[go: up one dir, main page]

JPH0758654A - Receiver - Google Patents

Receiver

Info

Publication number
JPH0758654A
JPH0758654A JP21699393A JP21699393A JPH0758654A JP H0758654 A JPH0758654 A JP H0758654A JP 21699393 A JP21699393 A JP 21699393A JP 21699393 A JP21699393 A JP 21699393A JP H0758654 A JPH0758654 A JP H0758654A
Authority
JP
Japan
Prior art keywords
signal
reception
mode
filter
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21699393A
Other languages
Japanese (ja)
Other versions
JP3136031B2 (en
Inventor
Makoto Okada
眞 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icom Inc
Original Assignee
Icom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icom Inc filed Critical Icom Inc
Priority to JP05216993A priority Critical patent/JP3136031B2/en
Publication of JPH0758654A publication Critical patent/JPH0758654A/en
Application granted granted Critical
Publication of JP3136031B2 publication Critical patent/JP3136031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuits Of Receivers In General (AREA)

Abstract

PURPOSE:To automatically control the additional circuit means of a receiver in an optimum setting state by discriminating a reception mode from reception signals. CONSTITUTION:The reception signal is converted to a first intermediate frequency signal and bisected, one of them is converted to a first demodulation signal through a wide-band-pass filter 22 and a variable band width filter 26, an AGC means 32 is provided in the reception system and the first demodulation signal is outputted as a low frequency through a tone adjustment means 38. Also, the other one is converted to a second demodulation signal through a narrow-band-pass filter 24. An interference condition is discriminated in an interference discrimination means 44 from the levels of the first and second modulation singles and signals passing through the wide-band-pass and narrow- band-pass filters 22 and 24 are subjected to fast Fourier transform in first and second Fourier transformation means 50 and 51. A central arithmetic means 52 discriminates the reception mode from the pattern of the Fourier-transformed signal in the condition without interference and controls the variable band width filter 26, the AGC means 32 and the tone adjustment means 38 corresponding to it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受信信号の受信モード
を判別し、付加回路手段を受信モードに最適な設定状態
に自動的に制御するようにした受信機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver which discriminates a reception mode of a reception signal and automatically controls an additional circuit means to a setting state optimal for the reception mode.

【0002】[0002]

【従来の技術】CW、RTTY、SSB、AMおよびF
M等の複数の受信モードにて運用される受信機では、受
信系統に設けられたIF帯フィルタの帯域幅を、受信モ
ードに応じて切り換える必要がある。そこで、本特許出
願人は、実開平2−141143号により、受信モード
の切り換え選択に連動して、予め受信モードに対応させ
て選定されたIF帯フィルタの帯域幅が選択される技術
を提案した。受信モードの切り換えの度に、IF帯フィ
ルタの帯域幅を手動で選定する操作が省かれ、それだけ
受信機の操作が簡単である。
2. Description of the Related Art CW, RTTY, SSB, AM and F
In a receiver operated in a plurality of reception modes such as M, it is necessary to switch the bandwidth of the IF band filter provided in the reception system according to the reception mode. Therefore, the applicant of the present patent has proposed, in Japanese Utility Model Application Laid-Open No. 2-141143, a technique in which the bandwidth of the IF band filter selected in advance corresponding to the reception mode is selected in association with the switching selection of the reception mode. . The operation of manually selecting the bandwidth of the IF band filter is omitted each time the reception mode is switched, and the operation of the receiver is simpler.

【0003】[0003]

【発明が解決しようとする課題】実開平2−14114
3号で提案した技術にあっては、運用者による受信機の
受信モードの選定に対応して、受信機の設定状態が切り
換えられるが、受信機で現実に受信されている受信信号
から受信モードを判別し、これに対応させて受信機の付
加回路手段を最適な設定状態に切り換えることも、操作
を簡単にする観点から有意義である。
[Problems to be Solved by the Invention]
In the technology proposed in No. 3, the setting state of the receiver can be switched according to the selection of the receiving mode of the receiver by the operator, but the receiving mode is changed from the received signal actually received by the receiver. From the viewpoint of simplifying the operation, it is also meaningful to judge the above and switch the additional circuit means of the receiver to the optimum setting state in accordance with this.

【0004】本発明は、受信信号から受信モードを判別
し、これに対応させて付加回路手段を最適な設定状態に
自動的に切り換え制御する受信機を提供することを目的
とする。
It is an object of the present invention to provide a receiver which discriminates a reception mode from a reception signal and automatically switches and controls the additional circuit means to an optimum setting state in accordance with the discrimination.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の受信機は、アンテナで受信された受信信
号を、それぞれ通過帯域幅の異なるフィルタを介して復
調回路で復調信号とする第1および第2の受信系統と、
前記第1および/または前記第2の受信系統の前記復調
信号をフーリエ変換するフーリエ変換手段と、このフー
リエ変換された信号から受信モードを判別して付加回路
手段を受信モードに最適な設定状態に制御する演算手段
と、を備えて構成されている。
To achieve the above object, in the receiver of the present invention, a reception signal received by an antenna is converted into a demodulation signal by a demodulation circuit through filters having different pass bandwidths. A first and a second receiving system,
Fourier transforming means for Fourier transforming the demodulated signal of the first and / or second receiving system, and a receiving mode is discriminated from the Fourier transformed signal so that the additional circuit means is set to an optimum setting state for the receiving mode. And a calculation means for controlling.

【0006】[0006]

【作 用】異なる通過帯域幅のフィルタを経て得られる
第1および第2の受信系統の復調信号を、両方または一
方をフーリエ変換し、そのスペクトラム分布とその強さ
から演算手段で受信モードを判別し得る。そこで、判別
された受信モードに応じて、付加回路手段を最適な設定
状態に制御し得る。
[Operation] Both or one of the demodulated signals of the first and second receiving systems obtained through filters with different pass bandwidths is Fourier transformed, and the receiving mode is determined by the computing means from its spectrum distribution and its strength. You can Therefore, the additional circuit means can be controlled to the optimum setting state according to the determined reception mode.

【0007】[0007]

【実施例】以下本発明の受信機の一実施例について、図
1ないし図6を参照して説明する。図1は、本発明の受
信機の一実施例のブロック回路図であり、図2は、各受
信モードと付加回路手段として最適状態に設定すべき帯
域幅可変フィルタの帯域幅とAGC手段の時定数および
トーン調整手段のフィルタ特性の対応を示す図であり、
図3は、トーン調整手段のフィルタ特性の一例を示す図
であり、図4は、中央演算手段の動作を示すフローチャ
ートであり、図5は、混信判別手段の第1の動作を示す
フローチャートであり、図6は、混信判別手段の第2の
動作を示すフローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the receiver of the present invention will be described below with reference to FIGS. FIG. 1 is a block circuit diagram of an embodiment of a receiver of the present invention, and FIG. 2 is a diagram showing the reception mode and the bandwidth of a variable bandwidth filter to be set to an optimum state as additional circuit means and the AGC means. It is a diagram showing the correspondence between the filter characteristics of the constant and the tone adjusting means,
3 is a diagram showing an example of the filter characteristic of the tone adjusting means, FIG. 4 is a flowchart showing the operation of the central processing means, and FIG. 5 is a flowchart showing the first operation of the interference determining means. 6 is a flowchart showing the second operation of the interference determination means.

【0008】まず、図1を参照して構造を説明する。1
本のアンテナ10で受信された受信信号は、高周波増幅
回路12で増幅されて第1のミクサ14に与えられ、第
1の局部発振回路16からの第1の局部発振信号と混合
される。この第1のミクサ14から出力される周波数変
換された信号が第1の中間周波増幅回路18に与えら
れ、所定周波数の第1の中間周波信号が抽出および増幅
されて分配器20に与えられる。この分配器20により
第1の中間周波信号が2分され、一方が例えば30KH
zの帯域幅を有する広帯域フィルタ22に与えられ、他
方が例えば3KHzの帯域幅を有する狭帯域フィルタ2
4に与えられる。なお、狭帯域フィルタ24の帯域幅
は、広帯域フィルタ22の帯域幅に含まれる。
First, the structure will be described with reference to FIG. 1
The received signal received by the antenna 10 of the book is amplified by the high frequency amplifier circuit 12 and given to the first mixer 14, and mixed with the first local oscillation signal from the first local oscillation circuit 16. The frequency-converted signal output from the first mixer 14 is supplied to the first intermediate frequency amplifier circuit 18, and the first intermediate frequency signal having a predetermined frequency is extracted and amplified and supplied to the distributor 20. The distributor 20 divides the first intermediate frequency signal into two, one of which is, for example, 30 KH.
a narrow band filter 2 provided to a wide band filter 22 having a bandwidth of z, the other having a bandwidth of 3 KHz, for example.
Given to 4. The bandwidth of the narrow band filter 24 is included in the bandwidth of the wide band filter 22.

【0009】そして、広帯域フィルタ22を通過した第
1の中間周波信号は、第1のフーリエ変換手段50に与
えられるとともに、帯域幅可変フィルタ26を介して第
2の中間周波増幅回路28に与えられて増幅される。こ
の第2の中間周波増幅回路28で増幅された出力は、第
2のミクサ30に与えられるとともに、その一部がAG
C手段32に与えられる。この第2のミクサ30には、
第2の局部発振回路34からの第2の局部発振信号が与
えられ、第1の中間周波信号が周波数変換された第2の
中間周波信号が第1の復調回路36に与えられ、第1の
復調信号が出力される。この第1の復調信号は、トーン
調整手段38で音質の調整がなされ、さらに低周波増幅
回路40で増幅されてスピーカ42より低周波として出
力される。また、第1の復調信号の一部が、混信判別手
段44に与えられる。
The first intermediate frequency signal that has passed through the wide band filter 22 is given to the first Fourier transforming means 50 and also to the second intermediate frequency amplifying circuit 28 via the bandwidth variable filter 26. Is amplified. The output amplified by the second intermediate frequency amplifier circuit 28 is supplied to the second mixer 30, and a part of the output is AG
It is given to the C means 32. In this second mixer 30,
The second local oscillation signal from the second local oscillation circuit 34 is given, the second intermediate frequency signal obtained by frequency-converting the first intermediate frequency signal is given to the first demodulation circuit 36, and the first local oscillation signal is given. The demodulated signal is output. The tone quality of the first demodulated signal is adjusted by the tone adjusting means 38, and is amplified by the low frequency amplifier circuit 40 to be output from the speaker 42 as a low frequency signal. Further, a part of the first demodulated signal is given to the interference discrimination means 44.

【0010】また、狭帯域フィルタ24を通過した第1
の中間周波信号は、第2のフーリエ変換手段51に与え
られるとともに、第3の中間周波増幅回路46に与えら
れて増幅され、その増幅出力が第2の復調回路48に与
えられて第2の復調信号が出力される。この第2の復調
信号が、混信判別手段44に与えられる。そして、混信
判別手段44と第1のフーリエ変換手段50および第2
のフーリエ変換手段51からそれぞれ信号が与えられる
中央演算手段52より、帯域幅可変フィルタ26とAG
C手段32とトーン調整手段38と第1の復調回路36
と第2の復調回路48および表示手段54に信号が与え
られる。
The first signal passed through the narrow band filter 24
The intermediate frequency signal of 1 is given to the second Fourier transform means 51 and also given to the third intermediate frequency amplifying circuit 46 to be amplified, and the amplified output is given to the second demodulating circuit 48 to obtain the second The demodulated signal is output. This second demodulated signal is given to the interference discrimination means 44. Then, the interference determination means 44, the first Fourier transform means 50, and the second
The central processing means 52 to which signals are respectively applied from the Fourier transform means 51 of
C means 32, tone adjusting means 38, and first demodulation circuit 36
A signal is given to the second demodulation circuit 48 and the display means 54.

【0011】なお、アンテナ10から広帯域フィルタ2
2を経て第1の復調回路36に至る経路で第1の受信系
統が形成され、アンテナ10から狭帯域フィルタ24を
経て第2の復調回路48に至る経路で第2の受信系統が
形成される。また、帯域幅可変フィルタ26は、帯域幅
の異なる複数のフィルタを並列し、中央演算手段52の
信号によりいずれか一つを切り換え選択するものに限ら
れず、パスバンドチューニング回路やIFWIDTH回
路等を用いたものであっても良い。さらにAGC手段3
2は、第2の中間周波信号の信号レベルに応じて中央演
算手段52からの信号に基づく時定数で高周波増幅回路
12および第1と第2の中間周波増幅回路18,28に
利得を制御するAGC信号を与える。
From the antenna 10 to the wide band filter 2
A first reception system is formed on a path from the antenna 10 to the first demodulation circuit 36, and a second reception system is formed on a path from the antenna 10 to the second demodulation circuit 48 via the narrow band filter 24. . Further, the bandwidth variable filter 26 is not limited to one in which a plurality of filters having different bandwidths are arranged in parallel and one of them is switched and selected by the signal of the central processing means 52, and a passband tuning circuit, an IFWIDTH circuit or the like is used. It may be the one you had. Furthermore, AGC means 3
Reference numeral 2 is a time constant based on the signal from the central processing means 52 according to the signal level of the second intermediate frequency signal, and controls the gain of the high frequency amplifier circuit 12 and the first and second intermediate frequency amplifier circuits 18 and 28. Apply AGC signal.

【0012】ところで、図1に示す受信機において、C
Wモードの受信状態であれば、図2に示すごとく帯域幅
可変フィルタ26は受信状況に応じて0.25〜1KH
zの帯域幅であることが望ましく、AGC手段32の時
定数は受信状態に応じてFAST〜MIDであることが
望ましく、トーン調整手段38はオーディオピークフィ
ルタ特性(図3(a))であることが望ましい。また、
RTTYモード(FSK変調方式)の受信状態であれ
ば、帯域幅可変フィルタ26の帯域幅は1〜2KHz、
AGC手段32の時定数はFAST〜MID、トーン調
整手段38は高帯域よりのバンドパスフィルタ特性(図
3(b))であることが望ましい。そして、SSBモー
ドの受信状態であれば、帯域幅可変フィルタ26は1.
5〜3KHz、AGC手段32はMID〜SLOW、ト
ーン調整手段38はフラットフィルタ特性(図3
(c))であることが望ましい。さらに、AMモードの
受信状態であれば、帯域幅可変フィルタ26は3〜10
KHz、AGC手段32はFAST〜MID、トーン調
整手段38はハイローカットフィルタ特性(図3
(d))であることが望ましい。そしてさらに、FMモ
ードの受信状態であれば、帯域幅可変フィルタ26は8
〜30KHz、AGC手段32はFAST、トーン調整
手段38はディエンファシスフィルタ特性(図3
(e))であることが望ましい。
By the way, in the receiver shown in FIG.
In the W mode reception state, the bandwidth variable filter 26 as shown in FIG. 2 is 0.25 to 1 KH depending on the reception state.
z bandwidth, the time constant of the AGC means 32 is preferably FAST to MID according to the reception state, and the tone adjusting means 38 has an audio peak filter characteristic (FIG. 3A). Is desirable. Also,
In the reception state of the RTTY mode (FSK modulation method), the bandwidth of the bandwidth variable filter 26 is 1 to 2 KHz,
It is desirable that the time constant of the AGC means 32 is FAST to MID, and that the tone adjusting means 38 has a bandpass filter characteristic (FIG. 3B) in the higher band. Then, in the reception state of the SSB mode, the bandwidth variable filter 26 is 1.
5 to 3 KHz, AGC means 32 is MID to SLOW, and tone adjusting means 38 is flat filter characteristic (see FIG. 3).
(C)) is desirable. Furthermore, in the AM mode reception state, the bandwidth variable filter 26 has 3 to 10 bits.
KHz, AGC means 32 is FAST to MID, and tone adjusting means 38 is a high / low cut filter characteristic (see FIG. 3).
(D)) is desirable. Further, in the FM mode reception state, the bandwidth variable filter 26 has 8
˜30 KHz, AGC means 32 is FAST, tone adjusting means 38 is de-emphasis filter characteristic (see FIG. 3).
(E)) is desirable.

【0013】次に、受信機の付加回路手段の設定状態を
自動的に上述のごとく最適状態とするために必要な受信
モードの判別につき説明する。中央演算手段52による
受信モードの判別は、目的受信周波数の信号を主成分と
する広帯域フィルタ22の出力信号を第1のフーリエ変
換手段50で高速フーリエ変換し、そのスペクトラム分
布と強さのパターンの違いによりなされる。ここで、第
1のフーリエ変換手段50による高速フーリエ変換のみ
で、受信モードの判別は可能であるが、より判別精度を
向上させるべく、帯域幅の狭い狭帯域フィルタ24の出
力信号を第2のフーリエ変換手段51で高速フーリエ変
換し、そのスペクトラム分布と強さのパターンを参照し
て判別するように構成される。なお、確実な受信モード
の判別を行なうためには、混信信号等の目的受信周波数
以外の信号や外乱雑音の存在は望ましくない。
Next, the determination of the receiving mode necessary for automatically setting the setting state of the additional circuit means of the receiver to the optimum state as described above will be described. In the determination of the reception mode by the central processing means 52, the output signal of the wide band filter 22 whose main component is the signal of the target reception frequency is fast Fourier transformed by the first Fourier transformation means 50, and the spectrum distribution and intensity pattern Made by the difference. Here, the reception mode can be discriminated only by the fast Fourier transform by the first Fourier transform means 50, but in order to further improve the discrimination accuracy, the output signal of the narrow band filter 24 having a narrow bandwidth is changed to the second. The fast Fourier transform is performed by the Fourier transform means 51, and the spectrum distribution and the intensity pattern are referenced to make the determination. In order to reliably determine the reception mode, it is not desirable to have signals other than the target reception frequency such as interference signals or the presence of disturbance noise.

【0014】そこでまず、混信信号の有無を判別する混
信判別手段44の動作につき説明する。混信判別手段4
4の図5に示す第1の動作は、まず帯域幅可変フィルタ
26を所定の帯域幅に設定し(図5ステップ1)、この
所定帯域幅のフィルタを通過して得られた第1の復調信
号のレベルが第1の基準値より小さいか否かが判別され
る(図5ステップ2)。ここで、第1の復調信号のレベ
ルが第1の基準値より小さければ、目的受信周波数以外
の信号や外乱雑音等が少ないことが認められる。第1の
復調信号のレベルが第1の基準値より小さければ、さら
に第2の復調信号のレベルが第2の基準値より大きいか
否かが判別される(図5ステップ3)。このステップ3
で、第2の復調信号のレベルが第2の基準値より大きい
ならば、目的受信周波数の受信信号のレベルは高く、そ
れ以外の受信信号および外乱雑音のレベルが低く、混信
信号が存在せずに十分なS/N比が得られる受信状況と
判別できる。なお、ステップ2で第1の復調信号のレベ
ルが第1の基準値より大きく、またはステップ3で第2
の復調信号のレベルが第2の基準値より小さいならば、
目的受信周波数の受信信号が低くまたそれ以外の受信信
号のレベルが高くて、十分なS/N比が得られない受信
状況と判別できる。
Therefore, first, the operation of the interference discriminating means 44 for discriminating the presence or absence of the interference signal will be described. Interference discrimination means 4
The first operation shown in FIG. 5 of FIG. 4 is to first set the variable bandwidth filter 26 to a predetermined bandwidth (step 1 in FIG. 5), and then perform the first demodulation obtained by passing through the filter having the predetermined bandwidth. It is determined whether or not the signal level is lower than the first reference value (step 2 in FIG. 5). Here, if the level of the first demodulated signal is smaller than the first reference value, it is recognized that signals other than the target reception frequency, disturbance noise, and the like are small. If the level of the first demodulated signal is lower than the first reference value, it is further determined whether or not the level of the second demodulated signal is higher than the second reference value (step 3 in FIG. 5). This step 3
If the level of the second demodulated signal is higher than the second reference value, the level of the received signal at the target reception frequency is high, the levels of the other received signals and disturbance noise are low, and there is no interference signal. It is possible to determine that the reception status is such that a sufficient S / N ratio is obtained. The level of the first demodulated signal is greater than the first reference value in step 2, or the second demodulated signal is in the second level in step 3.
If the level of the demodulated signal of is less than the second reference value,
It is possible to determine that the received signal at the target reception frequency is low and the level of the other received signals is high, and a sufficient S / N ratio cannot be obtained.

【0015】また、混信判別手段44の別の第2の動作
につき、図6を参照して説明する。まず、帯域幅可変フ
ィルタ26を所定の帯域幅に設定し(図6ステップ
1)、第1の復調信号のレベルから第2の復調信号のレ
ベルを引き算する(図6ステップ2)。この引き算で求
められた差が大きいことは、目的受信周波数以外の受信
信号または外乱雑音のレベルが高いことを意味する。ま
た、差が小さいことは、目的受信周波数以外の受信信号
のレベルが低いことを意味する。そこで、引き算で求め
られた差が、基準値より小さいか否かが判別され(図6
ステップ3)、差が基準値より小さければ混信信号が存
在しないと判別でき、差が基準値より大きければ混信信
号が存在すると判別できる。
Another second operation of the interference discriminating means 44 will be described with reference to FIG. First, the bandwidth variable filter 26 is set to a predetermined bandwidth (step 1 in FIG. 6), and the level of the second demodulated signal is subtracted from the level of the first demodulated signal (step 2 in FIG. 6). The large difference obtained by this subtraction means that the level of the received signal or the disturbance noise other than the target received frequency is high. A small difference means that the level of the received signal other than the target receiving frequency is low. Therefore, it is judged whether or not the difference obtained by the subtraction is smaller than the reference value (see FIG. 6).
If the difference is smaller than the reference value, it can be determined that the interference signal does not exist, and if the difference is larger than the reference value, it can be determined that the interference signal exists.

【0016】なお、混信信号の存在の有無の判別とし
て、図5および図6に示すもの以外に、第1の復調信号
のレベルと第2の復調信号のレベルの比を演算し、この
比を基準値と比較することで、混信信号の有無を判別し
ても良い。また、第1の復調信号のレベルから第2の復
調信号のレベルを引き算して差を求め、第2の復調信号
のレベルをこの差で割り算し、その商を基準値と比較す
ることによって、混信信号の有無を判別するものであっ
ても良い。
As for the determination of the presence or absence of the interference signal, a ratio between the level of the first demodulated signal and the level of the second demodulated signal is calculated in addition to those shown in FIGS. 5 and 6, and this ratio is calculated. The presence or absence of the interference signal may be determined by comparing it with the reference value. Also, by subtracting the level of the second demodulated signal from the level of the first demodulated signal to obtain the difference, dividing the level of the second demodulated signal by this difference, and comparing the quotient with the reference value, The presence or absence of the interference signal may be determined.

【0017】そしてまた、第1と第2のフーリエ変換手
段50,51から出力されるスペクトラム分布とその強
さのパターンから中央演算手段52による受信モードの
判別につき説明する。受信モードがCWモードであれ
ば、受信帯域内にある1つの周波数で強い受信信号があ
り、その受信信号が断続する特徴が認められる。また、
RTTYモードであれば、受信帯域内に2つの周波数で
強い受信信号があり、これらの2つの受信信号が交互に
断続する特徴が認められる。そして、SSBモードで
は、受信帯域内に2〜3KHz幅の受信信号の山がで
き、その山の高さが変化している特徴が認められる。さ
らに、AMモードでは、受信帯域内にある1つの周波数
で強い受信信号があり、その両側に2〜3KHz幅で中
央の受信信号より低い受信信号の山ができる特徴が認め
られる。そしてさらに、FMモードでは、受信帯域内に
ある1つの周波数で強い受信信号があり、その両側に7
〜10KHz幅で中央の受信信号より低い受信信号の山
ができる特徴が認められる。したがって、これらのフー
リエ変換されて出力された信号のパターンから、中央演
算手段52は、受信モードの判別ができる。なお、第1
および第2のフーリエ変換手段50,51から出力され
る信号のパターンから中央演算手段52が受信モードを
認識判別できない場合は、受信信号が上述以外の受信モ
ードあるいは電波標識等であるか、混信信号の影響を強
く受けた状態である。
Further, the discrimination of the receiving mode by the central processing means 52 from the spectrum distributions output from the first and second Fourier transforming means 50 and 51 and the patterns of the intensity thereof will be described. If the reception mode is the CW mode, there is a strong reception signal at one frequency within the reception band, and the characteristic that the reception signal is intermittent is recognized. Also,
In the RTTY mode, there is a strong reception signal at two frequencies within the reception band, and the characteristic that these two reception signals are alternately intermittent is recognized. Then, in the SSB mode, the characteristic that the peak of the received signal having a width of 2-3 KHz is formed in the reception band and the height of the peak is changed is recognized. Furthermore, in the AM mode, there is a strong reception signal at one frequency within the reception band, and it is recognized that a peak of the reception signal having a width of 2 to 3 kHz and lower than the reception signal at the center is formed on both sides thereof. Furthermore, in FM mode, there is a strong received signal at one frequency within the reception band, and 7
The characteristic that a received signal peak is lower than the received signal at the center in the range of -10 KHz is recognized. Therefore, the central processing unit 52 can determine the reception mode from the patterns of the signals which are Fourier-transformed and output. The first
If the central processing unit 52 cannot recognize and discriminate the receiving mode from the pattern of the signals output from the second Fourier transforming units 50 and 51, the receiving signal is a receiving mode other than the above, a radio wave beacon, or the like, or an interference signal. It is in a state strongly influenced by.

【0018】そしてさらに、中央演算手段52の動作を
図4を参照して説明する。まず、混信判別手段44から
の信号の有無により混信信号の有無を判別し(図4ステ
ップ1)、混信信号が存在すれば受信モードの判別をす
ることなしに表示手段54で混信信号の存在を表示し
(図4ステップ2)、ステップ1に戻る。ステップ1で
混信信号が存在しなければ、第1および第2のフーリエ
変換手段50,51から出力される信号のパターンがC
Wモードか否かを判別し(図4ステップ3)、CWモー
ドであれば帯域幅可変フィルタ26の帯域幅を1KHz
とし、AGC手段32の時定数をMIDとし、トーン調
整手段38をオーディオピークフィルタ特性とし(図4
ステップ4)、さらに表示手段54でCWモードを表示
して(図4ステップ5)、ステップ1に戻る。なお、ス
テップ3のCWモードの判別は、混信信号が存在しない
条件下でなされており、十分なS/N比が得られる良好
な受信状況に対応するように、帯域幅可変フィルタ26
の帯域幅とAGC手段32の時定数が設定される。以下
で判別する受信モードでも同様である。また、ステップ
3でCWモードが判別できなければ、次にRTTYモー
ドか否かを判別し(図4ステップ6)、RTTYモード
であれば、帯域幅可変フィルタ26の帯域幅を2KHz
とし、AGC手段32の時定数をMIDとし、トーン調
整手段38を高帯域よりのバンドパスフィルタ特性とし
(図4ステップ7)、さらに表示手段54でRTTYモ
ードを表示して(図4ステップ8)、ステップ1に戻
る。そして、ステップ6でRTTYモードが判別できな
ければ、次にSSBモードか否かを判別し(図4ステッ
プ9)、SSBモードであれば帯域幅可変フィルタ26
を3KHz、AGC手段32をSLOW、トーン調整手
段38をフラットフィルタ特性とし(図4ステップ1
0)、SSBモードを表示して(図4ステップ11)、
ステップ1に戻る。さらに、ステップ9でSSBモード
が判別できなければ、次にAMモードか否かを判別し
(図4ステップ12)、AMモードであれば帯域幅可変
フィルタを10KHz、AGC手段32をMID、トー
ン調整手段38をハイローカットフィルタ特性とし(図
4ステップ13)、AMモードを表示して(図4ステッ
プ14)、ステップ1に戻る。そしてまた、ステップ1
2でAMモードが判別できなければ、次にFMモードか
否かを判別し(図4ステップ15)、FMモードであれ
ば帯域幅可変フィルタ26を30KHz、AGC手段3
2をFAST、トーン調整手段38をディエンファシス
フィルタ特性とし(図4ステップ16)、FMモードを
表示して(図4ステップ17)、ステップ1に戻る。そ
してさらに、ステップ15でFMモードが判別できなけ
れば、表示手段54で受信モードの判別不可の表示をし
て(図4ステップ18)、ステップ1に戻る。なお、図
4に示す中央演算手段52の動作において各受信モード
か否かを判別する各ステップの順序は入れ換えられても
良く、またある受信モードを判別するステップが削除ま
たは追加されても良いことは勿論である。
The operation of the central processing means 52 will be further described with reference to FIG. First, the presence / absence of the interference signal is determined by the presence / absence of the signal from the interference determination means 44 (step 1 in FIG. 4). If the interference signal is present, the presence of the interference signal is displayed on the display means 54 without determining the reception mode. Display (step 2 in FIG. 4) and return to step 1. If there is no interference signal in step 1, the pattern of the signals output from the first and second Fourier transforming means 50 and 51 is C.
Whether or not it is the W mode is determined (step 3 in FIG. 4), and if it is the CW mode, the bandwidth of the bandwidth variable filter 26 is set to 1 kHz.
, The time constant of the AGC means 32 is MID, and the tone adjusting means 38 is an audio peak filter characteristic (see FIG. 4).
Then, the CW mode is displayed on the display means 54 (step 4) (step 5 in FIG. 4) and the process returns to step 1. The determination of the CW mode in step 3 is made under the condition that there is no interference signal, and the variable bandwidth filter 26 is used so as to correspond to a good reception condition in which a sufficient S / N ratio is obtained.
And the time constant of the AGC means 32 are set. The same applies to the reception modes determined below. If the CW mode cannot be discriminated in step 3, it is then discriminated whether or not it is the RTTY mode (step 6 in FIG. 4). In the RTTY mode, the bandwidth of the bandwidth variable filter 26 is set to 2 kHz.
Then, the time constant of the AGC means 32 is set to MID, the tone adjusting means 38 is set to a bandpass filter characteristic from a high band (step 7 in FIG. 4), and the RTTY mode is displayed on the display means 54 (step 8 in FIG. 4). , Return to step 1. If the RTTY mode cannot be discriminated in step 6, it is then discriminated whether or not it is the SSB mode (step 9 in FIG. 4), and if it is the SSB mode, the bandwidth variable filter 26.
Is 3 KHz, the AGC means 32 has SLOW, and the tone adjusting means 38 has flat filter characteristics (see step 1 in FIG. 4).
0), display the SSB mode (step 11 in FIG. 4),
Return to step 1. Furthermore, if the SSB mode cannot be discriminated in step 9, then it is discriminated whether or not it is the AM mode (step 12 in FIG. 4). If it is the AM mode, the bandwidth variable filter is 10 KHz, the AGC means 32 is the MID, and the tone is adjusted. The means 38 has a high / low cut filter characteristic (step 13 in FIG. 4), the AM mode is displayed (step 14 in FIG. 4), and the process returns to step 1. And again, step 1
If the AM mode cannot be discriminated in 2, it is then discriminated whether or not it is the FM mode (step 15 in FIG. 4). If it is the FM mode, the bandwidth variable filter 26 is set to 30 KHz and the AGC means 3 is used.
2 is FAST, the tone adjusting means 38 is a de-emphasis filter characteristic (step 16 in FIG. 4), the FM mode is displayed (step 17 in FIG. 4), and the process returns to step 1. If the FM mode cannot be discriminated in step 15, the display means 54 displays that the reception mode cannot be discriminated (step 18 in FIG. 4), and the process returns to step 1. It should be noted that in the operation of the central processing means 52 shown in FIG. 4, the order of each step for determining whether each receiving mode is performed may be changed, and the step for determining a certain receiving mode may be deleted or added. Of course.

【0019】かかる構成と動作により、本発明の受信機
は、現実に受信する受信信号の受信モードに対応させて
付加回路手段が最適な設定状態に自動的に制御され、運
用者による手動操作を必要とせず、受信機の操作が極め
て簡単である。
With the above configuration and operation, in the receiver of the present invention, the additional circuit means is automatically controlled to the optimum setting state according to the reception mode of the received signal actually received, and the manual operation by the operator is possible. It is not necessary and the operation of the receiver is extremely simple.

【0020】さらに、本発明の受信機の他の実施例につ
いて図7を参照して説明する。図7において、図1と同
じ若しくは均等な回路ブロックには同じ符号を付けて重
複する説明を省略する。
Further, another embodiment of the receiver of the present invention will be described with reference to FIG. In FIG. 7, circuit blocks that are the same as or equivalent to those in FIG. 1 are assigned the same reference numerals and redundant description is omitted.

【0021】図7において、第1の中間周波増幅回路1
8の出力が、第1のフーリエ変換手段50に与えられる
とともに、ノイズブランカ60に与えられる。このノイ
ズブランカ60は、第1の中間周波信号が、ノイズゲー
ト64とノイズアンプ66とに与えられる。ノイズアン
プ66は、第1の中間周波信号を増幅してノイズ検波器
62に与え、ノイズ検波器62よりノイズ検波信号が出
力される。そして、このノイズ検波信号が混信判別手段
44に与えられるとともに、スイッチ68を介してゲー
ト制御回路70に与えられる。そして、このゲート制御
回路70によりノイズ検波信号に含まれるパルス性ノイ
ズが抽出され、その抽出されたパルス性ノイズに応じて
ノイズゲート64がON/OFFされ、ノイズゲート6
4を通過してパルス性雑音が除去された第1の中間周波
信号が帯域幅可変フィルタ26に与えられる。また、ス
イッチ68は、中央演算手段52からの信号によりON
/OFFされ、ノイズブランカ60の動作をON/OF
F制御する。
In FIG. 7, the first intermediate frequency amplifier circuit 1
The output of 8 is given to the first Fourier transforming means 50 and the noise blanker 60. In the noise blanker 60, the first intermediate frequency signal is given to the noise gate 64 and the noise amplifier 66. The noise amplifier 66 amplifies the first intermediate frequency signal and supplies it to the noise detector 62, and the noise detector 62 outputs the noise detection signal. Then, this noise detection signal is given to the interference discrimination means 44 and also given to the gate control circuit 70 via the switch 68. Then, the gate control circuit 70 extracts the pulse noise included in the noise detection signal, and the noise gate 64 is turned on / off according to the extracted pulse noise, and the noise gate 6
The first intermediate frequency signal, which has passed through 4 and is free of pulse noise, is supplied to the variable bandwidth filter 26. The switch 68 is turned on by a signal from the central processing means 52.
/ OFF, the operation of the noise blanker 60 is turned ON / OF
F control.

【0022】ここで、ノイズ検波信号には、目的受信周
波数の受信信号に加えて、近接する他局の放送周波数お
よび外乱雑音による受信信号が含まれている可能性があ
る。そこで、このノイズ検波信号のレベルと帯域幅可変
フィルタ26を経て目的受信周波数の受信信号からなる
第1の復調信号のレベルとから、混信判別手段44によ
り混信信号が存在するか否かの判別が図1のものと同様
に可能である。また、受信モードの判別は混信信号が存
在しない条件下で行なわれるので、このときの第1の復
調信号は目的受信周波数の受信信号が主であり、他の受
信信号や外乱雑音等が極めて少なくまたは含まれていな
い。したがって、第1の中間周波信号を第1のフーリエ
変換手段50で高速フーリエ変換した信号のパターンか
ら、中央演算手段52は、図1のものと同様に、受信モ
ードを判別することができる。
Here, in addition to the reception signal of the target reception frequency, the noise detection signal may include a reception signal due to the broadcast frequency of another nearby station and disturbance noise. Therefore, based on the level of the noise detection signal and the level of the first demodulation signal which is the reception signal of the target reception frequency after passing through the variable bandwidth filter 26, the interference determination unit 44 determines whether or not the interference signal exists. The same is possible as in FIG. Further, since the reception mode is determined under the condition that there is no interference signal, the first demodulation signal at this time is mainly the reception signal of the target reception frequency, and other reception signals and disturbance noise are extremely small. Or not included. Therefore, the central processing unit 52 can determine the reception mode from the pattern of the signal obtained by performing the fast Fourier transform on the first intermediate frequency signal by the first Fourier transform unit 50, as in the case of FIG.

【0023】そしてさらに、中央演算手段52で、受信
モードがFMモードであると判別されると、帯域幅可変
フィルタ26やAGC手段32やトーン調整手段38の
設定と同様に、ノイズブランカ60のスイッチ68をO
FFしてノイズブランカ60の動作をOFF制御とする
ならば、FMモードを受信している際に、ノイズゲート
64のON/OFF動作によるクリック音の発生が防止
できる。
Further, when the central processing means 52 determines that the reception mode is the FM mode, the switch of the noise blanker 60 is set in the same manner as the setting of the variable bandwidth filter 26, the AGC means 32 and the tone adjusting means 38. 68 for O
If FF is performed and the operation of the noise blanker 60 is controlled to be OFF, generation of a click sound due to ON / OFF operation of the noise gate 64 can be prevented while receiving the FM mode.

【0024】この第7図に示す本発明の受信機の他の実
施例にあっては、ノイズブランカ60を、図1に示す受
信機の広帯域フィルタ22の代わりに用いるものであ
り、ノイズブランカ60を備えた受信機に応用して好適
である。
In another embodiment of the receiver of the present invention shown in FIG. 7, the noise blanker 60 is used instead of the wide band filter 22 of the receiver shown in FIG. It is suitable to be applied to a receiver equipped with.

【0025】なお、上記実施例の説明にあっては、混信
判別手段44と第1と第2のフーリエ変換手段50,5
1および中央演算手段52を別ブロックで構成したが、
1チップのマイクロコンピュータ等にソフト的に組み込
んでも良いことは勿論である。また、これらをDSP
(ディジタル・シグナル・プロセッサ)を用いて処理し
ても良い。
In the description of the above embodiment, the interference discriminating means 44 and the first and second Fourier transforming means 50, 5 are used.
Although the 1 and the central processing means 52 are composed of separate blocks,
Of course, it may be incorporated in a one-chip microcomputer or the like as software. In addition, these are DSP
(Digital signal processor) may be used for processing.

【0026】さらに、受信モードの判別を混信信号がい
くぶん存在する受信状況でも実行し、混信判別手段44
から受信状況に応じた信号を与えて、中央演算手段52
によって帯域幅可変フィルタ26の帯域幅とAGC手段
32の時定数を、判別された受信モードにおける図2に
示す範囲内で適宜に調整して設定するように構成しても
良い。
Further, the discrimination of the reception mode is executed even in the reception condition in which the interference signal is somewhat present, and the interference discrimination means 44
From the central processing means 52
The bandwidth of the bandwidth variable filter 26 and the time constant of the AGC means 32 may be appropriately adjusted and set within the range shown in FIG. 2 in the determined reception mode.

【0027】[0027]

【発明の効果】以上説明したところから明らかなよう
に、本発明の受信機は以下のごとき格別な効果を奏す
る。
As is apparent from the above description, the receiver of the present invention has the following special effects.

【0028】請求項1記載の受信機では、受信信号をフ
ーリエ変換し、そのパターンから受信モードを判別し
て、付加回路手段が制御されるので、受信機が最適な設
定状態に自動的に切り換えられ、手動により付加回路手
段を設定する操作が不要であり、操作が極めて簡単であ
る。
In the receiver according to the first aspect, the received signal is Fourier transformed, the receiving mode is discriminated from the pattern, and the additional circuit means is controlled. Therefore, the receiver is automatically switched to the optimum setting state. Therefore, it is not necessary to manually set the additional circuit means, and the operation is extremely simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の受信機の一実施例のブロック回路図で
ある。
FIG. 1 is a block circuit diagram of an embodiment of a receiver of the present invention.

【図2】各受信モードと設定すべき帯域幅可変フィルタ
の帯域幅とAGC手段の時定数およびトーン調整手段の
フィルタ特性の対応を示す図である。
FIG. 2 is a diagram showing the correspondence between each reception mode, the bandwidth of the variable bandwidth filter to be set, the time constant of the AGC means, and the filter characteristic of the tone adjusting means.

【図3】トーン調整手段のフィルタ特性の一例を示す図
である。
FIG. 3 is a diagram showing an example of filter characteristics of a tone adjusting means.

【図4】中央演算手段の動作を示すフローチャートであ
る。
FIG. 4 is a flowchart showing the operation of the central processing means.

【図5】混信判別手段の第1の動作を示すフローチャー
トである。
FIG. 5 is a flowchart showing a first operation of the interference determination means.

【図6】混信判別手段の第2の動作を示すフローチャー
トである。
FIG. 6 is a flowchart showing a second operation of the interference determination means.

【図7】本発明の受信機の他の実施例のブロック回路図
である。
FIG. 7 is a block circuit diagram of another embodiment of the receiver of the invention.

【符号の説明】[Explanation of symbols]

10 アンテナ 12 高周波増幅回路 14 第1のミクサ 18 第1の中間周波増幅回路 20 分配器 22 広帯域フィルタ 24 狭帯域フィルタ 26 帯域幅可変フィルタ 28 第2の中間周波増幅回路 30 第2のミクサ 32 AGC手段 36 第1の復調回路 38 トーン調整手段 40 低周波増幅回路 42 スピーカ 44 混信判別手段 46 第3の中間周波増幅回路 48 第2の復調回路 50 第1のフーリエ変換手段 51 第2のフーリエ変換手段 52 中央演算手段 60 ノイズブランカ 62 ノイズ検波器 64 ノイズゲート 68 スイッチ 10 Antenna 12 High Frequency Amplifier Circuit 14 First Mixer 18 First Intermediate Frequency Amplifier Circuit 20 Distributor 22 Wideband Filter 24 Narrow Band Filter 26 Bandwidth Variable Filter 28 Second Intermediate Frequency Amplifier Circuit 30 Second Mixer 32 AGC Means 36 First Demodulation Circuit 38 Tone Adjusting Means 40 Low Frequency Amplifying Circuit 42 Speaker 44 Interference Discriminating Means 46 Third Intermediate Frequency Amplifying Circuit 48 Second Demodulating Circuit 50 First Fourier Transforming Means 51 Second Fourier Transforming Means 52 Central processing means 60 Noise blanker 62 Noise detector 64 Noise gate 68 Switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンテナで受信された受信信号を、それ
ぞれ通過帯域幅の異なるフィルタを介して復調回路で復
調信号とする第1および第2の受信系統と、前記第1お
よび/または前記第2の受信系統の前記復調信号をフー
リエ変換するフーリエ変換手段と、このフーリエ変換さ
れた信号から受信モードを判別して付加回路手段を受信
モードに最適な設定状態に制御する演算手段と、を備え
たことを特徴とする受信機。
1. A first and a second reception system for converting a reception signal received by an antenna into a demodulation signal by a demodulation circuit through filters having different pass bandwidths, and the first and / or the second reception system. Fourier transforming means for Fourier transforming the demodulated signal of the receiving system, and computing means for discriminating the receiving mode from the Fourier transformed signal and controlling the additional circuit means to the optimum setting state for the receiving mode. A receiver characterized in that.
JP05216993A 1993-08-09 1993-08-09 Receiving machine Expired - Lifetime JP3136031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05216993A JP3136031B2 (en) 1993-08-09 1993-08-09 Receiving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05216993A JP3136031B2 (en) 1993-08-09 1993-08-09 Receiving machine

Publications (2)

Publication Number Publication Date
JPH0758654A true JPH0758654A (en) 1995-03-03
JP3136031B2 JP3136031B2 (en) 2001-02-19

Family

ID=16697136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05216993A Expired - Lifetime JP3136031B2 (en) 1993-08-09 1993-08-09 Receiving machine

Country Status (1)

Country Link
JP (1) JP3136031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170151B2 (en) 2008-03-05 2012-05-01 Renesas Electronics Corporation FSK receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170151B2 (en) 2008-03-05 2012-05-01 Renesas Electronics Corporation FSK receiver

Also Published As

Publication number Publication date
JP3136031B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US5303406A (en) Noise squelch circuit with adaptive noise shaping
US4356567A (en) Radio receiver with bandwidth switching
US4157455A (en) FM stereophonic receiver having muting and mode changing
JPH06509691A (en) Adjacent channel controller for radio receivers
JPH05335855A (en) Radio receiver
JP3992521B2 (en) Adjacent interference detection apparatus and method, and broadcast receiving apparatus capable of using the method
JP4159964B2 (en) Audio broadcast receiving apparatus and automatic channel selection method
JP3136031B2 (en) Receiving machine
JPH03761Y2 (en)
JPH06188765A (en) Circuit device for detection and suppression of disturbance of adjacent channels
JPH02194736A (en) Fm radio receiver
JPH05327537A (en) Fm radio receiver
JP3157283B2 (en) Receiving machine
JP3221280B2 (en) Multipath noise reduction device
JP3124331B2 (en) Voice squelch circuit
JP2004222192A (en) Broadcast receiver
JP3157281B2 (en) Receiving machine
JPH053441A (en) Fm radio reception system
JP3124119B2 (en) Receiving machine
JP3169469B2 (en) Receiving machine
JP3169446B2 (en) Receiving machine
JPS6041331A (en) Radio receiver
JP3019423B2 (en) Receiver
JPH0210682Y2 (en)
JP2002300053A (en) Broadcast receiver and its control method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131201

EXPY Cancellation because of completion of term