[go: up one dir, main page]

JPH0763045A - Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine - Google Patents

Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine

Info

Publication number
JPH0763045A
JPH0763045A JP5210304A JP21030493A JPH0763045A JP H0763045 A JPH0763045 A JP H0763045A JP 5210304 A JP5210304 A JP 5210304A JP 21030493 A JP21030493 A JP 21030493A JP H0763045 A JPH0763045 A JP H0763045A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust
fuel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5210304A
Other languages
Japanese (ja)
Inventor
Satoru Watanabe
渡邊  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5210304A priority Critical patent/JPH0763045A/en
Publication of JPH0763045A publication Critical patent/JPH0763045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent any wrong diagnosis from occurring with certainty by installing a catalytic deterioration diagnosis prohibiting means prohibiting any diagnosis by means of a catalytic deterioration diagnostic means at a time when each of plural air-fuel ratio detecting signals is deviated as far as more than the specified value to the target air-fuel ratio in the rich-lean opposite direction. CONSTITUTION:Three oxygen sensors 14a, 14b and 14c as an air-fuel ratio detection means each are installed in an exhaust passage 11 in the downstream of exhaust passages 8a, 8b and a three-way catalyst 10. These oxygen sensors 14a to 14c are those having an output characteristic to be turned over to both rich and lean sides according to the extent of oxygen content in car exhaust gases. A control unit 20 controls an air-fuel ratio of combustion mixture for feedback at each bank on the basis of each output value of the oxygen sensors 14a and 14b. In addition, this control unit 20 prohibits any diagnosis by means of a catalytic deterioration diagnostic means at a time when an air-fuel ratio detecting signal is deviated as far as more than the specified value in the rich-lean opposite direction to the target air-fuel ratio. Thus a wrong diagnosis is preventable with certainty.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化触
媒劣化診断装置に関し、詳しくは、内燃機関の排気通路
に介装され、内燃機関から排出される排気中の有害成分
(NOx、CO、HC等)を酸化・還元して浄化する排
気浄化装置内の触媒の劣化を診断する排気浄化触媒劣化
診断装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification catalyst deterioration diagnosing device for an internal combustion engine, and more particularly to a harmful component (NOx, CO) in exhaust gas discharged from the internal combustion engine which is interposed in an exhaust passage of the internal combustion engine. , HC, etc.) to improve the exhaust gas purification catalyst deterioration diagnosis device for diagnosing deterioration of the catalyst in the exhaust gas purification device that purifies the exhaust gas.

【0002】[0002]

【従来の技術】近年、環境保護の見地から、内燃機関か
ら排出される排気中に含まれる有害成分(NOx、C
O、HC等)の低減が強く要求されている。そのため、
排気通路の途中に排気浄化装置を介装し、該排気浄化装
置に内装される触媒コンバータ(三元触媒)の触媒反応
により前記有害成分を酸化・還元(浄化)して、大気中
へ有害成分が排出するのを抑制することが一般に行なわ
れている。かかる三元触媒においては、機関へ供給され
る燃料供給量と機関吸入空気流量との混合気の混合比が
理論空燃比(1:14.4)近傍以外では、浄化性能が大き
く低下するため、排気中の酸素濃度に応じて(理論空燃
比を境に)リッチ側とリーン側とに反転する出力特性を
有する酸素センサを触媒上流側排気通路に設け、該酸素
センサの出力特性を利用して、燃料供給量等を増減補正
することにより前記混合比を、理論空燃比を境にリッチ
・リーン反転させつつ理論空燃比近傍に応答性よくフィ
ードバック制御するようにしている。
2. Description of the Related Art In recent years, from the viewpoint of environmental protection, harmful components (NOx, C) contained in exhaust gas discharged from an internal combustion engine.
There is a strong demand for reduction of O, HC, etc.). for that reason,
An exhaust gas purification device is provided in the middle of the exhaust passage, and the harmful components are oxidized and reduced (purified) by a catalytic reaction of a catalytic converter (three-way catalyst) installed in the exhaust gas purification device, and the harmful components are released into the atmosphere. It is generally practiced to suppress the exhaustion of the. In such a three-way catalyst, when the mixture ratio of the fuel supply amount supplied to the engine and the engine intake air flow rate is close to the stoichiometric air-fuel ratio (1: 14.4), the purification performance is significantly reduced, and thus the exhaust gas is exhausted. An oxygen sensor having an output characteristic that reverses between the rich side and the lean side according to the oxygen concentration of the fuel (theoretical air-fuel ratio as a boundary) is provided in the catalyst upstream side exhaust passage, and the output characteristic of the oxygen sensor is used to By increasing / decreasing the supply amount and the like, the mixture ratio is subjected to rich / lean inversion with the stoichiometric air-fuel ratio as a boundary, and feedback control is performed in the vicinity of the stoichiometric air-fuel ratio with good responsiveness.

【0003】ところで、前記触媒は触媒反応による反応
熱が高温となることから、触媒成分がシンタリングされ
たり、触媒担体が過熱化して溶損したり、或いは燃料・
オイル中の不純物等により触媒成分が被毒されたりする
ことがあるため、初期の浄化率を維持できなくなる(劣
化する)場合がある。かかる劣化した状態では、前記排
気有害成分が浄化されずに大気中にそのまま排出される
こととなるので、触媒の劣化の有無を診断して排気有害
成分が大気中に排出されるのを未然に防止する必要があ
る。
By the way, since the reaction heat of the catalyst becomes high due to the catalytic reaction, the catalyst components are sintered, the catalyst carrier is overheated and melted, or the fuel is burned.
Since the catalyst components may be poisoned by impurities in the oil, the initial purification rate may not be maintained (deteriorated) in some cases. In such a deteriorated state, the exhaust harmful component is not purified but is directly discharged into the atmosphere. Therefore, it is diagnosed whether or not the catalyst is deteriorated and the exhaust harmful component is discharged into the atmosphere. It needs to be prevented.

【0004】そこで、触媒の劣化を診断する方法とし
て、例えば、北米自己診断規制等では、触媒の上流側と
下流側とに前記酸素センサを夫々配設し、空燃比制御時
における触媒上流側に設けた酸素センサのリッチ・リー
ン反転周波数と、触媒下流側に設けた酸素センサのリッ
チ・リーン反転周波数との差を検出して、該検出結果に
基づいて触媒の劣化を診断しようとする触媒劣化診断装
置が提案されている。
Therefore, as a method of diagnosing the deterioration of the catalyst, for example, in the North American self-diagnosis regulation, etc., the oxygen sensors are arranged on the upstream side and the downstream side of the catalyst, respectively, and the oxygen sensor is arranged on the upstream side of the catalyst during air-fuel ratio control. Catalyst deterioration that detects the difference between the rich / lean inversion frequency of the oxygen sensor provided and the rich / lean inversion frequency of the oxygen sensor provided downstream of the catalyst, and diagnoses the catalyst deterioration based on the detection result. Diagnostic devices have been proposed.

【0005】つまり、このものは、下流側酸素センサの
反転周波数が上流側酸素センサ反転周波数と略同一であ
る場合には、触媒上流側において所定のリッチ・リーン
反転周波数を有する排気が、触媒が劣化し排気中の酸素
が前記有害成分と反応できず、前記反転周波数を維持し
たままの状態で触媒下流側へ流出しているものと見做し
て、触媒が劣化していると診断する。その一方、触媒が
正常である場合には、触媒上流側において所定のリッチ
・リーン反転周波数を有する排気であっても、触媒によ
り排気中に含まれる有害成分と酸素とが正常に反応する
ため、酸素ストレージ効果により触媒下流側の排気はリ
ッチ・リーン反転傾向の無い略理論空燃比一定の排気と
なって触媒から流出することとなる。したがって、上流
側酸素センサの反転周波数に比して下流側酸素センサ反
転周波数が所定以下に小さい場合には、触媒は正常であ
ると診断するものである(図5参照)。
That is, when the reversal frequency of the downstream oxygen sensor is substantially the same as the reversal frequency of the upstream oxygen sensor, the exhaust gas having a predetermined rich / lean reversal frequency on the upstream side of the catalyst is It is assumed that the catalyst is deteriorated and oxygen in the exhaust gas cannot react with the harmful component and flows out to the downstream side of the catalyst while maintaining the inversion frequency, and it is diagnosed that the catalyst is deteriorated. On the other hand, when the catalyst is normal, even if the exhaust gas has a predetermined rich / lean inversion frequency on the upstream side of the catalyst, the catalyst normally reacts with the harmful components contained in the exhaust gas, Due to the oxygen storage effect, the exhaust gas on the downstream side of the catalyst becomes an exhaust gas having a substantially constant theoretical air-fuel ratio with no tendency to rich / lean inversion and flows out from the catalyst. Therefore, when the downstream oxygen sensor inversion frequency is smaller than a predetermined value as compared with the upstream oxygen sensor inversion frequency, the catalyst is diagnosed to be normal (see FIG. 5).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、例えば
V型機関において、左右バンクの気筒群にそれぞれ連通
して設けられる排気通路のそれぞれに酸素センサを配設
し、左右バンク毎に空燃比制御を行なう場合には、一方
の酸素センサの出力特性が理論空燃比からリッチ側に所
定値以上にズレたところでリッチ・リーン反転を繰り返
し、他方の酸素センサの出力特性が理論空燃比からリー
ン側に所定値以上にズレたところでリッチ・リーン反転
を繰り返すように変化した場合には、排気通路の集合部
において所定値以上にリッチ傾向の排気と所定値以上に
リーン傾向の排気とが合流するため、その空燃比は理論
空燃比近傍の一定の値となってしまう場合がある。
However, in a V-type engine, for example, an oxygen sensor is provided in each of the exhaust passages provided in communication with the cylinder groups of the left and right banks, and air-fuel ratio control is performed for each of the left and right banks. In this case, rich / lean inversion is repeated when the output characteristic of one oxygen sensor deviates from the stoichiometric air-fuel ratio to the rich side by a predetermined value or more, and the output characteristic of the other oxygen sensor changes from the stoichiometric air-fuel ratio to the lean side by the predetermined value. If there is a change such that the rich / lean inversion is repeated at the above deviation, the exhaust gas with a rich tendency above a predetermined value and the exhaust gas with a lean tendency above a predetermined value merge at the collecting portion of the exhaust passage. The fuel ratio may become a constant value near the stoichiometric air-fuel ratio.

【0007】このように、理論空燃比近傍の一定の値と
なった排気が触媒に流入する場合には、触媒の劣化の有
無に無関係に、つまり排気中の酸素と前記有害成分との
反応には無関係に、常に触媒の下流側にもリッチ・リー
ン反転傾向のない略理論空燃比近傍に一定の排気が流出
することになる。このため、触媒が劣化していたとして
も、触媒上流側の酸素センサのリッチ・リーン反転周波
数が高く、触媒下流側の酸素センサのリッチ・リーン反
転傾向が消滅することになる。
As described above, when the exhaust gas having a constant value near the stoichiometric air-fuel ratio flows into the catalyst, regardless of whether the catalyst is deteriorated, that is, in the reaction between oxygen in the exhaust gas and the harmful components, Irrespective of the above, a certain amount of exhaust gas always flows out near the stoichiometric air-fuel ratio where there is no tendency to rich / lean inversion even on the downstream side of the catalyst. Therefore, even if the catalyst is deteriorated, the rich / lean inversion frequency of the oxygen sensor on the upstream side of the catalyst is high, and the rich / lean inversion tendency of the oxygen sensor on the downstream side of the catalyst disappears.

【0008】したがって、上記のような触媒上流側酸素
センサのリッチ・リーン反転周波数と触媒下流側酸素セ
ンサのリッチ・リーン反転周波数を比較して、触媒劣化
を診断する触媒劣化診断方法では、触媒が例え劣化して
いたとしても、触媒は劣化していないと誤診断してしま
う可能性が高かった。本発明は、かかる従来の問題点に
鑑みなされたものであり、例えばV型機関のように右バ
ンク、左バンクのそれぞれの気筒群に連通する排気通路
を2つ有し、該2つの排気通路のそれぞれに酸素センサ
を設け、該それぞれの酸素センサの出力信号に応じて前
記右バンク、左バンクの気筒群毎に空燃比制御を行なう
ものにあって、2つの酸素センサの出力特性が、それぞ
れ理論空燃比を境にリッチ・リーン反対方向に所定値以
上にズレた場合には、触媒劣化診断を禁止することで、
誤診断を防止するようにした内燃機関の排気触媒劣化診
断装置を提供することを目的とする。
Therefore, in the catalyst deterioration diagnosis method for diagnosing catalyst deterioration by comparing the rich / lean inversion frequency of the catalyst upstream side oxygen sensor and the rich / lean inversion frequency of the catalyst downstream side oxygen sensor as described above, Even if it had deteriorated, there was a high possibility that the catalyst would be erroneously diagnosed as not deteriorated. The present invention has been made in view of such conventional problems, and has two exhaust passages communicating with the respective cylinder groups of the right bank and the left bank, such as a V-type engine, and the two exhaust passages. An oxygen sensor is provided for each of the cylinders, and air-fuel ratio control is performed for each of the cylinder groups of the right bank and the left bank according to the output signals of the respective oxygen sensors. When deviation from the stoichiometric air-fuel ratio exceeds the specified value in the rich / lean opposite direction, by prohibiting the catalyst deterioration diagnosis,
An object of the present invention is to provide an exhaust gas catalyst deterioration diagnosing device for an internal combustion engine, which prevents erroneous diagnosis.

【0009】[0009]

【課題を解決するための手段】このため、本発明は、図
1に示すように、多気筒内燃機関の気筒を第1、第2の
2群に分割し、それぞれの群に連通する第1、第2の2
の排気通路を、下流部において合流させて後に、排気浄
化触媒に接続し、排気を浄化しつつ排出するようにした
排気装置Aと、前記第1の排気通路の前記合流部上流側
に配設され第1群への吸入混合気の空燃比を検出する第
1上流側空燃比検出手段Bと、前記第2の排気通路の前
記合流部下流側に配設され第2群への吸入混合気の空燃
比を検出する第2上流側空燃比検出手段Cと、前記排気
浄化触媒の下流側に配設され機関全体の吸入混合気の空
燃比を検出する下流側空燃比検出手段Dと、前記第1上
流側空燃比検出手段Bの検出信号に基づいて前記第1群
の吸入混合気の空燃比を目標空燃比に近づけると共に、
前記第2上流側空燃比検出手段Cの検出信号に基づいて
前記第2群への吸入混合気の空燃比を目標空燃比に近づ
けるように、各群への燃料供給量を増減補正してフィー
ドバック制御する空燃比フィードバック制御手段Eと、
前記空燃比フィードバック制御手段Eによる空燃比制御
時に、前記第1上流側空燃比検出手段Bの検出信号或い
は前記第2上流側空燃比検出手段Cの検出信号と、前記
下流側空燃比検出手段Dの検出信号と、に基づいて前記
排気浄化触媒の劣化診断を行なう触媒劣化診断手段F
と、を含んで構成した内燃機関の排気浄化触媒劣化診断
装置において、前記第1上流側空燃比検出手段Bの空燃
比検出信号と、前記第2上流側空燃比検出手段Cの空燃
比検出信号とが、それぞれ目標空燃比に対してリッチ・
リーン反対方向に所定量以上偏差したときに、前記触媒
劣化診断手段Fによる診断を禁止する触媒劣化診断禁止
手段Gを備えるようにした。
Therefore, according to the present invention, as shown in FIG. 1, a cylinder of a multi-cylinder internal combustion engine is divided into two groups, a first group and a second group, and the first group communicates with each group. , The second 2
And an exhaust device A, which is connected to an exhaust gas purification catalyst after merging the exhaust passages of the first exhaust passage with each other, and exhausts the exhaust gases while purifying the exhaust gas. The exhaust device A is disposed on the upstream side of the merging portion of the first exhaust passage. First upstream side air-fuel ratio detecting means B for detecting the air-fuel ratio of the intake air-fuel mixture to the first group, and intake air-fuel mixture to the second group arranged downstream of the confluence part of the second exhaust passage. Second upstream side air-fuel ratio detecting means C for detecting the air-fuel ratio of the exhaust gas, downstream side air-fuel ratio detecting means D for detecting the air-fuel ratio of the intake air-fuel mixture of the entire engine disposed downstream of the exhaust purification catalyst, While making the air-fuel ratio of the intake air-fuel mixture of the first group close to the target air-fuel ratio based on the detection signal of the first upstream side air-fuel ratio detecting means B,
Based on the detection signal of the second upstream side air-fuel ratio detecting means C, the fuel supply amount to each group is increased / decreased and fed back so that the air-fuel ratio of the intake mixture to the second group approaches the target air-fuel ratio. Air-fuel ratio feedback control means E for controlling,
During the air-fuel ratio control by the air-fuel ratio feedback control means E, the detection signal of the first upstream side air-fuel ratio detection means B or the detection signal of the second upstream side air-fuel ratio detection means C and the downstream side air-fuel ratio detection means D Catalyst deterioration diagnosis means F for performing deterioration diagnosis of the exhaust gas purification catalyst based on the detection signal
And an air-fuel ratio detection signal of the second upstream air-fuel ratio detection means C, And are rich against the target air-fuel ratio.
A catalyst deterioration diagnosis prohibiting means G is provided for prohibiting the diagnosis by the catalyst deterioration diagnosing means F when the deviation from the lean opposite direction exceeds a predetermined amount.

【0010】[0010]

【作用】かかる構成によれば、前記触媒劣化診断禁止手
段により、前記第1上流側空燃比検出手段の空燃比検出
信号と、前記第2上流側空燃比検出手段の空燃比検出信
号とが、それぞれ目標空燃比に対してリッチ・リーン反
対方向に所定量以上偏差したときに、前記触媒劣化診断
手段による診断を禁止する。つまり、前記合流部におい
て、所定値以上にリッチ傾向の排気と、所定値以上にリ
ーン傾向の排気とが合流し結果的に空燃比が理論空燃比
近傍の一定の値となるような場合には、前記第1上流側
空燃比検出手段の検出信号或いは前記第2上流側空燃比
検出手段の検出信号と、前記下流側空燃比検出手段の検
出信号と、に基づいて前記排気浄化触媒の劣化診断を行
なう前記触媒劣化診断手段による触媒劣化診断が禁止さ
れることになるため、誤診断が防止されるようになる。
According to this structure, the catalyst deterioration diagnosis inhibiting means causes the air-fuel ratio detection signal of the first upstream side air-fuel ratio detecting means and the air-fuel ratio detecting signal of the second upstream side air-fuel ratio detecting means to When the deviation from the target air-fuel ratio in the opposite direction to the rich / lean is larger than a predetermined amount, the diagnosis by the catalyst deterioration diagnosis means is prohibited. That is, in the merging portion, when the exhaust gas having a rich tendency above a predetermined value and the exhaust gas having a lean tendency above a predetermined value join together, and as a result, the air-fuel ratio becomes a constant value near the theoretical air-fuel ratio, A deterioration diagnosis of the exhaust gas purification catalyst based on the detection signal of the first upstream side air-fuel ratio detection means or the detection signal of the second upstream side air-fuel ratio detection means and the detection signal of the downstream side air-fuel ratio detection means. Since the catalyst deterioration diagnosis by the catalyst deterioration diagnosis means for performing the above is prohibited, erroneous diagnosis can be prevented.

【0011】[0011]

【実施例】以下に、本発明の一実施例を図面に基づいて
説明する。図2において、V型の機関1にはエアクリー
ナ2から吸気ダクト3、スロットル弁4及び吸気マニホ
ールド5a,5bを介して空気が吸入される。吸気マニ
ホールド5a,5bの各ブランチ部には、各気筒毎に燃
料噴射弁6が設けられている。この燃料噴射弁6は、ソ
レノイドに通電されて開弁し、通電停止されて閉弁する
電磁式燃料噴射弁であって、コントロールユニット20か
らの駆動パルス信号により通電されて開弁し、燃料ポン
プ(図示せず)から圧送されてプレッシャレギュレータ
(図示せず)により所定圧力に制御された燃料を、機関
1に噴射供給する。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, air is drawn into a V-type engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4, and intake manifolds 5a and 5b. A fuel injection valve 6 is provided for each cylinder in each branch portion of the intake manifolds 5a, 5b. The fuel injection valve 6 is an electromagnetic fuel injection valve that is opened by energizing a solenoid, is closed by deenergizing, and is opened by being energized by a drive pulse signal from the control unit 20 to open the fuel pump. Fuel, which is pressure-fed from (not shown) and is controlled to a predetermined pressure by a pressure regulator (not shown), is injected and supplied to the engine 1.

【0012】機関1の各燃焼室には点火栓7が設けられ
ており、これにより火花点火して混合気を着火燃焼させ
る。そして、機関1からは、排気通路8a,8b、その
集合管9、排気浄化触媒としての三元触媒10、排気管1
1、及び図示しない消音器を介して排気が大気中に排出
される。ここで、三元触媒10は前述したように理論空燃
比近傍においてのみ良好に排気中のCO,HCの酸化と
NOX の還元を行って排気を浄化するものである。
A spark plug 7 is provided in each combustion chamber of the engine 1 to spark-ignite and ignite and burn the air-fuel mixture. Then, from the engine 1, exhaust passages 8a, 8b, a collecting pipe 9 thereof, a three-way catalyst 10 as an exhaust purification catalyst, an exhaust pipe 1
Exhaust gas is discharged into the atmosphere through the muffler (not shown). Here, the three-way catalyst 10 is for purifying CO in only satisfactorily exhausted in near stoichiometric air-fuel ratio as described above, the exhaust by performing the reduction of oxidation and NO X of HC.

【0013】コントロールユニット20は、CPU,RO
M,RAM,A/D変換器及び入出力インタフェイス等
を含んで構成されるマイクロコンピュータを備え、各種
センサからの入力信号を受け、後述の如く演算処理し
て、燃料噴射弁6の作動を制御する。前記各種のセンサ
としては、吸気ダクト3中にエアフローメータ12が設け
られていて、機関1の吸入空気流量Qに応じた信号を出
力する。
The control unit 20 includes a CPU, RO
A microcomputer including an M, a RAM, an A / D converter, an input / output interface, and the like is provided, and the input signals from various sensors are received and the arithmetic processing is performed as described below to operate the fuel injection valve 6. Control. As the various sensors, an air flow meter 12 is provided in the intake duct 3 and outputs a signal according to the intake air flow rate Q of the engine 1.

【0014】また、図2で図示しないディストリビュー
タには、クランク角センサ14が内蔵されており、該クラ
ンク角センサ13から機関回転と同期して出力されるクラ
ンク単位角信号を一定時間カウントして、または、クラ
ンク基準角信号の周期を計測して機関回転速度Nを検出
する。そして、排気通路8a,8b、及び三元触媒10の
下流側の排気通路11には、それぞれ空燃比検出手段とし
ての酸素センサ14a,14b,14cが設けられている。こ
れら酸素センサ14a〜14cは、排気中の酸素濃度に応じ
て(理論空燃比を境に)リッチ側とリーン側とに反転す
る出力特性を有するセンサである。
A crank angle sensor 14 is built in a distributor (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 13 in synchronization with engine rotation is counted for a certain period of time. Alternatively, the engine rotation speed N is detected by measuring the cycle of the crank reference angle signal. Oxygen sensors 14a, 14b, 14c as air-fuel ratio detecting means are provided in the exhaust passages 8a, 8b and the exhaust passage 11 on the downstream side of the three-way catalyst 10, respectively. These oxygen sensors 14a to 14c are sensors having an output characteristic that they are inverted to the rich side and the lean side (at the stoichiometric air-fuel ratio) according to the oxygen concentration in the exhaust gas.

【0015】なお、コントロールユニット20では、前記
酸素センサ14a,14bの出力値に基づいて、各バンクに
おける燃焼用混合気の空燃比を目標空燃比(理論空燃
比)を中心として比例積分制御によりフィードバック制
御するようになっている。ここにおいて、コントロール
ユニット20に内蔵されたマイクロコンピュータのCPU
は、概略以下のような方法で演算処理を行ない、機関1
への燃料噴射を制御する。
In the control unit 20, based on the output values of the oxygen sensors 14a and 14b, the air-fuel ratio of the air-fuel mixture for combustion in each bank is fed back by proportional integral control centering on the target air-fuel ratio (theoretical air-fuel ratio). It is designed to be controlled. Here, the CPU of the microcomputer built in the control unit 20
Will perform arithmetic processing in the following manner.
Control the fuel injection to the.

【0016】すなわち、該コントロールユニット20は、
エアフローメータ13からの電圧信号から求められる吸入
空気流量Qと、クランク角センサ14からの信号から求め
られるエンジン回転速度Nとから各バンク毎に基本燃料
噴射量Tp=c×Q/N(cは定数)を演算すると共
に、低水温時に強制的にリッチ側に補正する水温補正係
数Kw等や、空燃比フィードバック補正係数αR (或い
はαL )等により、各バンク毎に最終的な有効燃料噴射
量TeR (TeL )=Tp×(1+Kw+・・・)×α
R (或いはαL )を演算する。
That is, the control unit 20 is
From the intake air flow rate Q obtained from the voltage signal from the air flow meter 13 and the engine rotation speed N obtained from the signal from the crank angle sensor 14, the basic fuel injection amount Tp = c × Q / N (c is (Constant) and the final effective fuel injection for each bank by the water temperature correction coefficient Kw, etc. for forcibly correcting to the rich side at low water temperature, the air-fuel ratio feedback correction coefficient α R (or α L ), etc. Quantity Te R (Te L ) = Tp × (1 + Kw + ...) × α
Calculate R (or α L ).

【0017】ここで、前記基本燃料噴射量Tpは、混合
気の空燃比が理論空燃比となるように計算上設定される
ものであるが、実際の空燃比は燃料圧力のバラツキや燃
料噴射弁6の個々のバラツキ等に起因して理論空燃比か
らズレてしまうため、前記酸素センサ14a,14bの出力
に基づいて比例積分制御によりフィードバック制御し
て、実際の空燃比が理論空燃比となるように基本燃料噴
射量Tpを有効燃料噴射量TeR (TeL )として補正
するのである。
Here, the basic fuel injection amount Tp is set by calculation so that the air-fuel ratio of the air-fuel mixture becomes the stoichiometric air-fuel ratio. However, the actual air-fuel ratio is different in the fuel pressure and the fuel injection valve. Since the deviation from the stoichiometric air-fuel ratio is caused by the individual variations of 6 and the like, feedback control is performed by proportional-plus-integral control based on the outputs of the oxygen sensors 14a and 14b so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio. In addition, the basic fuel injection amount Tp is corrected as the effective fuel injection amount Te R (Te L ).

【0018】したがって、空燃比フィードバック補正係
数αR (或いはαL )の大きさが、実際の空燃比と理論
空燃比とのズレ量の大きさに相当する。そしてまた、空
燃比フィードバック補正係数αR (或いはαL )の大き
さは、酸素センサ14a,14bの出力特性が変化してリッ
チ・リーン反転の境が理論空燃比からズレた場合にも、
そのズレ量に応じた値となる。
Therefore, the magnitude of the air-fuel ratio feedback correction coefficient α R (or α L ) corresponds to the magnitude of the deviation amount between the actual air-fuel ratio and the theoretical air-fuel ratio. Further, the magnitude of the air-fuel ratio feedback correction coefficient α R (or α L ) is also determined when the output characteristics of the oxygen sensors 14a and 14b change and the boundary between rich and lean inversions deviates from the theoretical air-fuel ratio.
The value depends on the amount of deviation.

【0019】ところで、機関1の各気筒に設けられる点
火栓20は、予めコントロールユニット50に基本燃料噴射
量Tpと機関回転速度Nとに基づいて予めマップに設定
記憶されている点火タイミング制御信号がパワートラン
ジスタに送られ、所定の点火タイミングで点火される。
このように、コントロールユニット20により、実際の空
燃比が理論空燃比近傍に制御された状態(酸素センサ14
a,14bの出力特性も正常状態)では、前記三元触媒10
の浄化効率が低下することなく、良好に排気が浄化され
ることとなる。
By the way, the ignition plug 20 provided in each cylinder of the engine 1 has an ignition timing control signal previously set and stored in a map in the control unit 50 based on the basic fuel injection amount Tp and the engine rotation speed N. It is sent to the power transistor and ignited at a predetermined ignition timing.
In this way, the control unit 20 controls the actual air-fuel ratio to be near the stoichiometric air-fuel ratio (oxygen sensor 14
When the output characteristics of a and 14b are also normal), the three-way catalyst 10
Exhaust gas can be satisfactorily purified without lowering the purification efficiency.

【0020】しかしながら、前記三元触媒10は触媒反応
による反応熱が高温となることから、触媒成分がシンタ
リングされたり、触媒担体が過熱化して溶損したり、或
いは燃料・オイル中の不純物等により触媒成分が被毒さ
れたりすることがあるため、初期の浄化性能を維持でき
なくなる場合があり、この場合には前記排気有害成分が
浄化されずに大気中にそのまま排出されることとなる。
However, since the reaction heat of the three-way catalyst 10 becomes high due to the catalytic reaction, the catalyst components are sintered, the catalyst carrier is overheated and melted, or impurities such as fuel and oil are generated. Since the catalyst component may be poisoned, the initial purification performance may not be maintained, and in this case, the exhaust harmful component is not purified but is directly discharged to the atmosphere.

【0021】そのため、コントロールユニット20では、
前記空燃比制御時における三元触媒10の上流側酸素セン
サ14a,14bのリッチ・リーン反転周波数と、下流側の
酸素センサ14cのリッチ・リーン反転周波数との差を検
出して、既述したような方法により触媒の劣化を診断す
るようになっている。ところで、例えば、前記酸素セン
サ14aの出力特性が理論空燃比からリッチ側に所定値以
上にズレたところでリッチ・リーン反転を繰り返し、前
記酸素センサ14bの出力特性が理論空燃比からリーン側
に所定値以上にズレたところでリッチ・リーン反転を繰
り返すように変化した場合には、所定値以上にリッチ傾
向の排気と所定値以上にリーン傾向の排気とが集合部9
において合流するため、その空燃比がリッチ・リーン反
転傾向のない理論空燃比近傍の一定の値となる場合があ
る。
Therefore, in the control unit 20,
As described above, the difference between the rich / lean inversion frequency of the upstream oxygen sensors 14a and 14b of the three-way catalyst 10 and the rich / lean inversion frequency of the downstream oxygen sensor 14c during the air-fuel ratio control is detected. The deterioration of the catalyst is diagnosed by various methods. By the way, for example, when the output characteristic of the oxygen sensor 14a deviates from the stoichiometric air-fuel ratio to the rich side by a predetermined value or more, rich / lean inversion is repeated, and the output characteristic of the oxygen sensor 14b changes from the stoichiometric air-fuel ratio to the lean side by a predetermined value. When the change occurs such that the rich / lean inversion is repeated after the deviation, the exhaust gas having a rich tendency above a predetermined value and the exhaust gas having a lean tendency above a predetermined value are collected.
In some cases, the air-fuel ratio becomes a constant value in the vicinity of the theoretical air-fuel ratio without the tendency of rich / lean reversal because of the merge.

【0022】この場合には、既述したように、三元触媒
10が劣化していたとしても、三元触媒10の上流側の酸素
センサ14a,14bのリッチ・リーン反転周波数が高く、
三元触媒10の下流側の酸素センサ14cのリッチ・リーン
反転傾向が消滅してしまうこととなるため、上記のよう
な触媒上流側酸素センサのリッチ・リーン反転周波数と
触媒下流側酸素センサのリッチ・リーン反転周波数を比
較して、触媒劣化を診断する触媒劣化診断においては、
触媒は劣化していないと誤診断してしまう可能性が高く
なる。
In this case, as described above, the three-way catalyst is used.
Even if 10 is deteriorated, the rich / lean inversion frequency of the oxygen sensors 14a and 14b on the upstream side of the three-way catalyst 10 is high,
Since the rich / lean inversion tendency of the oxygen sensor 14c on the downstream side of the three-way catalyst 10 disappears, the rich / lean inversion frequency of the catalyst upstream side oxygen sensor and the richness of the catalyst downstream side oxygen sensor as described above are eliminated.・ In the catalyst deterioration diagnosis that compares the lean inversion frequency and diagnoses the catalyst deterioration,
There is a high possibility that the catalyst will be erroneously diagnosed as not deteriorated.

【0023】このため、コントロールユニット20では、
酸素センサ14a,14bの所定値以上の出力特性変化、す
なわち酸素センサ14a,14bのリッチ・リーン反転の境
が理論空燃比からそれぞれリッチ・リーン反対方向に所
定値以上にズレたことにより、酸素センサ14aに基づい
て決定される空燃比フィードバック補正係数αR と、酸
素センサ14bに基づいて決定される空燃比フィードバッ
ク補正係数αL とがそれぞれリッチ・リーン反対方向に
所定値以上にズレたときには、触媒劣化診断を禁止する
ようになっている。
Therefore, in the control unit 20,
The oxygen sensor 14a, 14b changes its output characteristics by a predetermined value or more, that is, the boundary of rich / lean inversion of the oxygen sensor 14a, 14b deviates from the theoretical air-fuel ratio by a predetermined value or more in the opposite direction to rich / lean. When the air-fuel ratio feedback correction coefficient α R determined based on 14a and the air-fuel ratio feedback correction coefficient α L determined based on the oxygen sensor 14b respectively deviate in the opposite rich / lean directions by a predetermined value or more, Deterioration diagnosis is prohibited.

【0024】以下に、コントロールユニット20が行なう
触媒劣化診断の禁止制御について、図3に示すフローチ
ャートに従って説明する。ステップ1(図では、S1と
記してある。以下、同様)では、空燃比制御実行中か否
かを判断する。YESの場合にはステップ2へ進み、N
Oの場合には本フローを終了する。
The inhibition control of the catalyst deterioration diagnosis performed by the control unit 20 will be described below with reference to the flowchart shown in FIG. In step 1 (denoted as S1 in the figure; the same applies hereinafter), it is determined whether or not air-fuel ratio control is being executed. If yes, go to step 2
In the case of O, this flow ends.

【0025】ステップ2では、右バンク側の排気通路8
aに配設された酸素センサ14aの検出信号に基づいて決
定される空燃比フィードバック補正係数αR の平均値A
αRを求める。ステップ3では、左バンク側の排気通路
8bに配設された酸素センサ14bの検出信号に基づいて
決定される空燃比フィードバック補正係数αL の平均値
AαLを求める。
In step 2, the exhaust passage 8 on the right bank side
The average value A of the air-fuel ratio feedback correction coefficient α R , which is determined based on the detection signal of the oxygen sensor 14a provided in a.
Find α R. In step 3, the average value Aα L of the air-fuel ratio feedback correction coefficient α L determined based on the detection signal of the oxygen sensor 14b arranged in the exhaust passage 8b on the left bank side is obtained.

【0026】ステップ4では、前記AαR を基準となる
値(ここでは100)から減算して、判定値RA(=1
00−AαR )を求め、ステップ5へ進む。ステップ5
では、前記判定値RAの絶対値|RA|と、予め設定さ
れている比較値Aとを比較する。|RA|<Aの場合に
は、ステップ11へ進み触媒劣化診断の実行を許可する。
|RA|≧Aの場合には、ステップ6へ進む。
In step 4, the Aα R is subtracted from a reference value (100 in this case) to obtain a judgment value RA (= 1).
00-Aα R ) and proceeds to step 5. Step 5
Then, the absolute value | RA | of the determination value RA is compared with a preset comparison value A. When | RA | <A, the routine proceeds to step 11, where execution of catalyst deterioration diagnosis is permitted.
If | RA | ≧ A, the process proceeds to step 6.

【0027】ステップ6では、前記AαL を基準となる
値(ここでは100)から減算して、判定値LA(=1
00−AαL )を求め、ステップ7へ進む。ステップ7
では、前記判定値LAの絶対値|LA|と予め設定され
ている比較値Aとを比較する。|LA|<Aの場合に
は、ステップ11へ進み触媒劣化診断の実行を許可する。
|LA|≧Aの場合には、ステップ8へ進む。
In step 6, the Aα L is subtracted from a reference value (100 in this case) to obtain a judgment value LA (= 1.
00-Aα L ), and proceeds to step 7. Step 7
Then, the absolute value | LA | of the judgment value LA is compared with a preset comparison value A. When | LA | <A, the routine proceeds to step 11, where execution of the catalyst deterioration diagnosis is permitted.
If | LA | ≧ A, the process proceeds to step 8.

【0028】ステップ8では、前記判定値RAと判定値
LAとを加算し、判定値TA(=RA+LA)を求め
る。ステップ9では、前記判定値TAの絶対値|TA|
と、予め設定されている比較値Bとを比較する。|TA
|>Aの場合には、ステップ11へ進み触媒劣化診断の実
行を許可する。|TA|≦Aの場合には、ステップ10へ
進み触媒劣化診断の実行を禁止する(図4参照)。
At step 8, the judgment value RA and the judgment value LA are added to obtain a judgment value TA (= RA + LA). In step 9, the absolute value of the judgment value TA | TA |
Is compared with a preset comparison value B. | TA
If |> A, the process proceeds to step 11 to permit execution of catalyst deterioration diagnosis. If | TA | ≦ A, the routine proceeds to step 10 to prohibit the catalyst deterioration diagnosis (see FIG. 4).

【0029】このように、本実施例によれば、酸素セン
サ14a,14bの所定値以上の出力特性変化、すなわち酸
素センサ14a,14bのリッチ・リーン反転の境が理論空
燃比からそれぞれリッチ・リーン反対方向に所定値以上
にズレたことにより、酸素センサ14aに基づいて決定さ
れる空燃比フィードバック補正係数αR と、酸素センサ
14bに基づいて決定される空燃比フィードバック補正係
数αL とがそれぞれリッチ・リーン反対方向に所定値以
上にズレたときには、触媒劣化診断を禁止するようにし
たので、前記酸素センサ14aの出力特性が理論空燃比か
らリッチ側にズレたところでリッチ・リーン反転を繰り
返し、前記酸素センサ14bの出力特性が理論空燃比から
リーン側にズレたところでリッチ・リーン反転を繰り返
すように変化した場合に、リッチ傾向の排気とリーン傾
向の排気とが集合部9において合流し、空燃比がリッチ
・リーン反転傾向のない理論空燃比近傍の一定の値とな
り触媒劣化診断に誤診断を招くような場合を排除するこ
とができ、精度良く触媒劣化診断が行なえるようにな
る。
As described above, according to the present embodiment, the change in the output characteristics of the oxygen sensors 14a and 14b beyond a predetermined value, that is, the boundary between the rich and lean inversions of the oxygen sensors 14a and 14b is the rich lean lean from the theoretical air-fuel ratio. The air-fuel ratio feedback correction coefficient α R determined based on the oxygen sensor 14a due to the deviation in the opposite direction by a predetermined value or more, and the oxygen sensor
When the air-fuel ratio feedback correction coefficient α L, which is determined based on 14b, deviates from the rich / lean opposite direction by a predetermined value or more, the catalyst deterioration diagnosis is prohibited, so that the output characteristic of the oxygen sensor 14a is changed. When the lean / lean inversion is repeated when the stoichiometric air-fuel ratio deviates to the rich side, and the output characteristic of the oxygen sensor 14b changes such that the rich / lean inversion repeats when the stoichiometric air-fuel ratio deviates to the lean side, a rich tendency occurs. Exhaust gas and lean exhaust gas join together at the collecting portion 9 and the air-fuel ratio becomes a constant value in the vicinity of the theoretical air-fuel ratio with no rich-lean inversion tendency, resulting in erroneous diagnosis of catalyst deterioration diagnosis. Therefore, the catalyst deterioration can be accurately diagnosed.

【0030】なお、本実施例では、三元触媒10の上流側
の酸素センサ14a,14bのリッチ・リーン反転周波数
と、三元触媒10の下流側の酸素センサ14cのリッチ・リ
ーン反転周波数と、を比較することで触媒劣化診断を行
なう触媒劣化診断方法について説明したが、勿論、上流
側の酸素センサと下流側の酸素センサのリッチ・リーン
反転特性に基づいて(例えば反転時間等を比較すること
で)触媒劣化を診断する他の触媒劣化診断方法にも適用
可能である。また、V型の機関について説明したが、こ
れに限定されるものではなく、水平対向型は勿論、直列
型であっても気筒群を2つに分割して気筒群毎に空燃比
制御を行なうものであれば、本実施例が適用できること
は自明である。
In the present embodiment, the rich / lean reversal frequency of the oxygen sensors 14a, 14b on the upstream side of the three-way catalyst 10 and the rich / lean reversal frequency of the oxygen sensor 14c on the downstream side of the three-way catalyst 10, Although the catalyst deterioration diagnosis method for diagnosing the catalyst deterioration is explained by comparing the above, of course, based on the rich / lean inversion characteristics of the upstream oxygen sensor and the downstream oxygen sensor (for example, comparing the inversion time etc. Also, it is applicable to other catalyst deterioration diagnosis methods for diagnosing catalyst deterioration. Further, although the V-type engine has been described, the present invention is not limited to this, and the cylinder group is divided into two and the air-fuel ratio control is performed for each cylinder group not only in the horizontally opposed type but also in the series type. It is obvious that the present embodiment can be applied if it is one.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
前記触媒劣化診断禁止手段により、前記第1上流側空燃
比検出手段の空燃比検出信号と、前記第2上流側空燃比
検出手段の空燃比検出信号とが、それぞれ目標空燃比に
対してリッチ・リーン反対方向に所定量以上偏差したと
きに、前記触媒劣化診断手段による診断を禁止する。つ
まり、前記合流部において、所定値以上にリッチ傾向の
排気と、所定値以上にリーン傾向の排気とが合流し結果
的に空燃比が理論空燃比近傍の一定の値となるような場
合には、前記第1上流側空燃比検出手段の検出信号或い
は前記第2上流側空燃比検出手段の検出信号と、前記下
流側空燃比検出手段の検出信号と、に基づいて前記排気
浄化触媒の劣化診断を行なう前記触媒劣化診断手段によ
る触媒劣化診断が禁止され、確実に誤診断を防止するこ
とができる。
As described above, according to the present invention,
By the catalyst deterioration diagnosis prohibiting means, the air-fuel ratio detection signal of the first upstream side air-fuel ratio detecting means and the air-fuel ratio detecting signal of the second upstream side air-fuel ratio detecting means are respectively rich with respect to the target air-fuel ratio. When the deviation from the lean opposite direction exceeds a predetermined amount, the diagnosis by the catalyst deterioration diagnosis means is prohibited. That is, in the merging portion, when the exhaust gas having a rich tendency above a predetermined value and the exhaust gas having a lean tendency above a predetermined value join together, and as a result, the air-fuel ratio becomes a constant value near the theoretical air-fuel ratio, A deterioration diagnosis of the exhaust gas purification catalyst based on the detection signal of the first upstream side air-fuel ratio detection means or the detection signal of the second upstream side air-fuel ratio detection means and the detection signal of the downstream side air-fuel ratio detection means. The catalyst deterioration diagnosis by the catalyst deterioration diagnosis means for performing the above is prohibited, and erroneous diagnosis can be surely prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる構成を示すブロック図。FIG. 1 is a block diagram showing a configuration according to the present invention.

【図2】 本発明にかかる一実施例を示す全体構成図。FIG. 2 is an overall configuration diagram showing an embodiment according to the present invention.

【図3】 本発明にかかる一実施例の触媒劣化診断禁止
制御を説明するフローチャート。
FIG. 3 is a flowchart illustrating a catalyst deterioration diagnosis prohibition control according to an embodiment of the present invention.

【図4】 本発明にかかる判定値RA,LA,TA、及
び比較値A,Bを説明する図。
FIG. 4 is a diagram illustrating determination values RA, LA, TA and comparison values A, B according to the present invention.

【図5】 触媒上流側と触媒下流側に設けた2つの酸素
センサの触媒劣化時におけるリッチ・リーン反転特性を
説明する図。
FIG. 5 is a diagram for explaining the rich / lean inversion characteristics of the two oxygen sensors provided on the catalyst upstream side and the catalyst downstream side when the catalyst is deteriorated.

【符号の説明】[Explanation of symbols]

1 機関 6 燃料噴射弁 8a 排気通路 8b 排気通路 9 集合部 10 三元触媒 13 エアフロメータ 14a 酸素センサ 14b 酸素センサ 14c 酸素センサ 20 コントロールユニット 1 Engine 6 Fuel Injection Valve 8a Exhaust Passage 8b Exhaust Passage 9 Assembly 10 Three Way Catalyst 13 Air Flow Meter 14a Oxygen Sensor 14b Oxygen Sensor 14c Oxygen Sensor 20 Control Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多気筒内燃機関の気筒を第1、第2の2群
に分割し、それぞれの群に連通する第1、第2の2の排
気通路を、下流部において合流させて後に、排気浄化触
媒に接続し、排気を浄化しつつ排出するようにした排気
装置と、 前記第1の排気通路の前記合流部上流側に配設され第1
群への吸入混合気の空燃比を検出する第1上流側空燃比
検出手段と、 前記第2の排気通路の前記合流部下流側に配設され第2
群への吸入混合気の空燃比を検出する第2上流側空燃比
検出手段と、 前記排気浄化触媒の下流側に配設され機関全体の吸入混
合気の空燃比を検出する下流側空燃比検出手段と、 前記第1上流側空燃比検出手段の検出信号に基づいて前
記第1群の吸入混合気の空燃比を目標空燃比に近づける
と共に、前記第2上流側空燃比検出手段の検出信号に基
づいて前記第2群への吸入混合気の空燃比を目標空燃比
に近づけるように、各群への燃料供給量を増減補正して
フィードバック制御する空燃比フィードバック制御手段
と、 前記空燃比フィードバック制御手段による空燃比制御時
に、前記第1上流側空燃比検出手段の検出信号或いは前
記第2上流側空燃比検出手段の検出信号と、前記下流側
空燃比検出手段の検出信号と、に基づいて前記排気浄化
触媒の劣化診断を行なう触媒劣化診断手段と、 を含んで構成した内燃機関の排気浄化触媒劣化診断装置
において、 前記第1上流側空燃比検出手段の空燃比検出信号と、前
記第2上流側空燃比検出手段の空燃比検出信号とが、そ
れぞれ目標空燃比に対してリッチ・リーン反対方向に所
定量以上偏差したときに、前記触媒劣化診断手段による
診断を禁止する触媒劣化診断禁止手段を備えたことを特
徴とする内燃機関の排気浄化触媒劣化診断装置。
1. A cylinder of a multi-cylinder internal combustion engine is divided into two groups, a first group and a second group, and first and second exhaust passages communicating with the respective groups are joined at a downstream portion, and thereafter, An exhaust device connected to an exhaust gas purification catalyst for exhausting the exhaust gas while purifying the exhaust gas; and an exhaust device arranged upstream of the merging portion of the first exhaust passage.
A first upstream side air-fuel ratio detecting means for detecting an air-fuel ratio of the intake air-fuel mixture into the group; and a second upstream side air-fuel ratio detecting means arranged downstream of the merging portion of the second exhaust passage.
Second upstream air-fuel ratio detection means for detecting the air-fuel ratio of the intake air-fuel mixture to the group, and downstream air-fuel ratio detection for detecting the air-fuel ratio of the intake air-fuel mixture of the entire engine arranged downstream of the exhaust purification catalyst. And a detection signal of the second upstream side air-fuel ratio detection means while making the air-fuel ratio of the intake air-fuel mixture of the first group approach the target air-fuel ratio based on the detection signal of the first upstream side air-fuel ratio detection means. Air-fuel ratio feedback control means for performing feedback control by increasing or decreasing the fuel supply amount to each group so that the air-fuel ratio of the intake air-fuel mixture to the second group approaches the target air-fuel ratio on the basis of the air-fuel ratio feedback control. At the time of air-fuel ratio control by means, based on the detection signal of the first upstream side air-fuel ratio detecting means or the detection signal of the second upstream side air-fuel ratio detecting means, and the detection signal of the downstream side air-fuel ratio detecting means, Exhaust purification touch In the exhaust gas purification catalyst deterioration diagnosing device for an internal combustion engine, which comprises a catalyst deterioration diagnosing means for diagnosing deterioration of the air-fuel ratio, an air-fuel ratio detection signal of the first upstream air-fuel ratio detecting means, and a second upstream air-fuel ratio. And a catalyst deterioration diagnosis prohibiting means for prohibiting the diagnosis by the catalyst deterioration diagnosing means when the air-fuel ratio detection signal of the detecting means deviates from the target air-fuel ratio by a predetermined amount or more in the opposite rich / lean directions. An exhaust gas purification catalyst deterioration diagnosing device for an internal combustion engine.
JP5210304A 1993-08-25 1993-08-25 Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine Pending JPH0763045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210304A JPH0763045A (en) 1993-08-25 1993-08-25 Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210304A JPH0763045A (en) 1993-08-25 1993-08-25 Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0763045A true JPH0763045A (en) 1995-03-07

Family

ID=16587194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210304A Pending JPH0763045A (en) 1993-08-25 1993-08-25 Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0763045A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288890B1 (en) 1998-04-21 2001-09-11 Matsushita Electric Industrial Co., Ltd. Capacitor and its manufacturing method
US6387150B1 (en) 1999-02-16 2002-05-14 Showa Denko K.K. Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
EP1302633A2 (en) 2001-10-15 2003-04-16 Nissan Motor Co., Ltd. Deterioration diagnosis of exhaust gas purification catalyst for internal combustion engine
WO2003050829A1 (en) 2001-12-10 2003-06-19 Showa Denko K. K. Niobium alloy, sintered body thereof, and capacitor using the same
US7012798B2 (en) 2001-08-22 2006-03-14 Showa Denka K.K. Capacitor
EP1918950A2 (en) 1999-02-16 2008-05-07 Showa Denko Kabushiki Kaisha Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
WO2009110170A1 (en) * 2008-03-05 2009-09-11 Toyota Jidosha Kabushiki Kaisha Exhaust system diagnostic apparatus of internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288890B1 (en) 1998-04-21 2001-09-11 Matsushita Electric Industrial Co., Ltd. Capacitor and its manufacturing method
US6751833B2 (en) 1998-04-21 2004-06-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing laminated capacitors
US6387150B1 (en) 1999-02-16 2002-05-14 Showa Denko K.K. Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
US6884277B2 (en) 1999-02-16 2005-04-26 Showa Denko K.K. Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
EP1918950A2 (en) 1999-02-16 2008-05-07 Showa Denko Kabushiki Kaisha Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
US7012798B2 (en) 2001-08-22 2006-03-14 Showa Denka K.K. Capacitor
EP1302633A2 (en) 2001-10-15 2003-04-16 Nissan Motor Co., Ltd. Deterioration diagnosis of exhaust gas purification catalyst for internal combustion engine
US6694726B2 (en) 2001-10-15 2004-02-24 Nissan Motor Co., Ltd. Deterioration diagnosis of exhaust gas purification catalyst for internal combustion engine
WO2003050829A1 (en) 2001-12-10 2003-06-19 Showa Denko K. K. Niobium alloy, sintered body thereof, and capacitor using the same
WO2009110170A1 (en) * 2008-03-05 2009-09-11 Toyota Jidosha Kabushiki Kaisha Exhaust system diagnostic apparatus of internal combustion engine

Similar Documents

Publication Publication Date Title
JP3577728B2 (en) Air-fuel ratio control device for internal combustion engine
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JP3622279B2 (en) Fuel supply control device for internal combustion engine
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP4877610B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP5067509B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
US20020073965A1 (en) Device for and method of controlling air-fuel ratio of internal combustion engine
JP2001241319A (en) Diagnostic device for engine
JPH0763045A (en) Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
US6675574B2 (en) Control unit for internal combustion engine
JP4031887B2 (en) Engine air-fuel ratio control apparatus and method
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
CN105189991B (en) The control device of explosive motor
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JPH06294342A (en) Air-fuel ratio feedback controller of internal combustion engine
JPH0772514B2 (en) Secondary air introduction abnormality detection device
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP3601210B2 (en) Engine air-fuel ratio control device
JP4604361B2 (en) Control device for internal combustion engine
JP2650069B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3879342B2 (en) Exhaust gas purification device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JPH0518235A (en) Secondary air control device for internal combustion engine