiN [-OC (= O) CF 3] [-C (= O)
CF 3] include, as a particularly preferred lithium Boronji salicylate [LiB (-O-C (= O )
-C 6 H 4 -O-) 2] and the like.
【0016】上記リチウムボロンジサリチレート〔Li
B(−O−C(=O)−C6 H4 −O−)2 〕は、たと
えば、J.inorg.nucl.Chem.,Vo
l.40,p987(1978)に記載の方法や、ホウ
酸とサリチル酸と塩基性リチウム塩とを所定モル比で混
合し、有機溶媒中で加熱し、水分を回収しながら反応さ
せ、溶媒を除去することによって得られる。また、Li
N〔−OC(=O)CF3 〕〔−C(=O)CF3 〕
は、HN〔−OC(=O)CF3 〕〔−C(=O)CF
3 〕を塩基性リチウム塩で中和することによって得られ
る。The above lithium boron disalicylate [Li
B (-O-C (= O ) -C 6 H 4 -O-) 2 ] is, for example, J. inorg. nucl. Chem. , Vo
l. 40 , p987 (1978), or by mixing boric acid, salicylic acid, and a basic lithium salt in a predetermined molar ratio, heating in an organic solvent, reacting while collecting water, and removing the solvent. Obtained by Also, Li
N [-OC (= O) CF 3] [-C (= O) CF 3]
Is, HN [-OC (= O) CF 3] [-C (= O) CF
3 ] is neutralized with a basic lithium salt.
【0017】そのほか、上記有機金属塩として、LiB
(OSO2 Rf)4 、LiC(OSO2 Rf)3 、Li
N(OSO2 Rf)2 なども用いることができる。ここ
で、Rfはフルオロアルキル基である。In addition, as the above-mentioned organic metal salt, LiB
(OSO 2 Rf) 4 , LiC (OSO 2 Rf) 3 , Li
N (OSO 2 Rf) 2 or the like can also be used. Here, Rf is a fluoroalkyl group.
【0018】アニオン中心となるIII 族bからV族bの
原子は、B(ホウ素)、N(窒素)、P(リン)、Ga
(ガリウム)、Al(アルミニウム)、Si(ケイ素)
などのいずれでも良いが、結合数を考慮するとIII 族b
からIV族bの原子が好ましく、特にIII 族bの原子が好
ましい。また、有機金属塩の分子量を考慮すると、原子
量が70以下の原子、望ましくは原子量が30以下の原
子、より望ましくは原子量が15以下の原子が好まし
い。以上のことから、アニオン中心となる原子として
は、B(ホウ素)が最も適している。The atoms of the group IIIb to the group Vb which serve as anion centers are B (boron), N (nitrogen), P (phosphorus) and Ga.
(Gallium), Al (aluminum), Si (silicon)
, Etc., but considering the number of bonds, group III b
To Group IV b atoms are preferred, with Group III b atoms being particularly preferred. Considering the molecular weight of the organic metal salt, an atom having an atomic weight of 70 or less, preferably an atom having an atomic weight of 30 or less, and more preferably an atom having an atomic weight of 15 or less is preferable. From the above, B (boron) is most suitable as the atom serving as the anion center.
【0019】すなわち、ホウ素(B)は、原子量が1
0.8と小さいうえに、有機物に含まれる元素としては
酸素(O)やチッ素(N)よりも多い4本の結合が可能
であり、酸素原子を介して多くの電子求引性を有する有
機置換基と結合できる能力を持っているからである。That is, boron (B) has an atomic weight of 1
In addition to being as small as 0.8, four elements, which are larger than oxygen (O) and nitrogen (N), can be bonded as elements contained in organic substances, and have many electron-withdrawing properties through oxygen atoms. This is because it has the ability to bond with an organic substituent.
【0020】本発明の第二の態様は、アニオン中心とな
るIII 族bからV族bの原子に対して電子求引性の有機
置換基が結合した有機金属塩系の塩において、上記アニ
オン中心原子に対して対カチオンを形成する金属原子と
有機アニオンのアニオン中心原子のモル比〔金属原子/
アニオン中心原子(モル比)〕が1より大きいものを用
いることによって、電池の貯蔵性をより一層向上させた
ことにある。A second aspect of the present invention is an organometallic salt system in which an electron-withdrawing organic substituent is bonded to an atom of group IIIb to group Vb serving as an anion center. Molar ratio of metal atom forming counter cation to atom and anion center atom of organic anion [metal atom /
The use of a compound having a central anion atom (molar ratio) of more than 1 further improves the storability of the battery.
【0021】具体的には、金属原子/アニオン中心原子
(モル比)が1.001以上が好ましく、より好ましく
は1.005以上、さらに好ましくは1.02以上であ
る。しかし、金属原子/アニオン中心原子(モル比)が
1.05より大きくなると、電池特性が低下しはじめる
傾向があるため、1.05以下が好ましい。Specifically, the metal atom / central atom of anion (molar ratio) is preferably 1.001 or more, more preferably 1.005 or more, still more preferably 1.02 or more. However, when the metal atom / central atom of anion (molar ratio) exceeds 1.05, the battery characteristics tend to start to deteriorate, so 1.05 or less is preferable.
【0022】上記のように金属原子/アニオン中心原子
(モル比)が1より大きいものは、多くの場合、本発明
の第一の態様の要件を備えた有機金属塩とLi2 CO3
などの難溶性塩とが複塩を形成しているものと考えられ
る。As described above, those having a metal atom / central atom of anion (molar ratio) of more than 1 often have an organometallic salt and Li 2 CO 3 which satisfy the requirements of the first embodiment of the present invention.
It is considered that a poorly soluble salt such as the above forms a double salt.
【0023】Li2 CO3 などの難溶性塩は、一般的な
有機電解液用の有機溶媒には難溶性であるが、複塩であ
れば溶解するだけでなく、対となる有機金属塩を安定化
させるので好ましい。Although a poorly soluble salt such as Li 2 CO 3 is poorly soluble in a general organic solvent for an organic electrolytic solution, it does not only dissolve in a double salt but also forms a pair of organic metal salts. It is preferable because it stabilizes.
【0024】この難溶性塩の具体例としては、たとえ
ば、LiOH、Li2 CO3 、LiF、Li2 SO4 、
Li3 PO4 などが挙げられ、なかでもアルカリ性金属
塩であるLiOH、Li2 CO3 が好ましく、特にLi
2 CO3 が好ましい。すなわち、これらの難溶性塩はそ
れ自身が電解液中で安定であったり、あるいはアルカリ
性であって電池の貯蔵性を低下させる原因となる有機酸
を中和する作用を有している。なかでも、Li2 CO3
は安定性とアルカリ性を兼ね備えているという点で特に
好適なものとして挙げられる。Specific examples of the sparingly soluble salt include, for example, LiOH, Li 2 CO 3 , LiF, Li 2 SO 4 ,
Li 3 PO 4 and the like can be mentioned. Among them, alkaline metal salts LiOH and Li 2 CO 3 are preferable, and Li 3 PO 4 is particularly preferable.
2 CO 3 is preferred. That is, these sparingly soluble salts have a function of neutralizing the organic acid which is stable in the electrolytic solution itself or is alkaline and causes the deterioration of the storability of the battery. Among them, Li 2 CO 3
Is particularly preferable in that it has both stability and alkalinity.
【0025】なお、本発明の電解質と他の一般的な電解
質とを混合して用いる場合は、一般的な電解質のカチオ
ンのモル数、アニオンのモル数を差し引いて、上記金属
原子/アニオン中心原子(モル比)を算出する。When the electrolyte of the present invention and other general electrolytes are mixed and used, the number of moles of cation and the number of anions of the general electrolyte are subtracted to obtain the above metal atom / central atom of anion. (Molar ratio) is calculated.
【0026】上記のように、アニオン中心となるIII 族
bからV族bの原子に対して電子求引性の有機置換基が
結合した有機金属塩系の塩において、金属原子/アニオ
ン中心原子(モル比)が1より大きいものは、上記有機
金属塩の製造工程において、Li2 CO3 などの難溶性
塩が一部取り込まれ、前記したように本発明の第一の態
様の要件を備えた有機金属塩とLi2 CO3 などの難溶
性塩とが複塩を形成しているものと考えられる。As described above, in the metal-organic salt system in which an electron-withdrawing organic substituent is bonded to the group IIIb to group V atom serving as the anion center, a metal atom / anion center atom ( When the molar ratio) is larger than 1, a part of the sparingly soluble salt such as Li 2 CO 3 is incorporated in the above-mentioned production process of the organic metal salt, and the requirement of the first aspect of the present invention is satisfied as described above. It is considered that the organometallic salt and the poorly soluble salt such as Li 2 CO 3 form a double salt.
【0027】この金属原子/アニオン中心原子(モル
比)は、ICP発光分析法によるB、Liなどの原子濃
度の測定や、あるいは上記ICP発光分析法と原子吸光
法によるLiなどの金属原子の濃度測定の併用によっ
て、求めることができる。This metal atom / central atom of anion (molar ratio) is used to measure the atomic concentration of B, Li, etc. by ICP emission spectrometry, or the concentration of metal atom such as Li by ICP emission spectrometry and atomic absorption method. It can be determined by the combined use of measurements.
【0028】電解液の調製にあたって、上記電解質の有
機金属塩を溶解させるために使用する有機溶媒として
は、たとえば、1,2−ジメトキシエタン、1,2−ジ
メトキシメタン、ジメトキシプロパン、1,3−ジオキ
ソラン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、4−メチル−1,3−ジオキソランなどのエー
テル類、プロピレンカーボネート、エチレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、γ−
バレロラクトンなどのエステル類、さらにはスルフォラ
ンなどが挙げられる。In the preparation of the electrolytic solution, examples of the organic solvent used for dissolving the organic metal salt of the electrolyte include 1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3- Ethers such as dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyl-1,3-dioxolane, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-
Examples thereof include esters such as valerolactone, and sulfolane.
【0029】なかでも、エステル類は4.2V以上の高
電圧下においても正極の活物質との反応性が少なく、前
記の有機金属塩からなる電解質と組み合わせて用いると
きに、電池の貯蔵性をより向上させるので好ましい。こ
のエステル類は全有機溶媒中10体積%以上であること
が好ましく、より好ましくは20体積%以上、さらに好
ましくは30体積%以上であって、全有機溶媒をエステ
ル類が占めてもよい。Among them, the esters have a low reactivity with the active material of the positive electrode even under a high voltage of 4.2 V or more, and when used in combination with the electrolyte composed of the above-mentioned organic metal salt, the storage stability of the battery is improved. It is preferable because it improves further. The amount of the ester is preferably 10% by volume or more, more preferably 20% by volume or more, further preferably 30% by volume or more in the total organic solvent, and the ester may occupy the entire organic solvent.
【0030】電解液中における上記有機金属塩からなる
電解質の濃度は、特に限定されるものではないが、通
常、電解液は上記の有機溶媒に上記有機金属塩からなる
電解質を0.01〜2mol/l、特に0.05〜1m
ol/l程度溶解させるのが好ましい。The concentration of the above-mentioned organic metal salt electrolyte in the electrolytic solution is not particularly limited, but normally the electrolytic solution contains 0.01 to 2 mol of the above-mentioned organic metal salt electrolyte in the above-mentioned organic solvent. / L, especially 0.05-1m
It is preferable to dissolve the ol / l.
【0031】上記電解液を用いて電池を作製するにあた
り、負極にはアルカリ金属またはアルカリ金属を含む化
合物をステンレス鋼製網などの集電材料と一体化したも
のが用いられるが、そのアルカリ金属として、たとえ
ば、リチウム、ナトリウム、カリウムなどが挙げられ、
アルカリ金属を含む化合物としては、たとえば、アルカ
リ金属とアルミニウム、鉛、インジウム、カリウム、カ
ドミウム、スズ、マグネシウムなどとの合金、さらには
アルカリ金属と炭素材料との化合物、低電位のアルカリ
金属と金属酸化物、硫化物との化合物などが挙げられ
る。In the production of a battery using the above-mentioned electrolytic solution, the negative electrode used is one in which an alkali metal or a compound containing an alkali metal is integrated with a current collecting material such as a stainless steel net. , For example, lithium, sodium, potassium and the like,
As the compound containing an alkali metal, for example, an alloy of an alkali metal with aluminum, lead, indium, potassium, cadmium, tin, magnesium, etc., a compound of an alkali metal with a carbon material, a low potential alkali metal with a metal oxide, and the like. Compounds, compounds with sulfides, and the like.
【0032】正極には、たとえば二酸化マンガン、五酸
化バナジウム、クロム酸化物、リチウムコバルト酸化
物、リチウムニッケル酸化物などの金属酸化物、二酸化
モリブデンなどの金属硫化物、またはそれらの正極活物
質に導電助剤やポリテトラフルオロエチレンなどの結着
剤などを適宜添加した合剤を、ステンレス鋼製網などの
集電材料を芯材として成形体に仕上げたものが用いられ
る。For the positive electrode, for example, a metal oxide such as manganese dioxide, vanadium pentoxide, chromium oxide, lithium cobalt oxide, lithium nickel oxide, a metal sulfide such as molybdenum dioxide, or a conductive material of the positive electrode active material is used. A mixture obtained by appropriately adding an auxiliary agent, a binder such as polytetrafluoroethylene, or the like is finished into a molded body using a current collecting material such as stainless steel net as a core material.
【0033】正極活物質として金属酸化物を用いる場合
は高電圧が得られる。3V以上、特に4.2V以上の金
属酸化物を正極に用いる場合、従来のLiBF4 やLi
B(C6 H5 )4 では貯蔵性が非常に悪くなるが、本発
明で用いる上記有機金属塩からなる電解質は、そのよう
な高電圧下でも貯蔵性を低下させることが少ないので、
高電圧の正極活物質を用いる場合に、その効果が特に顕
著に発揮される。When a metal oxide is used as the positive electrode active material, high voltage can be obtained. When a metal oxide of 3 V or more, particularly 4.2 V or more is used for the positive electrode, conventional LiBF 4 or Li
B (C 6 H 5 ) 4 has a very poor storability, but since the electrolyte composed of the above-mentioned organometallic salt used in the present invention hardly lowers the storability even under such a high voltage,
When a high-voltage positive electrode active material is used, the effect is particularly remarkable.
【0034】また、正極活物質の表面積が小さくなると
貯蔵性はさらに向上する。本発明において用いる正極活
物質としては、表面積が50m2 /g以下であることが
好ましく、特に30m2 /g以下であること、とりわけ
20m2 /g以下であることが好ましい。Further, when the surface area of the positive electrode active material is reduced, the storability is further improved. The surface area of the positive electrode active material used in the present invention is preferably 50 m 2 / g or less, more preferably 30 m 2 / g or less, and particularly preferably 20 m 2 / g or less.
【0035】さらに、正極活物質の金属酸化物の活性表
面をアルカリ金属またはアルカリ土類金属化合物で処理
して、上記金属酸化物にアルカリ金属またはアルカリ土
類金属を含有させると、さらに貯蔵性を向上させること
ができる。また、電池作製後、予備放電を行うことによ
っても貯蔵性を多少向上させることができる。Further, when the active surface of the metal oxide of the positive electrode active material is treated with an alkali metal or alkaline earth metal compound so that the metal oxide contains an alkali metal or an alkaline earth metal, the storage property is further improved. Can be improved. Further, the storability can be improved to some extent by performing preliminary discharge after the battery is manufactured.
【0036】[0036]
【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例に限定さ
れるものではない。EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to those examples.
【0037】実施例1 電解質として、リチウムボロンジサリチレート〔構造式
はLiB(−O−C(=O)−C6 H4 −O−)2 で、
以下、これをLiBSAと略記する〕を用い、以下に示
すように電解液を調製した。なお、上記のLiBSAで
は、そのアニオン中心となるB(ホウ素)原子にO(酸
素)原子を介して電子求引性の有機置換〔−C(=O)
−C6 H4 −〕が2個結合している。このLiBSAの
金属原子/アニオン中心原子(モル比)は1.02であ
った。上記金属原子/アニオン中心原子(モル比)は、
B原子の濃度をICP発光分析で測定し、Li原子の濃
度を原子吸光法で測定した測定結果から求めたものであ
り、以下の実施例や比較例においても、この金属原子/
アニオン中心原子(モル比)は上記と同様の方法によっ
て求めている。[0037] As Example 1 electrolyte, a lithium Boronji salicylate [Structure in LiB (-O-C (= O ) -C 6 H 4 -O-) 2,
Hereinafter, this is abbreviated as LiBSA], and an electrolytic solution was prepared as described below. In the above-mentioned LiBSA, an electron-withdrawing organic substitution [-C (= O) is performed on the B (boron) atom serving as the anion center through the O (oxygen) atom.
-C 6 H 4 -] are attached two. The metal atom / anion center atom (molar ratio) of this LiBSA was 1.02. The above metal atom / central atom of anion (molar ratio) is
The concentration of B atom was measured by ICP emission spectrometry, and the concentration of Li atom was determined from the measurement result by atomic absorption method. In the following Examples and Comparative Examples,
The anion central atom (molar ratio) is determined by the same method as above.
【0038】電解液の調製は、上記のLiBSAを1,
2−ジメトキシエタンに溶解させた後、プロピレンカー
ボネートを加えて混合することによって行った。プロピ
レンカーボネートと1,2−ジメトキシエタンとの体積
比は1:2であり、電解液中における電解質のLiBS
Aの濃度は0.6mol/lであり、この電解液の組成
を0.6mol/l LiBSA/PC:DME(体積
比1:2)で示す。The electrolyte solution is prepared by adding the above-mentioned LiBSA
After dissolving in 2-dimethoxyethane, propylene carbonate was added and mixed. The volume ratio of propylene carbonate and 1,2-dimethoxyethane is 1: 2, and LiBS of the electrolyte in the electrolytic solution is
The concentration of A is 0.6 mol / l, and the composition of this electrolytic solution is represented by 0.6 mol / l LiBSA / PC: DME (volume ratio 1: 2).
【0039】上記電解液におけるLiBSAは前記した
ようにリチウムボロンジサリチレートの略称であり、P
Cはプロピレンカーボネートの略称で、DMEは1,2
−ジメトキシエタンの略称である。したがって、上記電
解液を示す0.6mol/lLiBSA/PC:DME
(体積比1:2)は、電解液がプロピレンカーボネート
と1,2−ジメトキシエタンとの体積比1:2の混合溶
媒にリチウムボロンジサリチレートを0.6mol/l
溶解させたものであることを示している。LiBSA in the above electrolytic solution is an abbreviation for lithium boron disalicylate as described above, and P
C is an abbreviation for propylene carbonate, DME is 1, 2
-An abbreviation for dimethoxyethane. Therefore, 0.6 mol / l LiBSA / PC: DME showing the above electrolyte solution
In the case of (volume ratio 1: 2), the electrolytic solution contained 0.6 mol / l of lithium boron disalicylate in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 2.
It shows that it was dissolved.
【0040】また、電解二酸化マンガンを熱処理し、水
酸化リチウム水溶液で処理してその表面積を18m2 /
gにした後、この二酸化マンガン100重量部とカーボ
ンブラック5重量部とポリテトラフルオロエチレン5重
量部を混合した後、ステンレス鋼製網を芯材として厚さ
0.4mm、幅30mmのシート状に成形し、ステンレ
ス鋼製網の集電体を取り付けた帯状正極を、250℃で
乾燥し、乾燥後、乾燥雰囲気中で室温まで冷却した。Further, electrolytic manganese dioxide is heat-treated and treated with an aqueous solution of lithium hydroxide to have a surface area of 18 m 2 /
Then, 100 parts by weight of this manganese dioxide, 5 parts by weight of carbon black and 5 parts by weight of polytetrafluoroethylene were mixed, and then a sheet of stainless steel net having a thickness of 0.4 mm and a width of 30 mm was used as a core material. The band-shaped positive electrode formed and attached with a collector made of stainless steel net was dried at 250 ° C., and after drying, cooled to room temperature in a dry atmosphere.
【0041】つぎに、上記帯状正極を厚さ25μmの微
孔性ポリプロピレンフィルムからなるセパレータで包
み、これに厚さ0.18mm、幅30mmのシート状リ
チウムをステンレス鋼製網に圧着した帯状負極を重ね、
渦巻状に巻回して渦巻状電極体とした後、外径15mm
の有底円筒状の電池ケース内に充填し、正極および負極
のリード体のスポット溶接を行った後、前記の電解液を
電池ケース内に注入した。Next, the above strip-shaped positive electrode was wrapped with a separator made of a microporous polypropylene film having a thickness of 25 μm, and a strip-shaped negative electrode in which a sheet-shaped lithium having a thickness of 0.18 mm and a width of 30 mm was pressure-bonded to a stainless steel net was prepared. Overlap
Outer diameter of 15 mm after spirally winding into a spiral electrode body
It was filled in a cylindrical battery case having a bottom and spot welding was performed on the lead bodies of the positive electrode and the negative electrode, and then the electrolyte solution was injected into the battery case.
【0042】つぎに、常法にしたがって、電池ケースの
開口部を封口し、1Aで120秒間の予備放電を行った
後、60℃で3日間エイジングを行い、図1に示す構造
の筒形の有機電解液電池を作製した。Then, according to a conventional method, the opening of the battery case was sealed, pre-discharge was carried out at 1 A for 120 seconds, and then aging was carried out at 60 ° C. for 3 days to obtain a tubular structure having the structure shown in FIG. An organic electrolyte battery was produced.
【0043】図1に示す電池について説明すると、1は
前記の正極で、2は負極である。ただし、図1では、繁
雑化を避けるため、正極1や負極2の作製にあたって使
用されたステンレス鋼製網や集電体などは図示していな
い。そして、3はセパレータで、4は前記の電解液であ
る。Explaining the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the stainless steel net, the current collector, and the like used in manufacturing the positive electrode 1 and the negative electrode 2 are not shown. And 3 is a separator and 4 is the above-mentioned electrolytic solution.
【0044】5はステンレス鋼製の電池ケースであり、
この電池ケース5は負極端子を兼ねている。電池ケース
5の底部にはポリテトラフルオロエチレンシートからな
る絶縁体6が配置され、電池ケース5の内周部にもポリ
テトラフルオロエチレンシートからなる絶縁体7が配置
されていて、前記正極1、負極2およびセパレータ3か
らなる渦巻状電極体や、電解液4などは、この電池ケー
ス5内に収容されている。5 is a stainless steel battery case,
The battery case 5 also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged at the inner peripheral part of the battery case 5. The spiral electrode body including the negative electrode 2 and the separator 3, the electrolytic solution 4, and the like are contained in the battery case 5.
【0045】8はステンレス鋼製の封口板であり、この
封口板8の中央部にはガス通気孔8aが設けられてい
る。9はポリプロピレン製の環状パッキング、10はチ
タン製の可撓性薄板で、11は環状のポリプロピレン製
の熱変形部材である。Reference numeral 8 is a stainless steel sealing plate, and a gas vent hole 8a is provided at the center of the sealing plate 8. Reference numeral 9 is a polypropylene-made annular packing, 10 is a flexible thin plate made of titanium, and 11 is an annular heat-deformable member made of polypropylene.
【0046】上記の熱変形部材11は温度によって変形
することにより、可撓性薄板10の破壊圧力を変える作
用をする。The above-mentioned thermal deformation member 11 acts to change the breaking pressure of the flexible thin plate 10 by being deformed by the temperature.
【0047】12はニッケルメッキを施した圧延鋼製の
端子板であり、この端子板12には切刃12aとガス排
出孔12bとが設けられていて、電池内部にガスが発生
して電池の内部圧力が上昇し、その内圧上昇によって可
撓性薄板10が変形したときに、上記切刃12aによっ
て可撓性薄板10を破壊し、電池内部のガスを上記ガス
排出孔12bから電池外部に排出して、電池の破壊が防
止できるように設計されている。Reference numeral 12 denotes a nickel-plated rolled steel terminal plate. The terminal plate 12 is provided with a cutting edge 12a and a gas discharge hole 12b. When the internal pressure rises and the flexible thin plate 10 is deformed due to the increase in the internal pressure, the cutting blade 12a breaks the flexible thin plate 10 to discharge the gas inside the battery from the gas discharge hole 12b to the outside of the battery. Then, it is designed to prevent the destruction of the battery.
【0048】13は絶縁パッキングで、14はリード体
であり、このリード体14は正極1と封口板8とを電気
的に接続しており、端子板12は封口板8との接触によ
り正極端子として作用する。また、15は負極2と電池
ケース5とを電気的に接続するリード体である。Reference numeral 13 is an insulating packing, and 14 is a lead body. This lead body 14 electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 is brought into contact with the sealing plate 8 to make a positive electrode terminal. Acts as. Reference numeral 15 is a lead body that electrically connects the negative electrode 2 and the battery case 5.
【0049】実施例2 電解質として、金属原子/アニオン中心原子(モル比)
が1.00のLiBSAを用いた以外は、実施例1と同
様にして、図1に示す構造の筒形有機電解液電池を作製
した。Example 2 As an electrolyte, metal atom / central atom of anion (molar ratio)
A tubular organic electrolyte battery having the structure shown in FIG. 1 was prepared in the same manner as in Example 1 except that LiBSA having a ratio of 1.00 was used.
【0050】比較例1 PC:DMEの混合溶媒にLiB(C6 H5 )4 ・3D
MEを溶解して、組成が0.6mol/l LiB(C
6 H5 )4 /PC:DME(1:2)で示される電解液
を調製した。このLiB(C6 H5 )4 ・3DME塩の
金属原子/アニオン中心原子(モル比)は1.00であ
った。Comparative Example 1 LiB (C 6 H 5 ) 4 / 3D in a PC: DME mixed solvent
ME is dissolved and the composition is 0.6 mol / l LiB (C
An electrolytic solution represented by 6 H 5 ) 4 / PC: DME (1: 2) was prepared. The LiB (C 6 H 5) 4 · 3DME metal atom / anion center atom of the salt (molar ratio) was 1.00.
【0051】この電解液におけるPCはプロピレンカー
ボネートの略称で、DMEは1,2−ジメトキシエタン
の略称である。したがって、上記電解液を示す0.6m
ol/l LiB(C6 H5 )4 /PC:DME(1:
2)は、電解液がプロピレンカーボネートと1,2−ジ
メトキシエタンとの体積比1:2の混合溶媒にLiB
(C6 H5 )4 を0.6mol/l溶解させたものであ
ることを示している。PC in this electrolytic solution is an abbreviation for propylene carbonate, and DME is an abbreviation for 1,2-dimethoxyethane. Therefore, 0.6m showing the above electrolyte solution
ol / l LiB (C 6 H 5 ) 4 / PC: DME (1:
In 2), the electrolytic solution was LiB in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 2.
It shows that (C 6 H 5 ) 4 was dissolved at 0.6 mol / l.
【0052】この電解液を用いた以外は、実施例1と同
様にして、図1に示す構造の筒形有機電解液電池を作製
した。A tubular organic electrolyte battery having the structure shown in FIG. 1 was prepared in the same manner as in Example 1 except that this electrolyte was used.
【0053】比較例2 PC:DME(体積比1:2)の混合溶媒にLiBF4
を溶解して、0.6mol/l LiBF4 /PC:D
ME(1:2)で組成が示される電解液を調製した。こ
のLiBF4 の金属原子(Li)/アニオン中心原子
(B)(モル比)は1.00であった。Comparative Example 2 LiBF 4 was added to a mixed solvent of PC: DME (volume ratio 1: 2).
0.6 mol / l LiBF 4 / PC: D
An electrolytic solution having a composition of ME (1: 2) was prepared. The metal atom (Li) / anion center atom (B) (molar ratio) of this LiBF 4 was 1.00.
【0054】この電解液におけるPCはプロピレンカー
ボネートの略称で、DMEは1,2−ジメトキシエタン
の略称である。したがって、上記電解液を示す0.6m
ol/l LiBF4 /PC:DME(1:2)は、電
解液がプロピレンカーボネートと1,2−ジメトキシエ
タンとの体積比1:2の混合溶媒にLiBF4 を0.6
mol/l溶解させたものであることを示している。PC in this electrolytic solution is an abbreviation for propylene carbonate, and DME is an abbreviation for 1,2-dimethoxyethane. Therefore, 0.6m showing the above electrolyte solution
ol / l LiBF 4 / PC: DME (1: 2) was prepared by adding LiBF 4 to a mixed solvent of an electrolytic solution of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 2 by 0.6%.
It shows that it was dissolved in mol / l.
【0055】この電解液を用いた以外は、実施例1と同
様にして、図1に示す構造の筒形有機電解液電池を作製
した。A tubular organic electrolyte battery having the structure shown in FIG. 1 was prepared in the same manner as in Example 1 except that this electrolyte was used.
【0056】つぎに、上記実施例1〜2の電池および比
較例1〜2の電池を3Aで0.5秒間放電した時の最小
電圧を測定した。この電池を80℃で10日間貯蔵し、
貯蔵後の電池についても同様に最小電圧の測定を行い、
電池の性能劣化を調べた。その結果を表1に示す。Next, the minimum voltage when the batteries of Examples 1 and 2 and the batteries of Comparative Examples 1 and 2 were discharged at 3 A for 0.5 seconds was measured. Store this battery at 80 ° C for 10 days,
Similarly, measure the minimum voltage of the battery after storage,
The performance deterioration of the battery was investigated. The results are shown in Table 1.
【0057】[0057]
【表1】 [Table 1]
【0058】上記のような80℃×10日間という過酷
な貯蔵条件下では、表1に示すように、実施例1の電池
も最小電圧が1.37Vから1.06Vまで低下し、実
施例2の電池では最小電圧が1.36Vから1.01V
まで低下したが、それでも従来電池に相当する比較例1
〜2の電池に比べて電圧低下がはるかに少なく、本発明
の電池が従来電池に比べて、貯蔵性が優れていることを
明確に示していた。Under the severe storage conditions of 80 ° C. × 10 days as described above, as shown in Table 1, the minimum voltage of the battery of Example 1 also dropped from 1.37 V to 1.06 V, and Example 2 , The minimum voltage is 1.36V to 1.01V
Comparative example 1 which is equivalent to the conventional battery
The voltage drop was much smaller than that of the batteries of Nos. 1 to 2, and it was clearly shown that the battery of the present invention had a better storability than the conventional battery.
【0059】すなわち、電解質としてLiB(C
6 H5 )4 を用いた比較例1の電池は、80℃×10日
間の貯蔵で最小電圧が1.06Vから0.2Vまで大幅
に低下し、また電解質としてLiBF4 を用いた比較例
2の電池にいたっては、80℃×10日間の貯蔵で最小
電圧が1.30Vから0.00V以下にまで低下し、電
池として到底使用できる状況になかったが、実施例1〜
2の電池は80℃×10日間の貯蔵後も最小電圧が1.
06Vと1.01Vであり、貯蔵性が優れていることを
示していた。That is, LiB (C
The battery of Comparative Example 1 using 6 H 5 ) 4 showed a drastic decrease in the minimum voltage from 1.06 V to 0.2 V after storage at 80 ° C. for 10 days, and Comparative Example 2 using LiBF 4 as the electrolyte. In the case of the battery No. 1, the minimum voltage dropped from 1.30 V to 0.00 V or less after storage at 80 ° C. for 10 days, and it was not in a situation where it could be used as a battery at all, but Example 1
Battery 2 had a minimum voltage of 1. even after storage at 80 ° C for 10 days.
The voltages were 06 V and 1.01 V, indicating that the storability was excellent.
【0060】なお、実施例の中で比較すると、実施例1
の電池は、使用したLiBSAの金属電子/アニオン中
心原子(モル比)が実施例2の場合より大きいぶん、貯
蔵後の最小電圧が高くなり、貯蔵性がより優れていた。It should be noted that, when comparing among the examples, the example 1
In the battery of No. 2, the minimum voltage after storage was higher and the storability was more excellent because the metal electron / anion central atom (molar ratio) of LiBSA used was higher than that in Example 2.
【0061】また、上記実施例1〜2および比較例1〜
2の電池を3.5Vまで100mAで充電し、0.3A
で0.01秒間放電した時の最小電圧を測定した後、
3.5V定電圧条件下80℃で10日間貯蔵し、貯蔵後
の電池について上記同様に最小電圧の測定を行い、電池
の性能劣化を調べた。その結果を表2に示す。Further, the above-mentioned Examples 1-2 and Comparative Examples 1--1
Charge the second battery to 3.5V at 100mA to 0.3A
After measuring the minimum voltage when discharging for 0.01 seconds,
The battery was stored under constant voltage of 3.5 V at 80 ° C. for 10 days, and the minimum voltage of the battery after storage was measured in the same manner as above to examine the deterioration of the battery performance. The results are shown in Table 2.
【0062】[0062]
【表2】 [Table 2]
【0063】表2に示すように、実施例1〜2の電池
は、比較例2の電池に比べて、貯蔵後の最小電圧が高
く、貯蔵性が優れていた。なお、比較例1の電池は、電
解質が電子求引性基を有しないので、3.5V以上の高
電圧に対しては耐えることができず、3.5Vに達する
前に電解質が分解し、充電することができなかった。As shown in Table 2, the batteries of Examples 1 and 2 had a higher minimum voltage after storage and excellent storage properties as compared with the battery of Comparative Example 2. The battery of Comparative Example 1 cannot withstand a high voltage of 3.5 V or higher because the electrolyte does not have an electron-withdrawing group, and the electrolyte decomposes before reaching 3.5 V, Could not be charged.
【0064】また、比較例2の電池では、電解質が電子
求引性基を有しているが、無機の塩であって、アニオン
中心原子に対して酸素原子を介して有機アニオンが結合
していないため、表2に示すように、貯蔵後の最小電圧
が低く、貯蔵性が悪かった。In the battery of Comparative Example 2, the electrolyte has an electron-withdrawing group, but it is an inorganic salt and an organic anion is bonded to the anion center atom via an oxygen atom. Therefore, as shown in Table 2, the minimum voltage after storage was low and the storability was poor.
【0065】これに対して、実施例1〜2の電池は、電
解質がアニオン中心原子に対して酸素原子を介して電子
求引性の有機置換基が結合しているので、3.5V以上
の高電圧に対しても優れた貯蔵性を示すことができた。On the other hand, in the batteries of Examples 1 and 2, since the electrolyte has an electron-withdrawing organic substituent bonded to the anion center atom via an oxygen atom, the voltage of 3.5 V or more is used. It was possible to exhibit excellent storability even at high voltage.
【発明の効果】以上説明したように、本発明では、電解
液の電解質として、たとえばリチウムボロンジサリチレ
ート〔LiB(−O−C(=O)−C6 H4 −O
−)2 〕のような、アニオン中心となるIII 族bからV
族bの原子に対して酸素原子を介して電子求引性の有機
置換基が結合した有機金属塩を用いるか、またはアニオ
ン中心となるIII 族bからV族bの原子に対して電子求
引性の有機置換基が結合した有機金属塩系の塩であっ
て、かつ上記アニオン中心原子に対して対カチオンを形
成する金属原子とアニオン中心原子とのモル比〔すなわ
ち、金属原子/アニオン中心原子(モル比)〕が1より
大きい有機金属塩を用いることによって、貯蔵性の優れ
た有機電解液電池を提供することができた。As described in the foregoing, in the present invention, as the electrolyte of the electrolytic solution, for example lithium Boronji salicylate [LiB (-O-C (= O ) -C 6 H 4 -O
−) 2 ] such as group III b to V, which is an anion center.
An organic metal salt in which an electron-withdrawing organic substituent is bonded to an atom of group b through an oxygen atom is used, or electron withdrawing is performed from an atom of group IIIb to group V serving as an anion center. Which is a salt of an organometallic salt system to which a polar organic substituent is bonded, and which has a molar ratio of a metal atom forming a counter cation to the anion center atom and the anion center atom [ie, metal atom / anion center atom By using an organic metal salt having a (molar ratio) of more than 1, it was possible to provide an organic electrolyte battery having excellent storability.
【図1】本発明に係る有機電解液電池の一例を模式的に
示す断面図である。FIG. 1 is a sectional view schematically showing an example of an organic electrolyte battery according to the present invention.
1 正極 2 負極 3 セパレータ 4 電解液 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 田中 銀之輔 大阪府堺市上89番地 大崎工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kawakami 1-88, Tora, Ibaraki-shi, Osaka Within Hitachi Maxell Co., Ltd. (72) Inventor Ginnosuke Tanaka 89, Sakai-shi, Osaka Prefecture Osaki Industrial Co., Ltd. In the company
Claims (4)
化合物からなる負極と、正極と、有機電解液を構成要素
とする有機電解液電池において、上記有機電解液の電解
質として、アニオン中心となるIII 族bからV族bの原
子に対して酸素原子を介して電子求引性の有機置換基が
結合した有機金属塩を用いたことを特徴とする有機電解
液電池。1. An organic electrolyte battery comprising a negative electrode made of an alkali metal or a compound containing an alkali metal, a positive electrode, and an organic electrolyte, which is a group IIIb which is an anion center as an electrolyte of the organic electrolyte. 2. An organic electrolyte battery, wherein an organic metal salt in which an electron-withdrawing organic substituent is bonded to an atom of group V to group b via an oxygen atom is used.
となる原子が、原子量30以下であることを特徴とする
請求項1記載の有機電解液電池。2. The organic electrolyte solution battery according to claim 1, wherein an atom serving as an anion center of the electrolyte of the organic electrolyte solution has an atomic weight of 30 or less.
となる原子が、B(ホウ素)原子であることを特徴とす
る請求項1記載の有機電解液電池。3. The organic electrolytic solution battery according to claim 1, wherein the atom serving as the anion center of the electrolyte of the organic electrolytic solution is a B (boron) atom.
化合物からなる負極と、正極と、有機電解液を構成要素
とする有機電解液電池において、上記有機電解液の電解
質として、アニオン中心となるIII 族bからV族bの原
子に対して電子求引性の有機置換基が結合した有機金属
塩系の塩であって、かつ上記アニオン中心原子に対して
対カチオンを形成する金属原子とアニオン中心原子との
モル比〔金属原子/アニオン中心原子(モル比)〕が1
より大きい有機金属塩を用いたことを特徴とする有機電
解液電池。4. A negative electrode comprising an alkali metal or a compound containing an alkali metal, a positive electrode, and an organic electrolytic solution battery having an organic electrolytic solution as its constituent elements, wherein as an electrolyte of the organic electrolytic solution, a group IIIb group serving as an anion center. To a group V metal-organic salt-based salt having an electron-withdrawing organic substituent bonded to the atom, and a metal atom and an anion center atom forming a counter cation with respect to the anion center atom. The molar ratio [metal atom / central atom of anion (molar ratio)] is 1
An organic electrolyte battery comprising a larger organic metal salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15299394A JP3276127B2 (en) | 1993-06-18 | 1994-06-10 | Organic electrolyte battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17233393 | 1993-06-18 | ||
JP5-172333 | 1993-06-18 | ||
JP15299394A JP3276127B2 (en) | 1993-06-18 | 1994-06-10 | Organic electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0765843A true JPH0765843A (en) | 1995-03-10 |
JP3276127B2 JP3276127B2 (en) | 2002-04-22 |
Family
ID=26481740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15299394A Expired - Lifetime JP3276127B2 (en) | 1993-06-18 | 1994-06-10 | Organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3276127B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6059987A (en) * | 1996-12-26 | 2000-05-09 | Hitachi Maxell, Ltd. | Ionic conductive material and electrochemical device comprising the same |
JP2002289189A (en) * | 2001-03-23 | 2002-10-04 | Hitachi Maxell Ltd | Nonaqueous battery |
JP2003051336A (en) * | 2001-08-08 | 2003-02-21 | Toyota Central Res & Dev Lab Inc | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
US6824928B2 (en) | 2000-09-21 | 2004-11-30 | Hitachi, Ltd. | Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds |
US8652682B2 (en) | 2006-11-22 | 2014-02-18 | Sony Corporation | Ionic compound, electrolytic solution, electrochemical device, and battery |
US9127023B2 (en) | 2012-03-08 | 2015-09-08 | Samsung Sdi Co., Ltd. | Electrolyte additive and electrolyte including same and rechargeable lithium battery including electrolyte |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1321987C (en) * | 2005-11-11 | 2007-06-20 | 吉林大学 | Oligomer with double-azo butter-fly shaped rigid large ring, and its prepn. method |
-
1994
- 1994-06-10 JP JP15299394A patent/JP3276127B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6059987A (en) * | 1996-12-26 | 2000-05-09 | Hitachi Maxell, Ltd. | Ionic conductive material and electrochemical device comprising the same |
US6824928B2 (en) | 2000-09-21 | 2004-11-30 | Hitachi, Ltd. | Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds |
US7022878B2 (en) | 2000-09-21 | 2006-04-04 | Hitachi, Ltd. | Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds |
JP2002289189A (en) * | 2001-03-23 | 2002-10-04 | Hitachi Maxell Ltd | Nonaqueous battery |
JP2003051336A (en) * | 2001-08-08 | 2003-02-21 | Toyota Central Res & Dev Lab Inc | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
US8652682B2 (en) | 2006-11-22 | 2014-02-18 | Sony Corporation | Ionic compound, electrolytic solution, electrochemical device, and battery |
US9127023B2 (en) | 2012-03-08 | 2015-09-08 | Samsung Sdi Co., Ltd. | Electrolyte additive and electrolyte including same and rechargeable lithium battery including electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JP3276127B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5534370A (en) | Organic electrolytic solution cell | |
JPH0487156A (en) | Nonaqueous electrolyte battery | |
JP4679064B2 (en) | Non-aqueous electrolyte secondary battery | |
EP0486704B1 (en) | Organic electrolytic battery | |
JPH0765843A (en) | Organic electrolyte battery | |
JP3396990B2 (en) | Organic electrolyte secondary battery | |
US20010053474A1 (en) | Non-aqueous electrolyte secondary battery and method for producing the same | |
JP3537165B2 (en) | Organic electrolyte battery | |
JP3512114B2 (en) | Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same | |
JPH08241731A (en) | Organic electrolytic secondary battery | |
JP4737952B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH05283086A (en) | Organic electrolyte battery | |
JP3431641B2 (en) | Organic electrolyte and organic electrolyte battery using the same | |
JP3169248B2 (en) | Organic electrolyte battery | |
JP4233206B2 (en) | Non-aqueous electrolyte battery | |
JP2006156234A (en) | Nonaqueous electrolyte secondary battery and its charging method | |
JP3722824B2 (en) | Stacked organic electrolyte battery | |
JP2974739B2 (en) | Organic electrolyte battery | |
JPH0582138A (en) | Organic electrolyte and organic electrolyte battery using same | |
JP3236122B2 (en) | Organic electrolyte battery | |
JP3011740B2 (en) | Organic electrolyte battery | |
JP3722823B2 (en) | Stacked organic electrolyte battery | |
JP3518687B2 (en) | Organic electrolyte battery | |
JP3722825B2 (en) | Stacked organic electrolyte battery | |
JP3051506B2 (en) | Non-aqueous solvent secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |