JPH0758201A - Manufacture of multilayer wiring board - Google Patents
Manufacture of multilayer wiring boardInfo
- Publication number
- JPH0758201A JPH0758201A JP20233093A JP20233093A JPH0758201A JP H0758201 A JPH0758201 A JP H0758201A JP 20233093 A JP20233093 A JP 20233093A JP 20233093 A JP20233093 A JP 20233093A JP H0758201 A JPH0758201 A JP H0758201A
- Authority
- JP
- Japan
- Prior art keywords
- film
- plating
- wiring
- copper
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/4038—Through-connections; Vertical interconnect access [VIA] connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、多層配線基板の製造方
法に係り、特に配線が高密度に形成された多層配線基板
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer wiring board, and more particularly to a method for manufacturing a multilayer wiring board in which wirings are formed at a high density.
【0002】[0002]
【従来の技術】近年、半導体集積回路技術の発達により
電子機器の小型化、薄型化、高性能化が進められてお
り、これに伴い回路基板上に半導体チップを高密度に実
装することが重要な課題となっている。2. Description of the Related Art In recent years, with the development of semiconductor integrated circuit technology, electronic devices have been made smaller, thinner, and have higher performance, and it is important to mount semiconductor chips on a circuit board in high density. Has become a problem.
【0003】従って、多層配線基板内の配線も近年高密
度化の方向にあり、配線の微細化、多層化が進んでい
る。微細配線を形成するために従来は図5に示すよう
に、基板1表面に絶縁層2を介して形成された薄膜金属
層3からなる第1層配線上に、層間絶縁膜4を形成して
これにコンタクトホール9を形成し(図5(a) )、この
後さらに薄膜金属層8を形成し(図5(b) )、レジスト
パターン13(図5(c) )を介して、薄膜金属層8をエ
ッチングし第2層配線のパターンを得る(図5(d))と
いう方法がとられている。Therefore, in recent years, the wiring in the multilayer wiring board has also been densified, and the wiring is becoming finer and multilayered. In order to form fine wiring, conventionally, as shown in FIG. 5, an interlayer insulating film 4 is formed on a first layer wiring composed of a thin film metal layer 3 formed on a surface of a substrate 1 with an insulating layer 2 interposed therebetween. A contact hole 9 is formed in this (FIG. 5 (a)), and then a thin film metal layer 8 is further formed (FIG. 5 (b)), and a thin film metal is formed through a resist pattern 13 (FIG. 5 (c)). A method of etching the layer 8 to obtain a pattern of the second layer wiring (FIG. 5 (d)) is adopted.
【0004】しかしながらこの方法で多層配線を形成し
ようとすると、コンタクトホール9上の絶縁膜が凹状と
なっているため、さらにこの上に第2層配線と第3層配
線を接続するためのコンタクトホールを形成するとコン
タクトホールがいっそう深くなるため、配線の段切れが
生じ易くなる。このため、図6に示すように3層以上の
配線(3,8,13)を形成する多層配線ではコンタク
トホール9の位置をずらして設ける必要があり、結果的
には配線密度の低下を招くことになる。However, when attempting to form a multi-layer wiring by this method, the insulating film on the contact hole 9 has a concave shape. Therefore, a contact hole for connecting the second layer wiring and the third layer wiring is further formed thereon. Since the contact hole becomes deeper by forming, the disconnection of the wiring is likely to occur. Therefore, as shown in FIG. 6, it is necessary to shift the positions of the contact holes 9 in the multilayer wiring in which the wirings (3, 8, 13) of three layers or more are formed, and as a result, the wiring density is lowered. It will be.
【0005】また、層間接続部を有する配線層材料とし
ては、絶縁層との密着性、耐蝕性などの問題からアルミ
ニウムや金が使用されてきたが、アルミニウムは抵抗が
高く、金はコストが高いという問題があった。Further, as a wiring layer material having an interlayer connecting portion, aluminum and gold have been used because of problems such as adhesion to an insulating layer and corrosion resistance. However, aluminum has high resistance and gold has high cost. There was a problem.
【0006】このため、配線層間の接続部分の上部が凹
状とならないようにコンタクトホールに金属を埋め込む
ようにした接続法を用いる試みがなされている。例え
ば、図6に示すように、後に形成する絶縁層4と同程度
の膜厚の金属膜をあらかじめ蒸着法あるいはスパッタリ
ング法などによって形成しておくようにし、その上に塗
布法により絶縁膜4を形成し表面を平坦化するという方
法も提案されている。しかしながらこの方法では完全に
平坦化するのは困難であり、金属膜が突出した形状にな
ってしまい、後に形成するコンタクトホール周辺は他の
部分より盛り上がってしまい、かえって逆効果になって
しまう。For this reason, an attempt has been made to use a connection method in which a metal is embedded in a contact hole so that the upper portion of the connection portion between wiring layers does not have a concave shape. For example, as shown in FIG. 6, a metal film having a film thickness similar to that of the insulating layer 4 to be formed later is formed in advance by an evaporation method, a sputtering method, or the like, and the insulating film 4 is formed thereon by a coating method. A method of forming and flattening the surface has also been proposed. However, with this method, it is difficult to completely flatten the metal film, and the metal film has a protruding shape, and the periphery of the contact hole to be formed later is raised more than other portions, which is rather an adverse effect.
【0007】また、この金属膜の材料としては特に限定
はないが、低抵抗で低コストの層間接続を達成するため
に、銅や銅合金を用いる場合は、腐食防止と絶縁膜中へ
の拡散を防止するためにこの金属膜形成後にこの上層を
被覆保護する工程を設けなければならず、工数が増大す
るという問題がある。The material of the metal film is not particularly limited, but when copper or a copper alloy is used to achieve low resistance and low cost interlayer connection, corrosion prevention and diffusion into the insulating film are required. In order to prevent this, a step of covering and protecting the upper layer must be provided after the formation of the metal film, which causes a problem of increasing the number of steps.
【0008】このような問題を解決するため、エッチン
グ工程を必要としない方法として選択成長法があり、半
導体チップの製造工程では実用化されている。この方法
は、絶縁膜中に形成されたコンタクトホール底部に露出
した配線部分のみに選択的にタングステンなどの金属
を、化学的気相成長法により成長させ、平坦な層間接続
部を得ようとするものである。しかしながら、この方法
では使用する金属材料が化学的気相成長法および選択成
長の可能な材料に限定される。現在、一般的に使用され
ている金属材料はタングステンであり、高融点材料で腐
食されにくく、絶縁膜への拡散も少ないため、比較的使
用し易い材料であるが、抵抗率が高くコンタクト抵抗を
下げることが困難となっている。さらに化学的気相成長
工程では基板温度が比較的高温となるため、絶縁膜とし
ても耐熱性の高い材料が必要となり、誘電率が高く電気
的特性に優れた有機絶縁膜では高温プロセスに絶えるこ
とができず必然的に使用不可能となってしまうという問
題がある。In order to solve such a problem, there is a selective growth method as a method which does not require an etching step, which has been put to practical use in the manufacturing process of semiconductor chips. In this method, a metal such as tungsten is selectively grown only by a chemical vapor deposition method on a wiring portion exposed at the bottom of a contact hole formed in an insulating film to obtain a flat interlayer connection portion. It is a thing. However, in this method, the metal material used is limited to the chemical vapor deposition method and the material capable of selective growth. Currently, the commonly used metal material is tungsten, which is a material with a high melting point that is not easily corroded and has little diffusion into the insulating film, so it is a material that is relatively easy to use, but it has a high resistivity and high contact resistance. It is difficult to lower it. Furthermore, since the substrate temperature is relatively high in the chemical vapor deposition process, a material with high heat resistance is required as the insulating film as well, and an organic insulating film with a high dielectric constant and excellent electrical characteristics can withstand high temperature processes. There is a problem that it cannot be used and is inevitably unusable.
【0009】[0009]
【発明が解決しようとする課題】このように、高密度配
線を有する多層配線を実現するためには、コンタクトホ
ールに金属が埋め込まれ平坦化された層間接続が必要と
なる。しかしながら、いずれの方法によっても、高密度
化に際して特性が良好で信頼性の高い多層配線を得るこ
とができないという問題があった。As described above, in order to realize a multi-layer wiring having a high-density wiring, it is necessary to bury a metal in the contact hole and planarize the interlayer connection. However, any of these methods has a problem in that it is impossible to obtain a multilayer wiring having good characteristics and high reliability in increasing the density.
【0010】本発明は前記実情に鑑みてなされたもの
で、高密度化が容易で信頼性の高い多層配線を提供する
ことを目的とする。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a multi-layer wiring which can be easily increased in density and has high reliability.
【0011】[0011]
【課題を解決するための手段】そこで本発明では、基板
上に形成された第1の配線層上に層間絶縁膜を形成し、
これにコンタクトホールを形成した後、基板表面全体を
導電膜で被覆し、この導電膜を電極として、凹部に厚い
めっき膜が形成され、平坦な表面を得るような条件で電
気めっきを行い、表面の平坦化を行った後、このめっき
膜にコンタクトするように第2の配線層を形成してい
る。Therefore, in the present invention, an interlayer insulating film is formed on the first wiring layer formed on the substrate,
After forming a contact hole in this, the entire surface of the substrate is covered with a conductive film, and using this conductive film as an electrode, electroplating is performed under conditions such that a thick plating film is formed in the recess and a flat surface is obtained. After the flattening is performed, the second wiring layer is formed so as to contact the plated film.
【0012】望ましくは、基板上に第1の配線層を形成
する工程と、前記第1の配線層上に絶縁膜を形成しこれ
にコンタクトホールを形成する工程と、該コンタクトホ
ールを形成した絶縁膜上に、銅または銅合金よりも融点
の高い高融点金属層を含む薄膜導電層を形成する工程
と、前記薄膜導電層上面に有機物を添加しためっき浴を
用いて銅または銅合金よりも融点の高い高融点金属層を
含む薄膜導電層を形成する工程と、前記薄膜導電層上面
に有機物を添加しためっき浴を用いて銅または銅合金の
電気めっきを行い基板主面上を前記めっき膜で平坦化す
る工程と、前記めっき膜を等方エッチングしてコンタク
トホールに形成された銅または銅合金を前記絶縁膜と同
じ厚みを残して基板主面上のめっき金属膜を除去する工
程とを含むようにしている。Desirably, a step of forming a first wiring layer on a substrate, a step of forming an insulating film on the first wiring layer and forming a contact hole in the insulating film, and an insulating step in which the contact hole is formed. On the film, a step of forming a thin film conductive layer including a high melting point metal layer having a higher melting point than copper or a copper alloy, and a melting point higher than that of copper or a copper alloy by using a plating bath in which an organic substance is added to the upper surface of the thin film conductive layer. A step of forming a thin film conductive layer containing a high melting point metal layer, and electroplating copper or a copper alloy using a plating bath with an organic substance added to the thin film conductive layer upper surface with the plating film on the main surface of the substrate. A step of flattening, and a step of isotropically etching the plating film to remove the copper or copper alloy formed in the contact hole from the plating metal film on the main surface of the substrate while leaving the same thickness as the insulating film. So There.
【0013】また本発明の第2では、第1の層間絶縁膜
にコンタクトホールを形成したのち薄膜導体層の形成に
先立ち、第2の絶縁膜を形成し、これをパターニングし
て、第2の配線層パターン形成領域を選択的に除去して
凹部を形成し、この後基板表面全体を導電膜で被覆し、
この導電膜を電極として、凹部に厚いめっき膜が得られ
るような条件下で電気めっきを行い表面を平坦化し、前
記第2の絶縁膜上のめっき膜を除去し前記凹部内のめっ
き膜を選択的に残留せしめるように前記めっき膜を等方
エッチングするようにし、コンタクトホールに起因する
凹部の埋め込みと第2の配線層の形成とを同時にめっき
によって達成するようにしている。According to the second aspect of the present invention, after forming the contact hole in the first interlayer insulating film and prior to forming the thin film conductor layer, the second insulating film is formed and patterned to form the second insulating film. The wiring layer pattern forming region is selectively removed to form a recess, and then the entire substrate surface is covered with a conductive film,
Using this conductive film as an electrode, electroplating is performed under conditions such that a thick plating film is obtained in the recess, the surface is flattened, the plating film on the second insulating film is removed, and the plating film in the recess is selected. The plating film is isotropically etched so as to be left as it is, and the filling of the concave portion caused by the contact hole and the formation of the second wiring layer are simultaneously achieved by plating.
【0014】前記絶縁層としては、塗布法によって形成
したポリイミド樹脂または塗布法あるいは化学的気相成
長法あるいはスパッタリング法により形成した酸化シリ
コン膜等を用いる。さらに高融点金属としてはチタン、
ニッケル、バナジウム、ニオブ、タンタル、クロム、モ
リブデン、タングステンの内少なくとも1種を用いるよ
うにしている。これらは蒸着法あるいはスパッタリング
法で形成する。As the insulating layer, a polyimide resin formed by a coating method or a silicon oxide film formed by a coating method, a chemical vapor deposition method or a sputtering method is used. Further, titanium is used as the refractory metal,
At least one of nickel, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten is used. These are formed by a vapor deposition method or a sputtering method.
【0015】なお、めっき浴中に添加する有機物として
は有機窒素化合物、有機硫黄化合物、ポリエーテル化合
物を絶縁層に形成された開口部上のめっき膜表面にでき
る段差ができるだけ小さくなるように適量づつ配合す
る。The organic substances added to the plating bath are organic nitrogen compounds, organic sulfur compounds, and polyether compounds in appropriate amounts so that the step formed on the surface of the plated film on the opening formed in the insulating layer is minimized. Compound.
【0016】[0016]
【作用】上記方法によれば、例えば有機添加剤を用いた
めっき液の場合、凹部に厚いめっき膜が得られ、平坦な
表面を得ることができる点に着目してなされたもので、
絶縁膜にコンタクトホールを形成した後、めっきを行い
平坦な基板表面を得たのち、このめっき膜を等方的にエ
ッチングして、エッチングが絶縁膜の表面まで進行した
時点で終了させれば、コンタクトホール内にのみ選択的
にめっき膜が残され、埋め込みが完了する。このように
して、コンタクトホールの形成にのみ露光現像工程を用
いるのみで、埋め込みが完了し、工数が少ない上、寸法
の変換誤差が極めて小さくなる。According to the above method, in the case of a plating solution using an organic additive, for example, a thick plating film can be obtained in the recess, and a flat surface can be obtained.
After forming a contact hole in the insulating film, plating is performed to obtain a flat substrate surface, this plating film is isotropically etched, and if the etching is completed when the surface of the insulating film is reached, The plating film is selectively left only in the contact hole, and the filling is completed. In this way, filling is completed only by using the exposure and development process for forming the contact hole, the number of steps is small, and the dimensional conversion error is extremely small.
【0017】ここで、電気めっきによる銅あるいは銅合
金膜等の形成工程において、めっき浴には有機物を適量
添加することにより、析出膜表面の平坦化を促進するこ
とができる。さらに好ましくはめっき工程中の陰極電流
密度は析出金属膜に焦げが発生せず、かつ局部への電流
集中による異常成長が起こらない範囲でなるべく高電流
密度を用いるようにする。Here, in the step of forming a copper or copper alloy film or the like by electroplating, the flattening of the surface of the deposited film can be promoted by adding an appropriate amount of an organic substance to the plating bath. More preferably, the cathode current density during the plating step should be as high as possible within the range where charring does not occur in the deposited metal film and abnormal growth due to current concentration in local areas does not occur.
【0018】この工程において、コンタクトホールの形
成後、チタン、ニッケル、バナジウム、ニオブ、タンタ
ル、クロム、モリブデン、タングステンなどの高融点金
属を電気めっきの陰極の一部として用いることにより、
めっきによる銅あるいは銅合金は絶縁膜に直接触れるこ
とがなくなり、銅あるいは銅合金の腐食防止、絶縁膜へ
の拡散防止をはかることができ、また絶縁膜との接着力
を高めることができる。 さらに電気めっきによる金属
膜の形成に際しては、有機窒素化合物、有機硫黄化合
物、ポリエーテル化合物を適量添加することにより、凹
凸のある表面に対しては凸部で凹部に比べて有機物が優
先的に吸着するため、めっき膜の析出を抑制する。この
結果凸部ではめっき膜の析出速度が遅くなり凹部では速
くなるため、めっきを続行した場合、結果として表面の
凹凸がなくない、表面が平坦化される。 このようにし
て形成された金属膜は、コンタクトホール部を除き、均
一な膜厚となり、一方コンタクトホール部は他の部分に
比べて厚くなる。従ってこの膜をエッチング速度が厚さ
方向に均一であるようなエッチャントを用いてエッチン
グするようにすれば、コンタクトホール内部の銅あるい
は銅合金を選択的に残し、他の部分の金属膜を除去する
ことが可能となる。In this step, after forming the contact hole, a refractory metal such as titanium, nickel, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten is used as a part of the cathode of the electroplating.
The plated copper or copper alloy does not come into direct contact with the insulating film, so that the corrosion of copper or the copper alloy can be prevented, the diffusion into the insulating film can be prevented, and the adhesive force with the insulating film can be increased. Furthermore, when forming a metal film by electroplating, by adding an appropriate amount of an organic nitrogen compound, an organic sulfur compound, or a polyether compound, organic matter is preferentially adsorbed on a convex or concave surface over a concave or convex surface on an uneven surface. Therefore, the deposition of the plating film is suppressed. As a result, the deposition rate of the plating film becomes slower at the convex portions and becomes faster at the concave portions, so that when the plating is continued, as a result, the surface is flat and the surface is flat. The metal film thus formed has a uniform film thickness except for the contact hole portion, while the contact hole portion is thicker than other portions. Therefore, if this film is etched using an etchant whose etching rate is uniform in the thickness direction, the copper or copper alloy inside the contact hole is selectively left, and the metal film in other portions is removed. It becomes possible.
【0019】[0019]
【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0020】まず、基板1の表面に絶縁膜2を形成し、
この上層に第1層配線膜3として銅薄膜パターンを形成
し、この上層に、フォトニースUR−314と指称され
ている東レ社製の感光性ポリイミドを塗布し、露光現像
を行い、1辺20μm 程度のコンタクトホール9を形成
する。こののち、400℃で30分程度の熱処理を行
い、層間絶縁膜4を形成する(図1(a) )。ここでポリ
イミドは熱処理後の膜厚が20μm 程度となるように塗
布時の膜厚を設定する。また段切れを防ぐため、コンタ
クトホールの底部と側壁との角度が100度以上となる
ように露光現像条件をコントロールする。First, the insulating film 2 is formed on the surface of the substrate 1,
A copper thin film pattern is formed as the first layer wiring film 3 on this upper layer, and a photosensitive polyimide manufactured by Toray Industries, Inc., which is called Photonice UR-314, is applied on this upper layer, exposed and developed, and 20 μm per side. A contact hole 9 of about a certain degree is formed. After that, heat treatment is performed at 400 ° C. for about 30 minutes to form the interlayer insulating film 4 (FIG. 1 (a)). Here, the film thickness of polyimide is set so that the film thickness after heat treatment will be about 20 μm. In order to prevent disconnection, the exposure and development conditions are controlled so that the angle between the bottom of the contact hole and the side wall is 100 degrees or more.
【0021】次いで、スパッタリング法によりチタン
(Ti)膜5および銅(Cu)膜6を順次連続的に積層
し、全体としての膜厚が1μm 程度となるようにする。
ここで銅膜はめっき陰極として作用するものである。ま
たチタンは高融点金属であり、層間絶縁膜であるポリイ
ミドあるいは第1層配線である銅と、めっき陰極および
上層のめっき膜とのとの相互拡散を防止するバリアとし
て作用する。従って膜厚は薄くて良い。銅とポリイミド
が直接接するように形成されると、ポリイミド中の酸素
によって銅が酸化され、密着性が低下し、剥離し易くな
る。また連続的に形成するのはチタン表面が酸化されや
すいためである。このように真空を破ることなく連続的
に上層の膜を形成することにより、自然酸化膜が介在す
ることなく低抵抗の膜が形成される。Then, a titanium (Ti) film 5 and a copper (Cu) film 6 are successively and successively laminated by a sputtering method so that the total film thickness becomes about 1 μm.
Here, the copper film functions as a plating cathode. Titanium is a refractory metal, and acts as a barrier that prevents mutual diffusion between the polyimide, which is the interlayer insulating film, or the copper, which is the first layer wiring, and the plating cathode and the plating film of the upper layer. Therefore, the film thickness may be thin. When the copper and the polyimide are formed so as to be in direct contact with each other, the oxygen in the polyimide oxidizes the copper, lowering the adhesiveness and facilitating the peeling. Further, the reason for continuous formation is that the titanium surface is easily oxidized. By thus forming the upper layer film continuously without breaking the vacuum, a low resistance film is formed without interposing a natural oxide film.
【0022】このようにして、基板1を図2に示すよう
に電気めっき装置に設置し、この陰極にめっき陰極とし
て銅膜6を接続する。ここでめっき浴としては、硫酸銅
75g/l ,硫酸(比重1.84)100ml/l からなる溶液にポリ
エチレングリコール100mg/lとチオ尿素10mg/lを添加し
たものを用い、液温を25℃に設定して電流密度5A/dm
2 で攪拌しながらめっきを行い膜厚20μm 程度の銅め
っき膜7を形成する。コンタクトホールによる段差は1
μm 程度であるため、20μm 程度のめっき膜を形成す
るようにすれば十分に平坦な表面を得ることができる
(図1(c) )。In this way, the substrate 1 is installed in the electroplating apparatus as shown in FIG. 2, and the copper film 6 is connected to this cathode as a plating cathode. Here, the plating bath is copper sulfate
A solution consisting of 75 g / l, sulfuric acid (specific gravity 1.84) 100 ml / l, polyethylene glycol 100 mg / l and thiourea 10 mg / l was used, and the liquid temperature was set to 25 ° C and the current density was 5 A / dm.
Plating is performed while stirring at 2 to form a copper plating film 7 having a thickness of about 20 μm. 1 step due to contact hole
Since it is about μm, a sufficiently flat surface can be obtained by forming a plating film of about 20 μm (FIG. 1 (c)).
【0023】この後、図1(d) に示すように基板1表面
に形成された銅めっき膜7を、過硫酸アンモニウム、硫
酸、エタノールからなる混合溶液でエッチングし、基板
表面の銅膜6(めっき陰極)も含めて除去し、コンタク
トホール内にのみ残留せしめる。After that, as shown in FIG. 1 (d), the copper plating film 7 formed on the surface of the substrate 1 is etched with a mixed solution of ammonium persulfate, sulfuric acid and ethanol to form a copper film 6 (plating on the substrate surface). Remove it including the cathode and leave it only in the contact hole.
【0024】次いで、図1(e) に示すように,基板1主
面上のチタン膜5をEDTA、アンモニア、過酸化水素
水からなるエッチング液でエッチング除去する。Next, as shown in FIG. 1 (e), the titanium film 5 on the main surface of the substrate 1 is removed by etching with an etching solution containing EDTA, ammonia and hydrogen peroxide.
【0025】このようにして埋め込みを行った基板1に
第2配線層としてチタン−銅−チタンの積層薄膜8を形
成する(図1(f) )。A laminated thin film 8 of titanium-copper-titanium is formed as a second wiring layer on the substrate 1 thus embedded (FIG. 1 (f)).
【0026】ここで必要に応じて層間絶縁膜の形成か
ら、この工程を繰り返し、多層配線を形成するようにし
てもよい。Here, if necessary, from the formation of the interlayer insulating film, this step may be repeated to form the multilayer wiring.
【0027】このようにして、コンタクトホール9の形
成に露光現像工程を用いるのみで、埋め込みが完了し、
工数が少なく、寸法変換誤差が極めて小さく高精度の多
層配線を行うことが可能となる。In this way, the embedding is completed only by using the exposure and development step for forming the contact hole 9.
It is possible to perform high-precision multi-layer wiring with a small number of man-hours, an extremely small size conversion error.
【0028】なお、前記実施例では、第1層配線と第2
層配線とが直接接続された例について説明したが、第1
層配線と第2層配線とが直接接続されず、間に1層また
は多層の他の配線層が介在し、間接的に第1層配線と第
2層配線とが接続されるようにしてもよい。In the above embodiment, the first layer wiring and the second layer wiring are
The example in which the layer wiring is directly connected has been described.
Even if the layer wiring and the second layer wiring are not directly connected but one layer or another wiring layer is interposed between them, the first layer wiring and the second layer wiring are indirectly connected. Good.
【0029】次に本発明の第2の実施例について説明す
るこの方法では、めっきに先立ち、第2層配線の反転パ
ターンを描くようにレジストパターン10を形成してお
き、パターンめっきを行い、めっき後にレジストパター
ン10を除去してできた凹部に塗布絶縁膜4を充填する
ようにし、コンタクトホールの埋め込みと第2配線層パ
ターンの形成を同時に行うようにしたことを特徴とす
る。In this method for explaining the second embodiment of the present invention, prior to plating, the resist pattern 10 is formed so as to draw an inversion pattern of the second layer wiring, pattern plating is performed, and plating is performed. It is characterized in that the recess formed by removing the resist pattern 10 later is filled with the coating insulating film 4 so that the contact hole is filled and the second wiring layer pattern is formed at the same time.
【0030】すなわち、めっき陰極の形成工程(図1
(a) および図1(b) )までは前記第1の実施例と同様に
行い、次に図3(a) に示すようにAZ−4903と指称
されているヘキストジャパン社製の厚膜レジストを、ス
ピンコート法により塗布して膜厚25μm のめっきレジ
スト層を形成し90℃でベーキングを行う。この後、露
光現像により第2配線層の配線パターンを開口させ、レ
ジストパターン10を得る。That is, the plating cathode forming process (see FIG. 1).
(a) and FIG. 1 (b)) are performed in the same manner as in the first embodiment, and as shown in FIG. 3 (a), a thick film resist manufactured by Hoechst Japan Co., called AZ-4903. Is applied by a spin coating method to form a plating resist layer having a film thickness of 25 μm, and baking is performed at 90 ° C. After that, the wiring pattern of the second wiring layer is opened by exposure and development to obtain a resist pattern 10.
【0031】次いで前記第1の実施例と同様にしてめっ
き装置に設置し、同様の条件でめっきを行い、図3(b)
に示すように膜厚20μm 程度の銅めっき膜7を形成す
る。この後図3(c) に示すようにレジストパターン10
をアセトンで除去し、銅めっきによって形成された第2
配線層の配線パターン以外の銅膜すなわち基板表面のめ
っき陰極として用いた銅膜6を、過硫酸アンモニウム、
硫酸、エタノールからなる混合溶液でエッチングする。
さらに、この後基板1主面上のチタン膜5をEDTA、
アンモニア、過酸化水素水からなるエッチング液でエッ
チング除去する。Next, as in the case of the first embodiment, the apparatus is set in a plating apparatus and plating is performed under the same conditions as shown in FIG.
A copper plating film 7 having a thickness of about 20 μm is formed as shown in FIG. After this, as shown in FIG. 3 (c), the resist pattern 10
Removed by acetone and the second formed by copper plating
The copper film other than the wiring pattern of the wiring layer, that is, the copper film 6 used as the plating cathode on the surface of the substrate is formed of ammonium persulfate,
Etching with a mixed solution of sulfuric acid and ethanol.
Further, after that, the titanium film 5 on the main surface of the substrate 1 is formed with EDTA,
It is removed by etching with an etching solution composed of ammonia and hydrogen peroxide solution.
【0032】この後第2配線層の形成されている基板表
面に感光性ポリイミド(フォトニースUR−3140)
を塗布し、露光現像により、第2配線層上に形成されて
突出している感光性ポリイミド4を除去する(図3(d)
)。Then, a photosensitive polyimide (Photo Nice UR-3140) is formed on the surface of the substrate on which the second wiring layer is formed.
Is applied, and the photosensitive polyimide 4 formed on the second wiring layer and protruding is removed by exposure and development (FIG. 3 (d)).
).
【0033】この後必要に応じて再度感光性ポリイミド
を塗布すれば、さらに平坦な表面を得ることができる。After that, if a photosensitive polyimide is applied again, if necessary, a flatter surface can be obtained.
【0034】このようにして容易に多層配線を得ること
が可能となる。図3(d) の露光現像工程では、パターン
精度はあまり必要でなく、ややずれが生じてもよい。In this way, it is possible to easily obtain a multilayer wiring. In the exposure and development step of FIG. 3 (d), the pattern accuracy is not so necessary and a slight deviation may occur.
【0035】また、図3(d) に示した露光現像工程は、
十分に平坦化されて感光性ポリイミドが塗布されている
場合は省略しても良く、この場合露光現像工程が完全に
1回省略できることになる。Further, the exposure and development step shown in FIG.
It may be omitted if it is sufficiently flattened and the photosensitive polyimide is applied, in which case the exposure and development step can be omitted once.
【0036】また、さらに多層の配線を形成する場合は
再度感光性ポリイミドを塗布し前述した工程を繰り返す
ようにすればよい。When a multilayer wiring is further formed, photosensitive polyimide may be applied again and the above steps may be repeated.
【0037】かかる方法によれば、表面の凹凸はコンタ
クトホールの深さに対して±5%以内に抑えることがで
き、層間絶縁膜の厚さを20μm もしくは30μm とし
た場合でも表面の凹凸は±5%以内に抑えることができ
る。これは従来のステップ・ビア法の場合、形成後の表
面の凹凸の程度がコンタクトホールの深さに対して±2
5%程度であったのに比べ、表面の凹凸が大幅に向上し
ていることがわかる。また表面の凹凸の程度が大幅に減
少した結果、3層以上の配線層を有する多層配線におい
てもコンタクトホールの位置をずらしたりする必要がな
くなり、コンタクトホール上にコンタクトホールを設け
ることができ、従来のステップ・ビア法に比べ、配線密
度が約20%向上した。According to such a method, the surface irregularities can be suppressed to within ± 5% of the depth of the contact hole, and even when the thickness of the interlayer insulating film is 20 μm or 30 μm, the surface irregularities are ±. It can be suppressed within 5%. In the case of the conventional step via method, the degree of unevenness on the surface after formation is ± 2 with respect to the depth of the contact hole.
It can be seen that the surface unevenness is significantly improved compared to about 5%. In addition, as a result of the degree of unevenness on the surface being significantly reduced, it is not necessary to shift the position of the contact hole even in a multilayer wiring having three or more wiring layers, and the contact hole can be provided on the contact hole. The wiring density is improved by about 20% as compared with the step-via method.
【0038】さらに従来のコンタクトホールに金属膜を
充填し、後から絶縁材料で基板面を覆い平坦化する方法
に比べ、露光現像工程が配線層1層あたり1回ですむた
め、配線層数が5層の多層配線を形成した結果、工程数
が約20%削減され歩留まりが向上する。Further, compared with the conventional method of filling the contact hole with a metal film and then covering the surface of the substrate with an insulating material to flatten it, the exposure / development process is performed only once for each wiring layer. As a result of forming the multilayer wiring of 5 layers, the number of steps is reduced by about 20% and the yield is improved.
【0039】さらに従来のタングステンによるコンタク
トホール内の埋め込み接続に比べ接続抵抗は約1/3に
低下している。Further, the connection resistance is reduced to about 1/3 as compared with the conventional buried connection in the contact hole made of tungsten.
【0040】このように本発明にかかる製造方法で得た
多層配線は、配線密度、工程数、電気特性の面で極めて
優れたものとなっている。As described above, the multilayer wiring obtained by the manufacturing method according to the present invention is extremely excellent in terms of wiring density, number of steps, and electrical characteristics.
【0041】なお、前記第2の実施例において、めっき
レジストとしての感光性ポリイミドの塗布後に高融点金
属膜としてのチタン膜5およびめっき陰極としての銅膜
6を形成するようにすれば、めっきレジストとしての感
光性ポリイミドをそのまま層間絶縁膜として利用でき、
工数が大幅に低減される。この方法を、本発明の第3の
実施例として説明するこの方法では、高融点金属膜であ
るチタン膜5およびめっき陰極としての銅膜6の形成に
先立ち、第2層配線の反転パターンを描くように、レジ
ストパターン10を形成しておき、パターンめっきを行
い、めっき後に全面を軽くエッチングしレジストパター
ン10上のチタン膜5および銅膜6を除去し、レジスト
パターン10はそのまま層間絶縁膜として利用するよう
にしている。In the second embodiment, if the titanium film 5 as the refractory metal film and the copper film 6 as the plating cathode are formed after the application of the photosensitive polyimide as the plating resist, the plating resist can be formed. The photosensitive polyimide can be used as it is as an interlayer insulating film,
Man-hours are greatly reduced. In this method, which will be described as a third embodiment of the present invention, an inversion pattern of the second layer wiring is drawn prior to the formation of the titanium film 5 which is a refractory metal film and the copper film 6 which serves as a plating cathode. As described above, the resist pattern 10 is formed, pattern plating is performed, and after plating, the entire surface is lightly etched to remove the titanium film 5 and the copper film 6 on the resist pattern 10, and the resist pattern 10 is used as it is as an interlayer insulating film. I am trying to do it.
【0042】すなわち、コンタクトホール9の形成(図
1(a) )までは前記第1の実施例と同様に行い、次に図
4(a) に示すようにUR−3140と指称されている東
レ社製の感光性ポリイミドをスピンコート法により塗布
して膜厚20μm の絶縁層を形成する。この後露光現像
により第2配線層の配線パターンを開口させ、レジスト
パターン10を得る。そして400℃,30分の熱処理
を行い、次いでスパッタリング法により高融点金属膜で
あるチタン膜5およびめっき陰極としての銅膜6を形成
する。That is, the steps up to the formation of the contact hole 9 (FIG. 1 (a)) are carried out in the same manner as in the first embodiment, and then, as shown in FIG. 4 (a), a Toray called UR-3140 is used. A photosensitive polyimide manufactured by the company is applied by spin coating to form an insulating layer having a thickness of 20 μm. After that, the wiring pattern of the second wiring layer is opened by exposure and development to obtain a resist pattern 10. Then, heat treatment is performed at 400 ° C. for 30 minutes, and then a titanium film 5 as a refractory metal film and a copper film 6 as a plating cathode are formed by a sputtering method.
【0043】この後、前記第2の実施例と同様にしてめ
っき装置に設置し、同様の条件でめっきを行い、図4
(b) に示すように、膜厚25μm 程度の銅めっき膜7を
形成する。After that, it is installed in a plating apparatus in the same manner as in the second embodiment, and plating is performed under the same conditions as shown in FIG.
As shown in (b), a copper plating film 7 having a film thickness of about 25 μm is formed.
【0044】この後図4(c) に示すように、過硫酸アン
モニウム、硫酸、エタノールからなる混合溶液で軽くエ
ッチングし、銅めっき膜の内、第2配線層の配線パター
ン以外の銅膜すなわち基板表面のめっき陰極として用い
た銅膜6がエッチングされる深さまでエッチングしチタ
ン膜5を露呈せしめる。そしてさらに、基板1主面上の
高融点金属膜であるチタン膜5をEDTA、アンモニ
ア、過酸化水素水からなるエッチング液でエッチング除
去する。After that, as shown in FIG. 4 (c), light etching was performed with a mixed solution of ammonium persulfate, sulfuric acid and ethanol to obtain a copper film other than the wiring pattern of the second wiring layer, that is, the surface of the substrate. The titanium film 5 is exposed by etching to a depth at which the copper film 6 used as the plating cathode is etched. Then, the titanium film 5, which is a refractory metal film on the main surface of the substrate 1, is removed by etching with an etching solution composed of EDTA, ammonia, and hydrogen peroxide solution.
【0045】このようにして平坦な基板表面をもつ多層
配線がきわめてめて容易に形成される。In this way, multilayer wiring having a flat substrate surface is extremely easily formed.
【0046】この方法によれば、前記第2の実施例に比
べ工数が大幅に低減される。According to this method, the number of steps is significantly reduced as compared with the second embodiment.
【0047】[0047]
【発明の効果】以上説明してきたように本発明によれ
ば、工数が少なく、寸法変換誤差の小さい多層配線を得
ることが可能となる。As described above, according to the present invention, it is possible to obtain a multi-layer wiring with a small number of steps and a small size conversion error.
【図1】本発明の第1の実施例の多層配線の製造工程図FIG. 1 is a manufacturing process diagram of a multilayer wiring according to a first embodiment of the present invention.
【図2】同工程で用いられるめっき装置を示す図FIG. 2 is a diagram showing a plating apparatus used in the same process.
【図3】本発明の第2の実施例の多層配線の製造工程図FIG. 3 is a manufacturing process diagram of a multilayer wiring according to a second embodiment of the present invention.
【図4】本発明の第3の実施例の多層配線の製造工程図FIG. 4 is a manufacturing process diagram of a multilayer wiring according to a third embodiment of the present invention.
【図5】従来例の多層配線の製造工程図FIG. 5 is a manufacturing process diagram of a conventional multilayer wiring.
【図6】多層配線基板を示す図FIG. 6 is a diagram showing a multilayer wiring board.
1 基板 2 絶縁膜 3 第1配線層 4 層間絶縁膜 5 チタン膜 6 銅膜(めっき陰極) 7 銅めっき膜 8 第2配線層 9 コンタクトホール 10 レジストパターン 1 Substrate 2 Insulating Film 3 First Wiring Layer 4 Interlayer Insulating Film 5 Titanium Film 6 Copper Film (Plating Cathode) 7 Copper Plating Film 8 Second Wiring Layer 9 Contact Hole 10 Resist Pattern
Claims (2)
1の配線層上に層間絶縁膜を形成し、これにコンタクト
ホールを形成する工程と、 前記基板表面全体を導電膜で被覆し、この導電膜を電極
として、凹部に厚いめっき膜が得られるような条件下で
電気めっきを行い表面を平坦化する工程と、 前記層間絶縁膜上のめっき膜を除去し前記コンタクトホ
ール内のめっき膜を選択的に残留せしめるように前記め
っき膜を等方エッチングする工程と、 このめっき膜にコンタクトするように第2の配線層を形
成する工程とを含むことを特徴とする多層配線基板の製
造方法。1. A step of forming an interlayer insulating film on a surface of a substrate or a first wiring layer formed on the upper surface of the substrate and forming a contact hole in the insulating film, and covering the entire surface of the substrate with a conductive film. Using the conductive film as an electrode, a step of flattening the surface by performing electroplating under conditions where a thick plating film is obtained in the recess, and removing the plating film on the interlayer insulating film to remove the plating film in the contact hole. A method of manufacturing a multilayer wiring board, comprising: a step of isotropically etching the plating film so that the plating film is selectively left; and a step of forming a second wiring layer so as to contact the plating film.
1の配線層上に第1の層間絶縁膜を形成し、これにコン
タクトホールを形成する工程と、 この上層に第2の絶縁膜を形成し、これをパターニング
して、第2の配線層パターン形成領域を選択的に除去し
凹部を形成する工程と、 前記基板表面全体を導電膜で被覆し、この導電膜を電極
として、前記凹部に厚いめっき膜が形成されるような条
件下で電気めっきを行い表面を平坦化する工程と、 前記第2の絶縁膜上のめっき膜を除去し前記凹部内のめ
っき膜を選択的に残留せしめるように前記めっき膜を等
方エッチングする工程とを含むことを特徴とする多層配
線基板の製造方法。2. A step of forming a first interlayer insulating film on a surface of a substrate or a first wiring layer formed on the upper surface of the substrate and forming a contact hole in the first interlayer insulating film, and a second insulating film on the upper layer. Forming, patterning, selectively removing the second wiring layer pattern forming region to form a recess, and covering the entire substrate surface with a conductive film, and using this conductive film as an electrode, the recess is formed. A step of electroplating under conditions such that a thick plated film is formed, and removing the plated film on the second insulating film to selectively leave the plated film in the recesses. And a step of isotropically etching the plated film as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20233093A JP3632981B2 (en) | 1993-08-16 | 1993-08-16 | Multilayer wiring board and method for manufacturing multilayer wiring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20233093A JP3632981B2 (en) | 1993-08-16 | 1993-08-16 | Multilayer wiring board and method for manufacturing multilayer wiring apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002363403A Division JP2003229668A (en) | 2002-12-16 | 2002-12-16 | Method of manufacturing multilayered wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0758201A true JPH0758201A (en) | 1995-03-03 |
JP3632981B2 JP3632981B2 (en) | 2005-03-30 |
Family
ID=16455769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20233093A Expired - Fee Related JP3632981B2 (en) | 1993-08-16 | 1993-08-16 | Multilayer wiring board and method for manufacturing multilayer wiring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632981B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881673A2 (en) * | 1997-05-30 | 1998-12-02 | International Business Machines Corporation | Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity |
FR2785761A1 (en) * | 1998-11-05 | 2000-05-12 | Rapide Circuit Imprime Rci | Electrical connection system for test circuits includes tracks embedded between insulating layers, with connective lining through hole linking tracks to conducting points |
US6117784A (en) * | 1997-11-12 | 2000-09-12 | International Business Machines Corporation | Process for integrated circuit wiring |
KR100338272B1 (en) * | 1998-08-20 | 2002-05-24 | 가네꼬 히사시 | Method for forming embedded metal wiring |
US6441314B2 (en) * | 1999-03-11 | 2002-08-27 | Shinko Electric Industries Co., Inc. | Multilayered substrate for semiconductor device |
US6890852B2 (en) | 1998-04-17 | 2005-05-10 | Nec Electronics Corporation | Semiconductor device and manufacturing method of the same |
JP2005136433A (en) * | 2004-12-15 | 2005-05-26 | Internatl Business Mach Corp <Ibm> | Electroplated interconnection structure on integrated circuit chip |
JP2009065207A (en) * | 2008-12-10 | 2009-03-26 | Internatl Business Mach Corp <Ibm> | Electroplated interconnection structure on integrated circuit chip |
US7691189B2 (en) | 1998-09-14 | 2010-04-06 | Ibiden Co., Ltd. | Printed wiring board and its manufacturing method |
JP2010206212A (en) * | 2010-04-22 | 2010-09-16 | Internatl Business Mach Corp <Ibm> | Electroplating interconnection structure on integrated circuit chip |
-
1993
- 1993-08-16 JP JP20233093A patent/JP3632981B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100304395B1 (en) * | 1997-05-30 | 2001-11-02 | 포만 제프리 엘 | Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity |
EP0881673A3 (en) * | 1997-05-30 | 1998-12-09 | International Business Machines Corporation | Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity |
EP0881673A2 (en) * | 1997-05-30 | 1998-12-02 | International Business Machines Corporation | Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity |
US6117784A (en) * | 1997-11-12 | 2000-09-12 | International Business Machines Corporation | Process for integrated circuit wiring |
US6890852B2 (en) | 1998-04-17 | 2005-05-10 | Nec Electronics Corporation | Semiconductor device and manufacturing method of the same |
US6403468B1 (en) | 1998-08-20 | 2002-06-11 | Nec Corporation | Method for forming embedded metal wiring |
KR100338272B1 (en) * | 1998-08-20 | 2002-05-24 | 가네꼬 히사시 | Method for forming embedded metal wiring |
US7827680B2 (en) | 1998-09-14 | 2010-11-09 | Ibiden Co., Ltd. | Electroplating process of electroplating an elecrically conductive sustrate |
US7691189B2 (en) | 1998-09-14 | 2010-04-06 | Ibiden Co., Ltd. | Printed wiring board and its manufacturing method |
US8065794B2 (en) | 1998-09-14 | 2011-11-29 | Ibiden Co., Ltd. | Printed wiring board and its manufacturing method |
FR2785761A1 (en) * | 1998-11-05 | 2000-05-12 | Rapide Circuit Imprime Rci | Electrical connection system for test circuits includes tracks embedded between insulating layers, with connective lining through hole linking tracks to conducting points |
US6441314B2 (en) * | 1999-03-11 | 2002-08-27 | Shinko Electric Industries Co., Inc. | Multilayered substrate for semiconductor device |
US6931724B2 (en) | 1999-03-11 | 2005-08-23 | Shinko Electric Industries Co., Ltd. | Insulated multilayered substrate having connecting leads for mounting a semiconductor element thereon |
US7763809B2 (en) | 1999-03-11 | 2010-07-27 | Shink Electric Industries Co., Inc. | Multilayered substrate for semiconductor device and method of manufacturing same |
JP2005136433A (en) * | 2004-12-15 | 2005-05-26 | Internatl Business Mach Corp <Ibm> | Electroplated interconnection structure on integrated circuit chip |
JP4551206B2 (en) * | 2004-12-15 | 2010-09-22 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Electroplated interconnect structures on integrated circuit chips. |
JP2009065207A (en) * | 2008-12-10 | 2009-03-26 | Internatl Business Mach Corp <Ibm> | Electroplated interconnection structure on integrated circuit chip |
JP2010206212A (en) * | 2010-04-22 | 2010-09-16 | Internatl Business Mach Corp <Ibm> | Electroplating interconnection structure on integrated circuit chip |
Also Published As
Publication number | Publication date |
---|---|
JP3632981B2 (en) | 2005-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8878077B2 (en) | Wiring substrate and method of manufacturing the same | |
EP0450381B1 (en) | Multilayer interconnection structure | |
US6754952B2 (en) | Process for manufacturing multiple layer wiring substrate onto which thin film capacitor is incorporated | |
US6294467B1 (en) | Process for forming fine wiring | |
US20080251495A1 (en) | Methods of preparing printed circuit boards and packaging substrates of integrated circuit | |
US20070145584A1 (en) | Printed wiring board, method for manufacturing same, and circuit device | |
JPH05206064A (en) | Manufacture of semiconductor device | |
JP2002075995A (en) | Semiconductor device and its manufacturing method | |
US7020961B2 (en) | Method for manufacturing a bump-attached wiring circuit board | |
JP3632981B2 (en) | Multilayer wiring board and method for manufacturing multilayer wiring apparatus | |
KR0185230B1 (en) | Metal wiring and semiconductor device | |
JPH04277696A (en) | Multilayer wiring board and its manufacturing method | |
JP2003229668A (en) | Method of manufacturing multilayered wiring board | |
JP2985326B2 (en) | Method for manufacturing semiconductor device | |
JP2737762B2 (en) | Method for manufacturing semiconductor device | |
JPH0897214A (en) | Manufacture of semiconductor device | |
JP3769670B2 (en) | Multi-layer wiring structure | |
JPH07130733A (en) | Method for forming buried wiring in semiconductor device | |
JPH07231151A (en) | Wiring board | |
JPH0799199A (en) | Manufacture for semiconductor device | |
JPS6085514A (en) | Manufacture of semiconductor device | |
KR920001912B1 (en) | Method of fabricating for semiconductor device | |
JP3214460B2 (en) | Pattern structure and manufacturing method thereof | |
JP3049872B2 (en) | Method for manufacturing semiconductor device | |
JPS63114143A (en) | Manufacture of semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041220 |
|
LAPS | Cancellation because of no payment of annual fees |