[go: up one dir, main page]

JPH0758503A - Feed horn for circularly polarized wave - Google Patents

Feed horn for circularly polarized wave

Info

Publication number
JPH0758503A
JPH0758503A JP20609493A JP20609493A JPH0758503A JP H0758503 A JPH0758503 A JP H0758503A JP 20609493 A JP20609493 A JP 20609493A JP 20609493 A JP20609493 A JP 20609493A JP H0758503 A JPH0758503 A JP H0758503A
Authority
JP
Japan
Prior art keywords
circular waveguide
dielectric plate
pattern
parallel
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20609493A
Other languages
Japanese (ja)
Inventor
Akira Koizumi
暁 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP20609493A priority Critical patent/JPH0758503A/en
Publication of JPH0758503A publication Critical patent/JPH0758503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To provide a feed horn for a circularly polarized wave suitable for miniaturization, with an excellent cross polarized wave characteristic and offering ease of connection to an LNB. CONSTITUTION:The horn is made up of a radio wave output means comprising a dielectric plate 3 and a conductor pattern 4 provided to an opening 1 of a circular waveguide 2, a parallel grating pattern 6 provided to a dielectric plate 5 located at a distance equivalent to a nearly 1/4 wavelength of a radio wave propagated in a circular waveguide 1 from said output means and a radio wave reflection means provided at a distance equivalent to a nearly 1/8 wavelength of a radio wave from the parallel grating pattern 6 and comprising a dielectric plate 7 and a copper foil face 8, and a polarized wave component whose phase is delayed more than that of the other in two orthogonal polarized wave components of a circularly polarized wave introducing to the circular waveguide 2 is reflected in the parallel grating pattern 6 and the polarized wave component whose phase is led is reflected in the copper foil face 8 and converted into a linearly polarized wave at a position of the output means and the converted wave is outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波の受信装置
に関し、特に衛星から送信されてくる円偏波を受信する
円偏波用フィードホーンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave receiver, and more particularly to a circularly polarized feed horn for receiving circularly polarized waves transmitted from a satellite.

【0002】[0002]

【従来の技術】従来の円偏波用フィードホーンは、図6
に示すように、円形導波管22の一端を開口部21と
し、他端を終端面25とし、開口部21で効率良く円偏
波の電波を円形導波管22内に導入し、円偏波/直線偏
波変換器として使用されている、例えば1/4波長の位
相差を生じる長さとした誘電体板23で導入された円偏
波を直線偏波に変換し、変換された直線偏波の電界の向
きと結合用プローブ24の向きを同じ向きとして、終端
面25から約1/4波長となる位置に配置して、同プロ
ーブ24に変換された直線偏波を結合させて電気信号に
変換し、同プローブ24から電気信号を取り出してLN
Bに入力して、衛星から送信されてくる円偏波を受信す
るようにしていた。
2. Description of the Prior Art A conventional circularly polarized feed horn is shown in FIG.
As shown in FIG. 2, one end of the circular waveguide 22 is used as the opening 21 and the other end is used as the termination surface 25, and circularly polarized radio waves are efficiently introduced into the circular waveguide 22 through the opening 21 and circularly polarized wave. Used as a wave / linear polarization converter, for example, a circularly polarized wave introduced by a dielectric plate 23 having a length that produces a phase difference of ¼ wavelength is converted into a linearly polarized wave, and the converted linearly polarized wave is obtained. The direction of the electric field of the wave and the direction of the coupling probe 24 are the same, and the probe 24 is arranged at a position of about 1/4 wavelength from the end face 25, and the linearly polarized waves converted by the probe 24 are coupled to each other to generate an electric signal. Converted to LN
I input it to B and received the circularly polarized wave transmitted from the satellite.

【0003】[0003]

【発明が解決しようとする課題】従って、円偏波用フィ
ードホーンとしては、円偏波/直線偏波変換器の長さ
と、終端面25と結合用プローブ24間の長さとして約
1/4波長の長さとが少なくとも必要となり、小型化が
しにくいといった問題点があり、また、結合用プローブ
24とLNBの入力回路との接合部分でインピーダンス
の整合のための措置を講ずる必要があり、接合部分が複
雑となり、さらに円形導波管22内に設けられた円偏波
/直線偏波変換器により、受信希望の円偏波に対する逆
旋回の円偏波が反射し、開口部21、あるいは開口部2
1の先端に設けられた防塵用のキャップ等の部分により
再度反射し受信希望の円偏波と同じ向きに旋回する円偏
波となって円形導波管22内を伝播するため、交差偏波
特性が劣化するといった問題点があった。本発明は、円
形導波管内に設けられた電波の出力手段に対して、同出
力手段から所定の距離に設けられた平行格子パターン
と、同平行格子パターンから所定の距離に設けられた電
波の反射手段とで、電波を反射させ電波の出力手段の位
置で円偏波が直線偏波に変換されるようにし、変換され
た直線偏波を電波の出力手段として設けられた誘電体板
上の導体パターンに直接結合させて、同導体パターンを
介して受信希望の信号を取り出すことにより、小型化に
適し交差偏波特性を良くしたLNBとの接続が容易な円
偏波用フィードホーンを提供することを目的とする。
Therefore, as a circularly polarized feed horn, the length of a circularly polarized wave / linearly polarized wave converter and the length between the terminating surface 25 and the coupling probe 24 are about 1/4. There is a problem that at least the length of the wavelength is required, and it is difficult to reduce the size, and it is necessary to take measures for impedance matching at the joint between the coupling probe 24 and the input circuit of the LNB. The portion becomes complicated, and further, the circular polarization / linear polarization converter provided in the circular waveguide 22 reflects the circular polarization of the reverse rotation with respect to the circular polarization desired to be received, and the opening 21 or the opening. Part 2
1 is again reflected by a portion such as a dust-proof cap provided at the tip of No. 1 and is propagated in the circular waveguide 22 as a circular polarization that rotates in the same direction as the circular polarization desired to be received. There was a problem that the characteristics deteriorate. The present invention relates to a radio wave output means provided in a circular waveguide, a parallel grating pattern provided at a predetermined distance from the output means, and a radio wave provided at a predetermined distance from the parallel grid pattern. With the reflection means, the electric wave is reflected so that the circularly polarized wave is converted into the linearly polarized wave at the position of the electric wave output means, and the converted linearly polarized wave is on the dielectric plate provided as the electric wave output means. Provides a circularly polarized feed horn that is suitable for downsizing and is easily connected to an LNB by connecting directly to a conductor pattern and extracting the desired signal through the conductor pattern. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本願の第1の発明の円偏
波用フィードホーンは、円形導波管の開口部側に設けら
れた、電波の出力手段と、同出力手段から同円形導波管
内を伝播する電波の約1/4波長の距離に設けられた平
行格子パターンと、同平行格子パターンから前記電波の
約1/8波長の距離に設けられた電波を反射させる反射
手段とからなり、同円形導波管に導入された円偏波の直
交する2つの偏波成分に対して、位相の遅れている方の
偏波成分に対しては、前記平行格子パターンで反射さ
せ、位相の進んでいる方の偏波成分に対しては、前記反
射手段で反射させて前記出力手段の位置で直線偏波に変
換して出力することを特徴とする。本願の第2の発明の
円偏波用フィードホーンは、前記平行格子パターンが、
使用周波数帯域に対する表皮の厚さより大きくした線路
幅の平行格子パターンを有し、円形導波管内を伝播する
電波の半波長より十分に狭くしたパターン間隔を有する
ものからなることを特徴とする。
A circularly polarized feed horn according to the first invention of the present application is a radio wave output means provided on the opening side of a circular waveguide and a circular guide from the output means. From a parallel grating pattern provided at a distance of about 1/4 wavelength of a radio wave propagating in the wave tube, and a reflection means for reflecting the electric wave provided at a distance of about 1/8 wavelength of the radio wave from the parallel grating pattern. Then, the two polarization components orthogonal to each other of the circular polarization introduced into the same circular waveguide are reflected by the parallel grating pattern for the polarization component with the phase delay, and the phase is reflected. With respect to the polarized wave component of the one that is advancing, it is characterized in that it is reflected by the reflecting means, converted into a linear polarized wave at the position of the output means, and output. In the circularly polarized feed horn of the second invention of the present application, the parallel grating pattern is
It is characterized in that it has a parallel grating pattern having a line width larger than the thickness of the skin with respect to the frequency band used, and has a pattern interval sufficiently narrower than a half wavelength of the radio wave propagating in the circular waveguide.

【0005】本願の第3の発明の円偏波用フィードホー
ンは、前記出力手段が円形導波管の内部に挿入された第
1誘電体板上に設けられた直線状の導体パターンからな
り、同導体パターンと前記平行格子パターンの線路とが
約45度の角度を成すように配置したことを特徴とす
る。本願の第4の発明の円偏波用フィードホーンは、前
記出力手段が円形導波管の内部に挿入された棒状のピッ
クアッププローブからなり、同棒状のピックアッププロ
ーブと前記平行格子パターンの線路とが約45度の角度
を成すように配置したことを特徴とする。
In the circularly polarized feed horn of the third invention of the present application, the output means is composed of a linear conductor pattern provided on a first dielectric plate inserted inside a circular waveguide, It is characterized in that the conductor pattern and the lines of the parallel lattice pattern are arranged so as to form an angle of about 45 degrees. In the circularly polarized feed horn of the fourth invention of the present application, the output means comprises a rod-shaped pickup probe inserted inside a circular waveguide, and the rod-shaped pickup probe and the lines of the parallel grating pattern are provided. It is characterized in that they are arranged so as to form an angle of about 45 degrees.

【0006】本願の第5の発明の円偏波用フィードホー
ンは、前記平行格子パターンが第2誘電体板上に設けら
れた導体パターンからなり、同第2誘電体の厚さを同誘
電体板中を伝播する電波の約1/4波長の長さとし、前
記反射手段が第3誘電体板上に設けられた銅箔面からな
り、同第3誘電体板の厚さを同誘電体板中を伝播する電
波の約1/8波長の長さとして、前記平行格子パターン
及び銅箔面を各々円形導波管の奥側となるようにして前
記第2誘電体と前記第3誘電体板とを貼合わせて前記円
形導波管中に配置したことを特徴とする。本願の第6の
発明の円偏波用フィードホーンは、前記第3誘電体板と
して両面基板を使用し、円形導波管の開口部側の面に前
記平行格子パターンを設け、反対側の面に銅箔面を設け
たことを特徴とする。
The circularly polarized feed horn of the fifth invention of the present application comprises the conductor pattern in which the parallel grating pattern is provided on the second dielectric plate, and the thickness of the second dielectric is the same. The length of the radio wave propagating through the plate is about ¼ wavelength, the reflecting means is a copper foil surface provided on the third dielectric plate, and the thickness of the third dielectric plate is the same. The second dielectric and the third dielectric plate are arranged such that the parallel grating pattern and the copper foil surface are respectively on the inner sides of the circular waveguides, with the length of about 1/8 wavelength of the radio wave propagating inside. And are attached to each other and arranged in the circular waveguide. The circularly polarized feed horn of the sixth invention of the present application uses a double-sided substrate as the third dielectric plate, and provides the parallel grating pattern on the surface of the circular waveguide on the side of the opening, and the surface on the opposite side. It is characterized in that a copper foil surface is provided on.

【0007】[0007]

【作用】本発明は上記した構成により、円形導波管に導
入された円偏波の電波を直線偏波に変換するようにして
おり、電波の出力手段から約1/4波長の位置に設けら
れた平行格子パターンと、同平行格子パターンから約1
/8波長の位置に設けられた電波を反射させる反射手段
とからなり、同円形導波管に導入された円偏波の直交す
る2つの偏波成分に対して、位相の遅れている方の偏波
成分に対しては、前記平行格子パターンで反射させ、位
相の進んでいる方の偏波成分に対しては、前記反射手段
で反射させて出力手段の位置で直線偏波になるように
し、逆旋回の円偏波に対しては、位相の進んでいる方の
偏波成分が前記平行格子パターンで反射し、位相の遅れ
ている方の偏波成分が前記反射手段で反射するような配
置となるため、両反射波は逆位相の関係となり、信号と
して出力されなくなるため、交差偏波特性を良くするこ
とが可能となり、また円形導波管の長さを短くできるた
め小型化が可能となる。
According to the present invention, the circularly polarized wave introduced into the circular waveguide is converted into the linearly polarized wave by the above-mentioned structure, and the circularly polarized wave is provided at the position of about 1/4 wavelength from the output means of the electromagnetic wave. From the parallel grid pattern and about 1 from the parallel grid pattern
/ 8 wavelength reflection means for reflecting radio waves, and the phase of which is delayed with respect to two orthogonal polarization components of circular polarization introduced into the circular waveguide. The polarized wave component is reflected by the parallel grating pattern, and the polarized wave component having the phase advance is reflected by the reflecting means so that a linear polarized wave is formed at the position of the output means. For the circularly polarized wave of the reverse rotation, the polarization component of the phase advance is reflected by the parallel grating pattern, and the polarization component of the phase delay is reflected by the reflection means. Due to the arrangement, both reflected waves have a relationship of opposite phases and are not output as a signal, so that it is possible to improve the cross polarization characteristics, and it is possible to reduce the size of the circular waveguide because the length of the circular waveguide can be shortened. It will be possible.

【0008】また、平行格子パターン及び反射手段を各
々の誘電体板上に設けられた導体パターンを用い、各々
の誘電体板として比誘電率の高いものを選択すれば、各
々の誘電体板中を伝播する電波の波長を短くすることが
できるため、円形導波管の管軸方向に沿った長さを短く
することができ、さらに円形導波管の長さを短くできる
ため小型化が可能となる。前記出力手段として円形導波
管の内部に挿入された誘電体板上に設けられた直線状の
導体パターンを使用し、同導体パターンを介して受信希
望の信号を取り出すようにしており、LNBとの接続が
容易となる。
Further, by using a conductor pattern provided on each dielectric plate for the parallel grating pattern and the reflecting means, and selecting one having a high relative dielectric constant as each dielectric plate, Since the wavelength of the radio wave propagating through can be shortened, the length of the circular waveguide along the tube axis direction can be shortened, and further, the length of the circular waveguide can be shortened, thus enabling miniaturization. Becomes As the output means, a linear conductor pattern provided on a dielectric plate inserted inside a circular waveguide is used, and a signal desired to be received is taken out through the conductor pattern. Connection becomes easy.

【0009】[0009]

【実施例】図1は、本発明の一実施例を示す、円偏波用
フィードホーンの一部切欠き斜視図である。円形導波管
2の一端を開口部1とし、他端を終端面9とし、開口部
1から終端面9に向かって順に、誘電体板3と同誘電体
板3に設けられた導体パターン4からなる電波の出力手
段と、片面を平行格子パターン6とした誘電体板5と、
片面を銅箔面8とした誘電体板7とを配置している。な
お、図1において、10及び11は切欠き線を示す。
FIG. 1 is a partially cutaway perspective view of a circularly polarized feed horn showing an embodiment of the present invention. One end of the circular waveguide 2 serves as the opening 1 and the other end serves as the terminating surface 9, and the dielectric plate 3 and the conductor pattern 4 provided on the dielectric plate 3 are sequentially arranged from the opening 1 toward the terminating surface 9. And a dielectric plate 5 having a parallel lattice pattern 6 on one side,
A dielectric plate 7 having a copper foil surface 8 on one surface is arranged. In addition, in FIG. 1, 10 and 11 show notched lines.

【0010】図2は、図1の一部切欠き側面図である。
誘電体板3は円形導波管2の管軸に対して直交する向き
とし、円形導波管2の開口部1側と、終端面9側の間に
挿入して配置し、誘電体板3の表面に設けられた直線状
の導体パターン4の一端が円形導波管2の中心軸に向か
うようにし、他端を円形導波管2の外部に引き出して、
導体パターン4から信号を出力できるようにしている。
誘電体板5は円形導波管2の内径より小さい直径を有す
る円筒形状のものを使用し、導体パターン4と誘電体板
5の片面に設けた平行格子パターン6迄の距離が、同誘
電体板5を伝播する電波の約1/4波長の長さとなるよ
うな厚さとし、平行格子パターン6で反射させた電波を
効率良く導体パターン4に結合させることができるよう
にしている。
FIG. 2 is a partially cutaway side view of FIG.
The dielectric plate 3 is oriented perpendicular to the tube axis of the circular waveguide 2, and is inserted and arranged between the opening 1 side of the circular waveguide 2 and the end face 9 side. One end of the linear conductor pattern 4 provided on the surface of is directed toward the central axis of the circular waveguide 2, and the other end is drawn out of the circular waveguide 2,
A signal can be output from the conductor pattern 4.
As the dielectric plate 5, a cylindrical one having a diameter smaller than the inner diameter of the circular waveguide 2 is used, and the distance between the conductor pattern 4 and the parallel lattice pattern 6 provided on one side of the dielectric plate 5 is the same. The thickness of the plate 5 is set to be about ¼ wavelength of the radio wave propagating through the plate 5, so that the radio wave reflected by the parallel grating pattern 6 can be efficiently coupled to the conductor pattern 4.

【0011】誘電体板7の厚さは、平行格子パターン6
と誘電体板7の片面に設けた銅箔面8迄の距離が、同誘
電体板7を伝播する電波の約1/8波長の長さとなるよ
うにし、平行格子パターン6を通過した電波を反射でき
るようにし、誘電体板5と誘電体板7を貼り合わせて、
誘電体板3に接した状態として円形導波管2内に固定す
る。誘電体板5及び7として比誘電率の高いものを選択
して使用すれば、同誘電体板を伝播する電波の波長を短
くすることができるため、誘電体板5及び7の厚さを薄
くすることができ、従って円形導波管2の管軸方向の長
さを短くして小型化することが可能となる。
The thickness of the dielectric plate 7 is the parallel lattice pattern 6
And the distance to the copper foil surface 8 provided on one side of the dielectric plate 7 is set to be about 1/8 wavelength of the radio wave propagating through the dielectric plate 7, and the radio wave passing through the parallel grating pattern 6 is So that it can be reflected, and the dielectric plate 5 and the dielectric plate 7 are bonded together,
It is fixed in the circular waveguide 2 while being in contact with the dielectric plate 3. If the dielectric plates 5 and 7 having a high relative permittivity are selected and used, the wavelength of the radio wave propagating through the dielectric plates can be shortened. Therefore, the thickness of the dielectric plates 5 and 7 can be reduced. Therefore, it is possible to reduce the length of the circular waveguide 2 in the tube axis direction and reduce the size.

【0012】図3は、図2の切断線A−Aからみた一部
切欠き断面図である。平行格子パターン6は、パターン
間隔(パターンの中心線同士の間隔)Dを誘電体板5を
伝播する電波の半波長の長さより十分に狭くし、導体パ
ターンの線路幅dを円偏波用フィードホーンの使用周波
数帯域に対する表皮の厚さより大きくして、複数の平行
な導体パターンを設けた形状としている。表皮の厚さ
は、一般的には表皮電流の流れる厚さとして定義され、
例えば導体パターンとして銅を用いるとすると、12G
Hzの電波に対する表皮の厚さは約1μmであり、線路
幅dは1μmを超える値とし、機械的強度、あるいは加
工のし易さで選択して決定する。図3は左旋円偏波受信
用とした配置であり、平行格子パターン6の導体パター
ンと電波のピックアップ用導体パターン4との成す角度
が45度となるようにし、平行格子パターン6の導体パ
ターンは左上がりとなるように配置している。
FIG. 3 is a partially cutaway sectional view taken along the line AA of FIG. In the parallel grating pattern 6, the pattern interval (the interval between the center lines of the patterns) D is made sufficiently narrower than the half-wave length of the radio wave propagating through the dielectric plate 5, and the line width d of the conductor pattern is set to the circular polarization feed. The horn has a shape in which a plurality of parallel conductor patterns are provided to be larger than the skin thickness for the frequency band used. The thickness of the epidermis is generally defined as the thickness of the skin current flowing,
For example, if copper is used as the conductor pattern, 12G
The skin thickness for a radio wave of Hz is about 1 μm, and the line width d is set to a value exceeding 1 μm, which is selected and determined depending on mechanical strength or workability. FIG. 3 shows an arrangement for receiving left-handed circularly polarized waves. The angle formed by the conductor pattern of the parallel grating pattern 6 and the conductor pattern 4 for picking up the radio wave is 45 degrees. It is arranged so that it goes up to the left.

【0013】図4は、円偏波の説明図であり、電波の進
行方向は紙面の表から裏に向かう向きとする。円形導波
管2内に左旋円偏波が導入されたとすると、左旋円偏波
の電界ベクトルEは2つの直交するX軸及びY軸方向の
直線偏波成分、Ex=Ecosωt・exとEy=Ec
os(ωt+π/2)・eyとに分解することができ
る。ここで、ex及びeyは各々X軸及びY軸方向の単
位ベクトルを示す。従って、直線偏波成分としては、E
xよりEyの方が90度位相が進んだ状態となって円形
導波管2内を伝播する。
FIG. 4 is an explanatory diagram of circularly polarized waves, and the traveling direction of radio waves is from the front to the back of the paper. If a left-handed circularly polarized wave is introduced into the circular waveguide 2, the electric field vector E of the left-handed circularly polarized wave is expressed by two orthogonal linearly polarized components in the X-axis and Y-axis directions, Ex = Ecosωt · ex and Ey = Ec
It can be decomposed into os (ωt + π / 2) · ey. Here, ex and ey represent unit vectors in the X-axis and Y-axis directions, respectively. Therefore, the linearly polarized wave component is E
The phase of Ey is advanced by 90 degrees from x and propagates in the circular waveguide 2.

【0014】図3の平行格子パターン6の導体パターン
はX軸方向の直線偏波成分Exの電界の向きと平行とな
り、パターン間隔Dを誘電体板5を伝播する電波の半波
長の長さより十分に狭くし、線路幅dを表皮の厚さを超
える値としているため、X軸方向の直線偏波成分Exは
平行格子パターン6で反射され、Y軸方向の直線偏波成
分Eyの電界の向きは平行格子パターン6の導体パター
ンと交差する向きとなるため、平行格子パターン6を通
り抜けて伝播する。直線偏波成分Eyは平行格子パター
ン6と約1/8波長の距離にある誘電体板7の片面に設
けられた銅箔面8に到達し、銅箔面8で反射する。
The conductor pattern of the parallel grid pattern 6 of FIG. 3 is parallel to the direction of the electric field of the linearly polarized wave component Ex in the X-axis direction, and the pattern interval D is sufficiently longer than the half wavelength of the radio wave propagating through the dielectric plate 5. Since the line width d is set to a value exceeding the skin thickness, the linear polarization component Ex in the X-axis direction is reflected by the parallel grating pattern 6 and the direction of the electric field of the linear polarization component Ey in the Y-axis direction. Has a direction crossing the conductor pattern of the parallel lattice pattern 6, and therefore propagates through the parallel lattice pattern 6. The linearly polarized wave component Ey reaches the copper foil surface 8 provided on one surface of the dielectric plate 7 at a distance of about 1/8 wavelength from the parallel grating pattern 6 and is reflected by the copper foil surface 8.

【0015】従って、平行格子パターン6で反射した直
線偏波成分Exと銅箔面8で反射した直線偏波成分Ey
の位相関係は、直線偏波成分Eyの伝播経路は直線偏波
成分Exより1/4波長分だけ長くなるため同位相とな
り、両直線偏波成分を合成したものはX軸及びY軸を2
分する角度に電界ベクトルEを有する直線偏波に変換で
きる。ピックアップ用導体パターン4は、変換された直
線偏波の電界の向きに平行となるように配置されている
ため、直線偏波の電界を導体パターン4に結合させて電
気信号に変換し、導体パターン4で円形導波管2から出
力し、円形導波管2の外部で誘電体板3の裏面に地導体
を設けて導体パターン4とマイクロストリップ線路を構
成し、同マイクロストリップ線路で電気信号を伝送しL
NBの入力回路に入力して衛星信号を受信できるように
している。
Therefore, the linear polarization component Ex reflected by the parallel grating pattern 6 and the linear polarization component Ey reflected by the copper foil surface 8
The phase relationship of the linear polarization component Ey becomes the same phase because the propagation path of the linear polarization component Ey is longer than the linear polarization component Ex by ¼ wavelength, and a combination of both linear polarization components has two X-axis and Y-axis components.
It can be converted into a linearly polarized wave having the electric field vector E at the dividing angle. Since the pickup conductor pattern 4 is arranged so as to be parallel to the direction of the converted linearly polarized electric field, the linearly polarized electric field is coupled to the conductor pattern 4 and converted into an electric signal, 4 outputs the signal from the circular waveguide 2, and a ground conductor is provided outside the circular waveguide 2 on the back surface of the dielectric plate 3 to form a conductor pattern 4 and a microstrip line. Transmitted L
The input signal is input to the NB so that satellite signals can be received.

【0016】図4において、受信希望の左旋円偏波に対
する交差偏波となる右旋円偏波が円形導波管2内に導入
されたとすると、右旋円偏波の電界ベクトルEは2つの
直交するX軸及びY軸方向の直線偏波成分は括弧書きし
てあるように、Ex=Ecosωt・exとEy=Ec
os(ωt−π/2)・eyとに分解することができ
る。ここで、ex及びeyは各々X軸及びY軸方向の単
位ベクトルを示す。従って、直線偏波成分としては、E
yよりExの方が90度位相が進んだ状態となって円形
導波管2内を伝播する。位相の進んでいる方の偏波成分
Exが平行格子パターン6で反射し、位相の遅れている
方の偏波成分Eyが銅箔面8で反射するような配置とな
るため、両反射波は逆位相の関係となり、従って、合成
したものは打ち消し合い信号として出力されなくなるた
め、交差偏波特性を良くすることが可能となる。
In FIG. 4, assuming that a right-handed circular polarization, which is a cross-polarized wave with respect to the left-handed circular polarization desired to be received, is introduced into the circular waveguide 2, the electric field vector E of the right-handed circular polarization is two. The linearly polarized components in the X-axis and Y-axis directions that are orthogonal to each other are, as shown in parentheses, Ex = Ecosωt · ex and Ey = Ec
It can be decomposed into os (ωt−π / 2) · ey. Here, ex and ey represent unit vectors in the X-axis and Y-axis directions, respectively. Therefore, the linearly polarized wave component is E
Ex propagates through the circular waveguide 2 in a state in which the phase is 90 degrees ahead of y. Since the polarized wave component Ex having the advanced phase is reflected by the parallel grating pattern 6 and the polarized wave component Ey having the delayed phase is reflected by the copper foil surface 8, both reflected waves are Since there is a relationship of opposite phases, and therefore the combined signal is not output as a canceling signal, it is possible to improve the cross polarization characteristic.

【0017】図5は、本発明の他の実施例を示す、円偏
波用フィードホーンの説明図であり、右旋円偏波受信用
とした例を示す。図1において、誘電体板5に設ける平
行格子パターン6の向きのみを変え、他の構成を同じと
し、図5に示すような平行格子パターン15とし、平行
格子パターン15の導体パターンと電波のピックアップ
用導体パターン4との成す角度が45度となるように
し、平行格子パターン15の導体パターンが右上がりと
なるように配置する。円形導波管2に導入された右旋円
偏波の直交する2つの偏波成分Ex及びEyに対して、
位相の遅れている方の偏波成分Eyに対しては、平行格
子パターン15で反射させ、位相の進んでいる方の偏波
成分Exに対しては、銅箔面8で反射させて合成したも
のが直線偏波になるようにし、逆旋回の左旋円偏波に対
しては、位相の進んでいる方の偏波成分Eyが平行格子
パターン15で反射し、位相の遅れている方の偏波成分
Exが銅箔面8で反射するような配置となるため、両反
射波は逆位相の関係となり、合成により打ち消し合い信
号として出力されなくなるため、交差偏波特性を良くす
ることが可能となる。
FIG. 5 is an explanatory view of a circularly polarized feed horn showing another embodiment of the present invention, showing an example for receiving right-handed circularly polarized wave. In FIG. 1, only the direction of the parallel grid pattern 6 provided on the dielectric plate 5 is changed and the other configurations are made the same to form a parallel grid pattern 15 as shown in FIG. 5, and the conductor pattern of the parallel grid pattern 15 and the radio wave pickup. The angle formed with the conductor pattern 4 for use is 45 degrees, and the conductor pattern of the parallel lattice pattern 15 is arranged so as to rise to the right. For two orthogonal polarization components Ex and Ey of right-handed circularly polarized waves introduced into the circular waveguide 2,
The polarized wave component Ey having a phase delay is reflected by the parallel grating pattern 15, and the polarized wave component Ex having a phase advance is reflected by the copper foil surface 8 to be synthesized. For the left-handed circularly polarized wave of the reverse rotation, the polarized wave component Ey having the advanced phase is reflected by the parallel grating pattern 15 and the polarized wave having the delayed phase is polarized. Since the arrangement is such that the wave component Ex is reflected by the copper foil surface 8, both reflected waves have a relationship of opposite phases and are not output as a canceling signal due to synthesis, so that cross polarization characteristics can be improved. Becomes

【0018】円形導波管2に対するピックアップ用導体
パターン4の挿入の深さは、円偏波から直線偏波に変換
された電波を効率良く導体パターン4に結合させること
ができるように調整して決定する。導体パターン4は誘
電体板3の裏側に設けるようにしても良く、また、導体
パターン4を使用する代わりに、同じ配置とした棒状の
ピックアッププローブを使用し、同プローブを介して取
り出した電気信号をLNBの入力回路に入力するように
しても良い。平行格子パターン6は、導体パターン4か
ら円形導波管2内を伝播する電波の約1/4波長の位置
にあれば良く、また銅箔面8は、平行格子パターン6か
ら円形導波管2内を伝播する電波の約1/8波長の位置
にあれば良く、各々誘電体板の片面に設けた銅箔面を用
いることにより、所定の間隔をとることが容易となり、
加工し易くすることができ、また、円形導波管の管軸方
向に沿った長さを短くすることができる。
The depth of insertion of the pickup conductor pattern 4 into the circular waveguide 2 is adjusted so that the electric wave converted from the circularly polarized wave to the linearly polarized wave can be efficiently coupled to the conductor pattern 4. decide. The conductor pattern 4 may be provided on the back side of the dielectric plate 3. Alternatively, instead of using the conductor pattern 4, a rod-shaped pickup probe having the same arrangement is used, and an electric signal extracted through the probe is used. May be input to the input circuit of the LNB. It suffices if the parallel grating pattern 6 is located at a position of about ¼ wavelength of the radio wave propagating in the circular waveguide 2 from the conductor pattern 4, and the copper foil surface 8 is from the parallel grating pattern 6 to the circular waveguide 2. It only needs to be at a position of about 1/8 wavelength of the radio wave propagating inside, and by using the copper foil surface provided on one side of each dielectric plate, it becomes easy to set a predetermined interval,
The processing can be facilitated, and the length of the circular waveguide along the tube axis direction can be shortened.

【0019】誘電体板5及び7を削除して銅箔面8を使
用する代わりに円形導波管2の終端面9で電波を反射さ
せるようにし、平行格子パターン6としては単独に作成
した金属リングを用いるようにしても良い。あるいは、
誘電体板7として両面に銅箔のあるものを使用し、一面
に平行格子パターン6を設け、他面を全面銅箔面8と
し、誘電体板5としては平行格子パターン6を削除した
ものを用いるようにしても良い。
Instead of using the copper foil surface 8 by removing the dielectric plates 5 and 7, the end surface 9 of the circular waveguide 2 is made to reflect the radio wave, and the parallel grating pattern 6 is made of a single metal. A ring may be used. Alternatively,
The dielectric plate 7 having copper foils on both sides is used, the parallel lattice pattern 6 is provided on one surface, the entire surface is made of copper foil surface 8, and the dielectric plate 5 is obtained by removing the parallel lattice pattern 6. You may use it.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
小型化に適し交差偏波特性を良くしたLNBとの接続が
容易な円偏波用フィードホーンを提供することができ
る。
As described above, according to the present invention,
It is possible to provide a circularly polarized feed horn which is suitable for downsizing and which has an improved cross polarization characteristic and which can be easily connected to an LNB.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す、円偏波用フィードホ
ーンの一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a circularly polarized feed horn showing an embodiment of the present invention.

【図2】図1の一部切欠き側面図である。FIG. 2 is a partially cutaway side view of FIG.

【図3】図2の切断線A−Aからみた一部切欠き断面図
である。
FIG. 3 is a partially cutaway sectional view taken along the line AA in FIG.

【図4】円偏波の説明図である。FIG. 4 is an explanatory diagram of circular polarization.

【図5】本発明の他の実施例を示す、円偏波用フィード
ホーンの説明図である。
FIG. 5 is an explanatory view of a circularly polarized feed horn showing another embodiment of the present invention.

【図6】従来例を示す、円偏波用フィードホーンの一部
切欠き斜視図である。
FIG. 6 is a partially cutaway perspective view of a circularly polarized feed horn showing a conventional example.

【符号の説明】[Explanation of symbols]

1 開口部 2 円形導波管 3 誘電体板 4 導体パターン 5 誘電体板 6 平行格子パターン 7 誘電体板 8 銅箔面 9 終端面 10 切欠き線 11 切欠き線 15 平行格子パターン 21 開口部 22 円形導波管 23 誘電体板 24 プローブ 25 終端面 1 Opening 2 Circular Waveguide 3 Dielectric Plate 4 Conductor Pattern 5 Dielectric Plate 6 Parallel Lattice Pattern 7 Dielectric Plate 8 Copper Foil Surface 9 End Face 10 Notch Line 11 Notch Line 15 Parallel Lattice Pattern 21 Opening 22 Circular waveguide 23 Dielectric plate 24 Probe 25 End surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円形導波管の開口部側に設けられた、電
波の出力手段と、同出力手段から同円形導波管内を伝播
する電波の約1/4波長の距離に設けられた平行格子パ
ターンと、同平行格子パターンから前記電波の約1/8
波長の距離に設けられた電波を反射させる反射手段とか
らなり、同円形導波管に導入された円偏波の直交する2
つの偏波成分に対して、位相の遅れている方の偏波成分
に対しては、前記平行格子パターンで反射させ、位相の
進んでいる方の偏波成分に対しては、前記反射手段で反
射させて前記出力手段の位置で直線偏波に変換して出力
することを特徴とする円偏波用フィードホーン。
1. A radio wave output means provided on the opening side of the circular waveguide and a parallel provided at a distance of about ¼ wavelength of the radio wave propagating through the circular waveguide from the output means. Approximately 1/8 of the radio wave from the grid pattern and the parallel grid pattern
A circular polarized wave introduced into the circular waveguide is orthogonal to each other, and is composed of a reflection means provided at a distance of the wavelength for reflecting an electric wave.
With respect to the two polarization components, the one having a phase delay is reflected by the parallel grating pattern, and the polarization component having a phase advance is reflected by the reflecting means. A circularly polarized feed horn which is reflected and converted into a linearly polarized wave at the position of the output means for output.
【請求項2】 前記平行格子パターンが、使用周波数帯
域に対する表皮の厚さより大きくした線路幅の平行格子
パターンを有し、円形導波管内を伝播する電波の半波長
より十分に狭くしたパターン間隔を有するものからなる
請求項1記載の円偏波用フィードホーン。
2. The parallel grating pattern has a parallel grating pattern having a line width greater than the thickness of the skin with respect to the frequency band used, and the pattern spacing is sufficiently narrower than the half wavelength of the radio wave propagating in the circular waveguide. The circularly polarized feed horn according to claim 1, which comprises:
【請求項3】 前記出力手段が円形導波管の内部に挿入
された第1誘電体板上に設けられた直線状の導体パター
ンからなり、同導体パターンと前記平行格子パターンの
線路とが約45度の角度を成すように配置したことを特
徴とする請求項1又は2記載の円偏波用フィードホー
ン。
3. The output means comprises a linear conductor pattern provided on a first dielectric plate inserted inside a circular waveguide, and the conductor pattern and the lines of the parallel lattice pattern are approximately The feed horn for circularly polarized waves according to claim 1 or 2, wherein the feed horn is arranged so as to form an angle of 45 degrees.
【請求項4】 前記出力手段が円形導波管の内部に挿入
された棒状のピックアッププローブからなり、同棒状の
ピックアッププローブと前記平行格子パターンの線路と
が約45度の角度を成すように配置したことを特徴とす
る請求項1又は2記載の円偏波用フィードホーン。
4. The output means comprises a rod-shaped pickup probe inserted inside a circular waveguide, and the rod-shaped pickup probe and the lines of the parallel grating pattern are arranged so as to form an angle of about 45 degrees. The feed horn for circularly polarized wave according to claim 1 or 2, characterized in that.
【請求項5】 前記平行格子パターンが第2誘電体板上
に設けられた導体パターンからなり、同第2誘電体の厚
さを同誘電体板中を伝播する電波の約1/4波長の長さ
とし、前記反射手段が第3誘電体板上に設けられた銅箔
面からなり、同第3誘電体板の厚さを同誘電体板中を伝
播する電波の約1/8波長の長さとして、前記平行格子
パターン及び銅箔面を各々円形導波管の奥側となるよう
にして前記第2誘電体と前記第3誘電体板とを貼合わせ
て前記円形導波管中に配置したことを特徴とする請求項
1、2、3又は4記載の円偏波用フィードホーン。
5. The parallel lattice pattern comprises a conductor pattern provided on a second dielectric plate, and the thickness of the second dielectric plate is about 1/4 wavelength of a radio wave propagating in the dielectric plate. The length of the reflecting means is a copper foil surface provided on the third dielectric plate, and the thickness of the third dielectric plate is about 1/8 wavelength of a radio wave propagating in the dielectric plate. As a result, the parallel dielectric pattern and the copper foil surface are located on the inner side of the circular waveguide, and the second dielectric and the third dielectric plate are attached to each other and arranged in the circular waveguide. The feed horn for circularly polarized waves according to claim 1, 2, 3 or 4.
【請求項6】 前記第3誘電体板として両面基板を使用
し、円形導波管の開口部側の面に前記平行格子パターン
を設け、反対側の面に銅箔面を設けたことを特徴とする
請求項5記載の円偏波用フィードホーン。
6. A double-sided substrate is used as the third dielectric plate, the parallel grating pattern is provided on the surface of the circular waveguide on the opening side, and a copper foil surface is provided on the opposite surface. The feed horn for circularly polarized wave according to claim 5.
JP20609493A 1993-08-20 1993-08-20 Feed horn for circularly polarized wave Pending JPH0758503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20609493A JPH0758503A (en) 1993-08-20 1993-08-20 Feed horn for circularly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20609493A JPH0758503A (en) 1993-08-20 1993-08-20 Feed horn for circularly polarized wave

Publications (1)

Publication Number Publication Date
JPH0758503A true JPH0758503A (en) 1995-03-03

Family

ID=16517710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20609493A Pending JPH0758503A (en) 1993-08-20 1993-08-20 Feed horn for circularly polarized wave

Country Status (1)

Country Link
JP (1) JPH0758503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087580A3 (en) * 2009-01-30 2010-09-23 한국항공대학교 산학협력단 Waveguide adapter capable of generating circular polarization
CN111937229A (en) * 2018-04-06 2020-11-13 韩国科学技术院 Waveguide for transmitting electromagnetic wave signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087580A3 (en) * 2009-01-30 2010-09-23 한국항공대학교 산학협력단 Waveguide adapter capable of generating circular polarization
KR101007668B1 (en) * 2009-01-30 2011-01-13 한국항공대학교산학협력단 Waveguide Adapter with Circular Polarization
CN111937229A (en) * 2018-04-06 2020-11-13 韩国科学技术院 Waveguide for transmitting electromagnetic wave signals
CN111937229B (en) * 2018-04-06 2021-11-12 韩国科学技术院 Waveguide for transmitting electromagnetic wave signals

Similar Documents

Publication Publication Date Title
US11367935B2 (en) Microwave circular polarizer
US5276410A (en) Circular to linear polarization converter
JPH07115310A (en) Orthomode transduser between circular waveguide and coaxial cable
RU2154880C2 (en) Dual-polarization waveguide device and signal reception process
EP0564266B1 (en) Circular polarization apparatus for micro wave antenna
JP3739637B2 (en) Primary radiator
JP6865903B2 (en) Power supply circuit
JPH0758503A (en) Feed horn for circularly polarized wave
US6377224B2 (en) Dual band microwave radiating element
JP2002111303A (en) Circularly polarized wave generator
JPS6251801A (en) Orthogonal polarizer
JPS6014501A (en) Polarization coupler
JPH07321502A (en) Primary radiator for linearly polarized wave
JPH07176904A (en) Feed horn for circularly polarized wave
JPH07263903A (en) Antenna shared between right-handed and left-handed circular polarized wave
JPH05235603A (en) Horizontally and vertically polarized wave changeover feed horn
US6677910B2 (en) Compact primary radiator
JPH06232602A (en) Primary radiator
JPH03190402A (en) Circularly polarized wave/linearly polarized wave converter
JPH0918206A (en) Circularly polarized waveguide-microstrip line converter
JPS61102802A (en) Polarized multiplexer
JPS6340487B2 (en)
JP2001144503A (en) Circularly polarized wave converter
JPH06132720A (en) Primary radiator sharing circular polarization and linear polarization waves
JPH08213804A (en) Polarizer