[go: up one dir, main page]

JPH0761412B2 - Ultrapure water production system - Google Patents

Ultrapure water production system

Info

Publication number
JPH0761412B2
JPH0761412B2 JP62183349A JP18334987A JPH0761412B2 JP H0761412 B2 JPH0761412 B2 JP H0761412B2 JP 62183349 A JP62183349 A JP 62183349A JP 18334987 A JP18334987 A JP 18334987A JP H0761412 B2 JPH0761412 B2 JP H0761412B2
Authority
JP
Japan
Prior art keywords
porous membrane
water vapor
gas
membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62183349A
Other languages
Japanese (ja)
Other versions
JPS6427619A (en
Inventor
務 馬場
耕一 千野
清美 船橋
一道 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62183349A priority Critical patent/JPH0761412B2/en
Publication of JPS6427619A publication Critical patent/JPS6427619A/en
Publication of JPH0761412B2 publication Critical patent/JPH0761412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超純水製造装置に係り、特に、半導体製造業で
の使用に好適な、0.1μm以下の微粒子含有量、数十個
/cm3以下の超純水製造装置に関する。
Description: TECHNICAL FIELD The present invention relates to an ultrapure water production system, and in particular, it is suitable for use in the semiconductor manufacturing industry, and has a fine particle content of 0.1 μm or less, tens of particles / cm. It relates to an ultrapure water production system of 3 or less.

〔従来の技術〕[Conventional technology]

従来、非多孔質膜はガス分離に用いられており、ガス供
給側は透過側の圧力差を調整して混合ガスの製造に利用
されていたが、蒸気のみを選択的に透過させた後、凝縮
させ純水として利用するというアイデアは皆無であつ
た。最近、ガス分離膜そのものと分離機構の解明が進む
につれ、水蒸気を比較的容易に抜けることがわかつて来
た。しかし、非多孔質膜を蒸気−蒸気系に適用し、何ら
かの装置として実用化した例は無い(特開昭54−130483
号公報)。
Conventionally, non-porous membranes have been used for gas separation, the gas supply side was used to produce a mixed gas by adjusting the pressure difference on the permeate side, but after selectively permeating only vapor, There was no idea to condense and use it as pure water. Recently, as the gas separation membrane itself and the separation mechanism have been elucidated, it has become known that water vapor can be relatively easily eliminated. However, there is no example in which a non-porous membrane is applied to a vapor-steam system and put into practical use as any device (Japanese Patent Laid-Open No. 54-130483).
Issue).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、ガス分離そのものについてであり、純
水を作ること、即ち、水蒸気を選択的に透過させ強制的
に凝縮させるという点について考慮は無かつた。また、
別の従来技術は、非多孔質膜を用いる逆侵透膜分離法が
あるが、こちらは直接液と膜とが接触している関係上、
溶液中の微粒子が膜に捕足されることに帰因する目詰ま
りの問題を回避することが困難であつた。また、処理量
を上げるためには、十ないし三十気圧と高圧で処理する
必要があつた。この高圧が溶液中の微粒子を透過側へ押
しやることとなり、予想以上に大きな粒子によつて汚染
されるという問題もあつた。それで、逆浸透膜分離法を
用いても、0.1μm前後の微粒子数を三十ないし五十個
/cm3程度にまで除去するのが限界であつた。
The above-mentioned prior art is concerned with gas separation itself, and there is no consideration of producing pure water, that is, selectively permeating water vapor and forcibly condensing it. Also,
Another conventional technique is a reverse permeable membrane separation method using a non-porous membrane, but this is because of the direct contact between the liquid and the membrane.
It has been difficult to avoid the problem of clogging due to the trapping of fine particles in the solution by the membrane. Further, in order to increase the treatment amount, it was necessary to treat at a high pressure of 10 to 30 atm. This high pressure pushes the fine particles in the solution toward the permeate side, and there is also a problem that the particles are contaminated by larger particles than expected. Therefore, even if the reverse osmosis membrane separation method is used, the limit is that the number of fine particles around 0.1 μm is removed to about 30 to 50 particles / cm 3 .

本発明の目的は、微粒子の含有量を著しく少なくでき、
水蒸気分離手段における処理量を増大できる超純水製造
装置を提供することにある。
The object of the present invention is to significantly reduce the content of fine particles,
An object of the present invention is to provide an ultrapure water production system capable of increasing the amount of treatment in the water vapor separation means.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成する本発明の特徴は、水蒸気を発生さ
せる蒸気発生手段と、前記蒸気発生手段から導かれた前
記水蒸気を透過させる非多孔質膜を有する水蒸気分離手
段と、前記非多孔質膜を透過した前記水蒸気を冷却する
手段と、前記非多孔質膜を境に分離された前記水蒸気分
離手段内における前記水蒸気導入側の第1領域の全圧と
前記水蒸気透過側の第2領域の全圧との差が前記非多孔
質膜の耐え得る差圧以上にならないように、前記水蒸気
より沸点の低い気体によって前記第2領域の圧力を調節
する手段と、を備えたことにある。
The characteristics of the present invention to achieve the above-mentioned object are steam generating means for generating steam, steam separating means having a non-porous membrane for permeating the steam introduced from the steam generating means, and the non-porous membrane. Means for cooling the water vapor that has permeated through the water vapor, and the total pressure of the first area on the water vapor introduction side and the second area on the water vapor permeation side in the water vapor separation means separated by the non-porous membrane as a boundary. And a means for adjusting the pressure in the second region with a gas having a boiling point lower than that of the water vapor so that the difference from the pressure does not exceed the pressure difference that the non-porous membrane can withstand.

〔作用〕[Action]

水蒸気を気体中に配置された非多孔質膜に導くので非多
孔質膜を透過する微粒子の量が著しく減少する。また、
第1領域の全圧と第2領域の全圧との差が非多孔質膜の
耐え得る差圧以上にならないように、水蒸気より沸点の
低い気体によって第2領域の圧力を調節しているので、
非多孔質膜を薄くでき、かつ非多孔質膜の透過面積が減
少しない。非多孔質膜を薄くできて非多孔質膜の透過面
積が減少しないので、水蒸気分離手段における処理量を
増大できる。
Since the water vapor is guided to the non-porous membrane arranged in the gas, the amount of fine particles that permeate the non-porous membrane is significantly reduced. Also,
Since the pressure difference between the total pressure in the first region and the total pressure in the second region does not exceed the pressure difference that the non-porous membrane can withstand, the pressure in the second region is adjusted by the gas having a lower boiling point than that of water vapor. ,
The non-porous membrane can be made thin, and the permeation area of the non-porous membrane does not decrease. Since the non-porous membrane can be made thin and the permeation area of the non-porous membrane does not decrease, the throughput of the steam separation means can be increased.

〔実施例〕〔Example〕

水中に微粒子を取り除き超純水を得るためには、微粒子
以下の孔径を持つ膜を用いれば可能であるが、膜はかな
りフレキシブルであり現実には完全除去は困難である。
一つには溶液と膜とが直接接しているため、微粒子を膜
へ押しやり一種の目詰まり状態で無理に用いているよう
な状態が局部的に生じるからである。これには溶液と膜
とを離して用いる、いわゆる、非接触式で解決できる。
また0.1μm以下の微粒子を除くには非多孔質膜が良
い。非多孔質膜は高分子鎖の間隙(自由客積)が主とし
て気体の拡散に利用される状態にある膜のことであり、
水分子が抜けるには充分である。
In order to remove the fine particles in the water and obtain ultrapure water, it is possible to use a membrane having a pore size equal to or smaller than that of the fine particles, but the membrane is quite flexible and in reality it is difficult to completely remove it.
One reason is that since the solution and the film are in direct contact with each other, the state in which the particles are forced into the film and forcibly used in a kind of clogging locally occurs. This can be solved by a so-called non-contact method in which the solution and the film are used separately.
A non-porous film is preferable for removing fine particles of 0.1 μm or less. A non-porous membrane is a membrane in which the gaps (free volume) of polymer chains are mainly used for gas diffusion,
Sufficient for water molecules to escape.

最大間隙でも10〜60Å程度であれば充分利用できる。処
理量の問題は膜前後の蒸気分圧差を大きくすることによ
り解決し、膜の耐圧性問題は、透過側に全圧をバランス
させるよう低沸点気体を封入することで解決できる。前
述のような非多孔質膜を溶液と非接触に配置しているの
で、純水1cm3当り微粒子(不純物)の個数を数十個以
下にした超純水を製造できる。
Even if the maximum gap is about 10 to 60Å, it can be fully used. The throughput problem can be solved by increasing the vapor partial pressure difference before and after the membrane, and the pressure resistance problem of the membrane can be solved by enclosing a low boiling point gas so that the total pressure is balanced on the permeate side. Since the non-porous membrane as described above is placed in non-contact with the solution, it is possible to produce ultrapure water in which the number of fine particles (impurities) is less than tens per cm 3 of pure water.

以下、本発明の一実施例を第1図により説明する。ここ
では本発明超純水製造装置の基本的な部分について説明
する。前処理された水がポンプ9を介して蒸発缶1へ導
入される。蒸発缶1には加熱装置8がついており所定の
温度まで蒸発缶1内の水を加熱して蒸気を発生させる。
発生した蒸気は気液分離装置7を介して膜モジユール2
へ導入される。膜モジール2には非多孔質膜3が設置さ
れており、水分子はこの非多孔質膜3内を拡散すること
により、いつしよに飛来してきた微粒子と分離される。
膜モジユールの蒸気導入側の圧力は、例えば、5気圧に
調整される。膜モジユール透過側には乾燥した純粋なN2
ガスが充填されており圧力は5気圧よりわずかに低い値
(例えば4.95気圧)に設定される。非多孔質膜を透過し
た蒸気はN2ガスといつしよにモジユール上部より凝縮器
4へ導入されて凝縮する。凝縮した蒸気は約30℃の水に
なり凝縮器内及び透過側の水蒸気分圧は0.05気圧を示
す。凝縮水は直ちに下部に設置された受けタンク5にた
められる。こうして得られた超純水6は0.1μm以下の
微粒子が1cm3当り五十個前後である。受けタンク5か
らはバルブ10を介して超純水が各ユースポイントへ送ら
れる。
An embodiment of the present invention will be described below with reference to FIG. Here, the basic part of the ultrapure water production system of the present invention will be described. The pretreated water is introduced into the evaporator 1 via the pump 9. The evaporator 1 is equipped with a heating device 8 to heat the water in the evaporator 1 to a predetermined temperature to generate steam.
The generated vapor passes through the gas-liquid separation device 7 and the membrane module 2
Be introduced to. A non-porous membrane 3 is installed on the membrane module 2, and water molecules diffuse in the non-porous membrane 3 to be separated from the fine particles that have always flown.
The pressure on the vapor introduction side of the membrane module is adjusted to, for example, 5 atm. Dry pure N 2 on the permeate side of the membrane module
It is filled with gas and the pressure is set to a value slightly below 5 atm (eg 4.95 atm). The vapor that has permeated the non-porous membrane is always introduced into the condenser 4 from the upper part of the module together with the N 2 gas and is condensed. The condensed vapor becomes water at about 30 ° C, and the partial pressure of water vapor in the condenser and on the permeate side is 0.05 atm. The condensed water is immediately stored in the receiving tank 5 installed in the lower part. The ultrapure water 6 thus obtained contains about 50 fine particles of 0.1 μm or less per cm 3 . Ultrapure water is sent from the receiving tank 5 through the valve 10 to each use point.

次に、膜モジユール内に用いられている非多孔質膜を用
いての水透過原理について述べる。非多孔質膜をガスが
透過する場合は、まず、非多孔質膜表面にガスが溶解
し、その後、非多孔質膜内を拡散することにより透過す
る。そして、ガス透過のドライヴイングフオースとなる
のは非多孔質膜前後における透過ガスの分圧差、即ち、
濃度差である。例えば、第2図における供給側を水蒸気
のa気圧としておいて、透過側を30℃の水蒸気分圧0.05
気圧にすると、a−0.05気圧が透過を促進させる差圧と
なる。ここで非多孔質膜は圧力に弱いため、透過側に水
蒸気以外のガスで水蒸気より沸点の低いガス、例えば、
N2のようなものを非多孔質膜前後の全圧差が生じないよ
うに充填しておく。非多孔質膜は前後で圧力差が無い
か、又は、あつてもごく小さい値なので薄い非多孔質
膜、又は、薄い非多孔質膜を適当な支持体に張つたもの
で使用可能となる。
Next, the water permeation principle using the non-porous membrane used in the membrane module will be described. When the gas permeates the non-porous film, first, the gas is dissolved on the surface of the non-porous film and then diffuses inside the non-porous film to permeate. And the driving force for gas permeation is the partial pressure difference of the permeated gas before and after the non-porous membrane, that is,
It is the difference in concentration. For example, in FIG. 2, the supply side is set to the atmospheric pressure of water vapor, and the permeation side is set to a water vapor partial pressure of 0.05 at 30 ° C.
At atmospheric pressure, a-0.05 atm becomes a differential pressure that promotes permeation. Since the non-porous membrane is weak to pressure here, a gas other than water vapor having a lower boiling point than water vapor on the permeate side, for example,
A material such as N 2 is filled so that the total pressure difference before and after the non-porous membrane does not occur. The non-porous membrane has no pressure difference between the front and back, or has a very small value at all, so that a thin non-porous membrane or a thin non-porous membrane stretched on an appropriate support can be used.

このように調整した後も、水蒸気については非多孔質膜
前後で差圧が生じるので透過側へ連続的に抜ける。もち
ろん透過側から供給側へN2のリークであるが水蒸気透過
に比べると10-3倍程度であるから大きな問題とならな
い。
Even after being adjusted in this way, water vapor continuously escapes to the permeate side because a differential pressure is generated before and after the non-porous membrane. Of course, N 2 leaks from the permeate side to the supply side, but it is about 10 −3 times that of water vapor permeation, so it is not a big problem.

次に、多孔質膜を用いる場合について述べる。多孔質膜
であつても表面にコーテイングして非多孔質層を形成す
れば本発明に応用可能である。即ち、第3図に示すよう
に、多孔質膜材質11には多くの空隙13が存在する。テト
ラフルオロエチレン膜では50%以上もの空隙をもつもの
がある。多孔質膜をそのまま用いると空隙を通つて、ガ
ス,水蒸気が抜ける。この空隙は平均孔径0.1μm以上
のものが多く0.1μm以下の微粒子をふるい分ける目的
には使えない。そこで、非多孔質コーテイング材12を多
孔質膜材質の表面にコーテイングして見かけ上非多孔質
膜を形成する。使用に際してはコーテイング面と水蒸気
供給側にして用いる。
Next, the case of using a porous film will be described. Even a porous film can be applied to the present invention if it is coated on the surface to form a non-porous layer. That is, as shown in FIG. 3, the porous film material 11 has many voids 13. Some tetrafluoroethylene membranes have voids of 50% or more. If the porous membrane is used as it is, gas and water vapor will escape through the voids. Most of these voids have an average pore diameter of 0.1 μm or more and cannot be used for the purpose of sieving fine particles of 0.1 μm or less. Therefore, the non-porous coating material 12 is coated on the surface of the porous membrane material to form an apparently non-porous membrane. At the time of use, it is used as the coating surface and the steam supply side.

次に、透過側に用いる圧力調整用気体について述べる。
第2図ですでに述べた通り、非多孔質膜での気体透過は
膜表面への気体の溶解が律速段階となる。
Next, the pressure adjusting gas used on the permeate side will be described.
As already described in FIG. 2, gas permeation through a non-porous membrane is a rate-determining step where the gas is dissolved on the membrane surface.

第4図に天然ゴムに対する種々ガスの沸点と溶解度係数
の関係を示す。天然ゴムに対する溶解度係数の傾向は、
非孔質膜及び、コーテイング材等に対てしも同様の傾向
を示す。水蒸気(水の沸点)は100℃(375°K)であり
He,N2,O2に比べて百ないし千倍高い値を示す。即ち、H
e,N2,O2に比べて水蒸気の方が二桁ないし三桁透過し易
い。故に、透過側の圧力調整ガスは、N2が適当であると
考える。しかし、原理的には水蒸気以下即ち沸点が100
℃より小さい気体は圧力調整ガスに成り得るものと考え
られる。
Fig. 4 shows the relationship between the boiling points of various gases and the solubility coefficient for natural rubber. The tendency of the solubility coefficient for natural rubber is
The same tendency is shown for non-porous membranes and coating materials. The water vapor (boiling point of water) is 100 ° C (375 ° K)
The value is 100 to 1000 times higher than that of He, N 2 and O 2 . That is, H
Compared to e, N 2 and O 2 , water vapor is easily transmitted by two or three orders of magnitude. Therefore, it is considered that N 2 is suitable for the pressure adjusting gas on the permeate side. However, in principle, it is less than water vapor, that is, the boiling point is 100.
It is considered that a gas having a temperature lower than ℃ can be a pressure adjusting gas.

最後に本発明を用いた超純水製造方法について第5図の
フローシートを用いて説明する。前処理された水がバル
ブ14を介して貯蔵タンク15へ導入される。タンク15より
ポンプ16を介して高圧になつている蒸発缶17へ導入され
る。蒸発缶17で蒸気にし非多孔質膜を用いた膜モジユー
ル18へ導入する。供給側は調圧バルブ19を介してポンプ
20を通り起動的には余剰ガスが、運転時には加剰蒸気
が、それぞれ、排出される。膜モジユール18の透過側は
パイプ28で凝縮器21へつながつている。また、凝縮器内
の冷却水はチラーユニツト22で冷却されリサイクルで運
転する。
Finally, a method for producing ultrapure water according to the present invention will be described with reference to the flow sheet shown in FIG. Pretreated water is introduced into storage tank 15 via valve 14. It is introduced from a tank 15 via a pump 16 into an evaporator 17 having a high pressure. Vaporized in an evaporator 17 and introduced into a membrane module 18 using a non-porous membrane. Pump on the supply side via pressure regulating valve 19
Excess gas is discharged through 20 at startup, and excess steam is discharged during operation. The permeate side of the membrane module 18 is connected by a pipe 28 to a condenser 21. Further, the cooling water in the condenser is cooled by the chiller unit 22 and is recycled.

凝縮器21内で、例えば、30℃以下の水滴になるように冷
却される。透過側の圧調整用N2ガスはボンベ27、又は、
液体窒素の蒸発装置よりガス清浄装置26を介してポンプ
25より系内に送り込まれる。透過側におけるN2ガスの圧
力は調圧バルブ19により起動時に前述の差圧になるよう
に調圧される。透過し凝縮器21より凝縮された純水は受
けタンク23へ貯蔵される。
In the condenser 21, the water is cooled to, for example, 30 ° C. or less. N 2 gas for pressure adjustment on the permeate side is a cylinder 27, or
Pump through the gas purifier 26 from the liquid nitrogen evaporator
It is sent into the system from 25. The pressure of the N 2 gas on the permeate side is regulated by the pressure regulating valve 19 so as to have the above-mentioned differential pressure at the time of starting. Pure water that has been transmitted and condensed by the condenser 21 is stored in the receiving tank 23.

ユースポイントへはタンク23よりバルブ24を介して送ら
れる。
It is sent from the tank 23 to the point of use via the valve 24.

〔発明の効果〕〔The invention's effect〕

本発明によれば、水蒸気を気体中に配置された非多孔質
膜に導くので非多孔質膜を透過する微粒子の量が著しく
減少する。また、非多孔質膜を薄くできて非多孔質膜の
透過面積が減少しないので、水蒸気分離手段における処
理量を増大できる。
According to the present invention, since the water vapor is guided to the non-porous membrane arranged in the gas, the amount of fine particles that permeate the non-porous membrane is significantly reduced. Further, since the non-porous membrane can be made thin and the permeation area of the non-porous membrane does not decrease, the throughput of the steam separation means can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の超純水製造装置の基本形を
示す図、第2図は非多孔質膜の透過原理図、第3図は多
孔質膜にコーテイングし非多孔質化を行つた膜の断面
図、第4図は25℃における天然ゴムに対する気体の沸点
と溶解度係数との関係を示したグラフ、第5図は本発明
を用いて、前処理済の水より超純水を製造する方法を示
したフローシートである。 1…蒸発缶、2…膜モジユール、3…非多孔質膜、4…
凝縮器、5…受けタンク、6…超純水。
FIG. 1 is a diagram showing a basic form of an ultrapure water producing apparatus according to an embodiment of the present invention, FIG. 2 is a permeation principle diagram of a non-porous membrane, and FIG. 3 is a porous membrane coated with a non-porous membrane. Cross-sectional view of the membrane, Fig. 4 is a graph showing the relationship between the boiling point of gas and the solubility coefficient of natural rubber at 25 ° C, and Fig. 5 is ultrapure water pretreated by using the present invention. 3 is a flow sheet showing a method for manufacturing the. 1 ... Evaporator, 2 ... Membrane module, 3 ... Non-porous membrane, 4 ...
Condenser, 5 ... Receiving tank, 6 ... Ultrapure water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 一道 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (56)参考文献 特開 昭63−162003(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichimichi Suzuki 1168 Moriyama-cho, Hitachi-shi, Ibaraki Prefecture Energy Research Laboratory, Hiritsu Manufacturing Co., Ltd. (56) References JP-A-63-162003 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水蒸気を発生させる蒸気発生手段と、 前記蒸気発生手段から導かれた前記水蒸気を透過させる
非多孔質膜を有する水蒸気分離手段と、 前記非多孔質膜を透過した前記水蒸気を冷却する手段
と、 前記非多孔質膜を境に分離された前記水蒸気分離手段内
における前記水蒸気導入側の第1領域の全圧と前記水蒸
気透過側の第2領域の全圧との差が前記非多孔質膜の耐
え得る差圧以上にならないように、前記水蒸気より沸点
の低い気体によって前記第2領域の圧力を調節する手段
と、 を備えたことを特徴とする超純水製造装置。
1. A steam generating unit for generating steam, a steam separating unit having a non-porous membrane for permeating the steam introduced from the steam generating unit, and cooling the steam for permeating the non-porous membrane. Means and the total pressure of the first region on the water vapor introduction side and the total pressure of the second region on the water vapor permeation side in the water vapor separation means separated by the non-porous membrane as a boundary. An ultrapure water producing apparatus comprising: a means for adjusting the pressure in the second region with a gas having a boiling point lower than that of the water vapor so that the pressure does not exceed a pressure difference that the porous membrane can withstand.
【請求項2】前記水蒸気より沸点の低い気体は前記非多
孔質膜と化学反応を起こさない気体である特許請求の範
囲第1項記載の超純水製造装置。
2. The apparatus for producing ultrapure water according to claim 1, wherein the gas having a boiling point lower than that of the water vapor is a gas that does not chemically react with the non-porous film.
【請求項3】前記非多孔質膜は多孔質膜及び多孔質支持
体のいずれかに水蒸気を透過させる物質をコーテイング
し見かけ上非多孔質になっている表面を有する膜である
特許請求の範囲第1項または第2項記載の超純水製造装
置。
3. The non-porous membrane is a membrane having a surface which is apparently non-porous by coating a substance that allows water vapor to permeate either the porous membrane or the porous support. The ultrapure water production system according to item 1 or 2.
JP62183349A 1987-07-24 1987-07-24 Ultrapure water production system Expired - Lifetime JPH0761412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62183349A JPH0761412B2 (en) 1987-07-24 1987-07-24 Ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62183349A JPH0761412B2 (en) 1987-07-24 1987-07-24 Ultrapure water production system

Publications (2)

Publication Number Publication Date
JPS6427619A JPS6427619A (en) 1989-01-30
JPH0761412B2 true JPH0761412B2 (en) 1995-07-05

Family

ID=16134181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62183349A Expired - Lifetime JPH0761412B2 (en) 1987-07-24 1987-07-24 Ultrapure water production system

Country Status (1)

Country Link
JP (1) JPH0761412B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2638346B2 (en) * 1991-07-29 1997-08-06 日本ビクター株式会社 Telephone with directory guidance display function
JPH07297899A (en) * 1994-04-22 1995-11-10 Nitsuko Corp Telephone set
US6044136A (en) * 1995-06-06 2000-03-28 Hitachi Telecom Technolgies, Ltd. Telephone terminal and telephone exchange system accommodating the terminal
JP4927788B2 (en) * 2008-06-05 2012-05-09 株式会社タブチ Duplex meter unit
JP4928007B2 (en) * 2011-07-19 2012-05-09 株式会社タブチ Duplex meter unit
JP4928008B2 (en) * 2011-07-19 2012-05-09 株式会社タブチ Duplex meter unit
JP4928006B2 (en) * 2011-07-19 2012-05-09 株式会社タブチ Duplex meter unit
JP4928005B2 (en) * 2011-07-19 2012-05-09 株式会社タブチ Duplex meter unit
JP4928004B2 (en) * 2011-07-19 2012-05-09 株式会社タブチ Duplex meter unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069645B2 (en) * 1986-12-25 1994-02-09 リグナイト株式会社 Separation method of mixed solution

Also Published As

Publication number Publication date
JPS6427619A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
Okumus et al. Development of a mixed-matrix membrane for pervaporation
US3367787A (en) Evaporation concentration of liquids
US3335545A (en) Gas separation by differential permeation
EP0326360A2 (en) Process for selectively separating water vapour from a gaseous mixture
EP0408769A1 (en) Deaerating film and deaerating method
JPS63116705A (en) Per-vaporation method and film used for said method
JPH0761412B2 (en) Ultrapure water production system
JPS6075306A (en) Liquid separation membrane
JP3999423B2 (en) Carbon dioxide separation and dehumidification method and apparatus using liquid membrane
Jian et al. Integral asymmetric poly (vinylidene fluoride)(PVDF) pervaporation membranes
JP2765671B2 (en) Method for producing oxygen-enriched gas
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
US4765904A (en) Method and apparatus for evaporation and liquid separation
JPH11156167A (en) Membrane separation method and apparatus therefor
JP2022184754A (en) Gas separation method
JPS62225207A (en) Separation of liquid mixture
JPH03245812A (en) Separation of gas
JP2002282640A (en) How to maintain the gas separation module
JPH0347521A (en) Separation membrane and usage thereof
JP2898080B2 (en) Operation method of degassing membrane device
JPH0817907B2 (en) Separation method of mixed solution
JPH03109912A (en) Treatment of gas containing organic vapor
JP2832371B2 (en) Organic solvent vapor recovery method
JPS6084105A (en) Membrane evaporating method and apparatus
JPH06327952A (en) Separation of mixed solution