JPH0756420B2 - Ultra low temperature refrigerator - Google Patents
Ultra low temperature refrigeratorInfo
- Publication number
- JPH0756420B2 JPH0756420B2 JP8219489A JP8219489A JPH0756420B2 JP H0756420 B2 JPH0756420 B2 JP H0756420B2 JP 8219489 A JP8219489 A JP 8219489A JP 8219489 A JP8219489 A JP 8219489A JP H0756420 B2 JPH0756420 B2 JP H0756420B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- gas
- cascade heat
- heat exchanger
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 30
- 238000005057 refrigeration Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、圧縮機、凝縮器、複数の気液分離器、減圧
装置および冷却器を順次接続するとともに、前記各気液
分離器で分離された液冷媒の減圧冷媒と戻りガス冷媒と
を熱交換するカスケード熱交換器を介設してなる、混合
冷媒を用いた冷凍サイクルを含む超低温冷凍装置に係
り、特に前記カスケード熱交換器の改良に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention sequentially connects a compressor, a condenser, a plurality of gas-liquid separators, a pressure reducing device and a cooler, and separates the gas-liquid separators. A cryogenic refrigeration system including a refrigeration cycle using a mixed refrigerant, wherein a cascade heat exchanger for exchanging heat between a decompressed refrigerant of a liquid refrigerant and a return gas refrigerant is provided, and particularly an improvement of the cascade heat exchanger. It is about.
(従来技術) 例えば第3図の冷凍装置の場合は、圧縮機1、凝縮器
2、3つの気液分離器3、4、5、減圧装置6および冷
却器7を順次配管8a〜8mで接続して閉ループを形成する
とともに、各気液分離器3、4、5で分離された液冷媒
を細管9、10、11により減圧し、その減圧冷媒と管8l、
8k、8jの戻りガス冷媒とを熱交換可能にカスケード熱交
換器12、13、14を介設してなる、混合冷媒を用いた冷凍
サイクルを含む超低温冷凍装置を示している。(Prior Art) For example, in the case of the refrigerating apparatus of FIG. 3, the compressor 1, the condenser 2, the three gas-liquid separators 3, 4, 5, the decompressor 6 and the cooler 7 are sequentially connected by the pipes 8a to 8m. While forming a closed loop, the liquid refrigerant separated by the gas-liquid separators 3, 4, 5 is depressurized by the thin tubes 9, 10, 11, and the depressurized refrigerant and the tube 8l,
1 shows an ultra-low temperature refrigeration system including a refrigeration cycle using a mixed refrigerant, in which cascade heat exchangers 12, 13 and 14 are provided so as to be capable of exchanging heat with return gas refrigerants of 8k and 8j.
すなわち圧縮機1で圧縮され、凝縮器2で冷却された混
合冷媒は、まず第1の気液分離器3において液化した高
沸点冷媒と残留のガス冷媒とに分離される。そしてその
液冷媒は、細管9で減圧され、カスケード熱交換器13の
外部の配管8lに流入し、前記気液分離器3で分離された
ガス冷媒をカスケード熱交換器13において熱交換し、さ
らに冷却する。この冷却されたガス冷媒は第2の気液分
離器4において液化した中沸点冷媒と残留のガス冷媒と
に分離される。そしてその液冷媒は、細管10で減圧さ
れ、カスケード熱交換器14の外部の管8kに流入し、前記
気液分離器4で分離されたガス冷媒をカスケード熱交換
器14において熱交換し、さらに冷却する。さらに、この
冷却されたガス冷媒は第3の気液分離器5において液化
した中・低沸点冷媒と残留のガス冷媒(超低沸点成分主
体)とに分離される。そしてその液冷媒は、細管11で減
圧され、カスケード熱交換器15の外部の管8jに流入し、
前記気液分離器5で分離されたガス冷媒をカスケード熱
交換器15において熱交換し、さらに冷却する。そしてこ
の冷却により超沸点冷媒は液化し、減圧装置6で減圧さ
れ、冷却器7に流入し、そこで蒸発する。この蒸発によ
り冷却器7を有する貯蔵庫(図示せず)の内部を超低温
とする。That is, the mixed refrigerant compressed by the compressor 1 and cooled by the condenser 2 is first separated into the liquefied high-boiling-point refrigerant and the residual gas refrigerant in the first gas-liquid separator 3. Then, the liquid refrigerant is decompressed in the narrow tube 9, flows into the pipe 8l outside the cascade heat exchanger 13, and the gas refrigerant separated in the gas-liquid separator 3 is heat-exchanged in the cascade heat exchanger 13, Cooling. The cooled gas refrigerant is separated into the liquefied medium-boiling-point refrigerant and the residual gas refrigerant in the second gas-liquid separator 4. Then, the liquid refrigerant is decompressed in the narrow tube 10, flows into the pipe 8k outside the cascade heat exchanger 14, and the gas refrigerant separated in the gas-liquid separator 4 is heat-exchanged in the cascade heat exchanger 14, Cooling. Further, the cooled gas refrigerant is separated into liquefied medium / low boiling point refrigerant and residual gas refrigerant (mainly ultra-low boiling point component) in the third gas-liquid separator 5. Then, the liquid refrigerant is decompressed by the narrow tube 11, flows into the tube 8j outside the cascade heat exchanger 15,
The gas refrigerant separated in the gas-liquid separator 5 is heat-exchanged in the cascade heat exchanger 15 and further cooled. The super-boiling point refrigerant is liquefied by this cooling, decompressed by the decompression device 6, flows into the cooler 7, and evaporates there. Due to this evaporation, the inside of a storage (not shown) having the cooler 7 is brought to an ultralow temperature.
ところで二重管である前記カスケード熱交換器13、14、
15は、いずれも独立したものであって、それらの各内管
を別の管8k、8lにより接続している。そのため継手部分
が多く、管路の断面積の変化があり、圧力損失が増大
し、高圧圧力の異常上昇や低圧圧力の異常低下を起こ
し、同時に冷却性能が低下するといった問題がある。ま
た冷凍サイクルへの適正冷媒封入量が多くバランス圧力
が高くなり、機器の耐圧面にも考慮しなければならなく
なる。By the way, the cascade heat exchangers 13, 14, which are double tubes,
Each of 15 is independent, and each inner pipe is connected by another pipe 8k, 8l. Therefore, there are many joints, there is a change in the cross-sectional area of the pipe, pressure loss increases, abnormal pressure rise of high pressure and abnormal pressure drop of low pressure occur, and at the same time, there is a problem that cooling performance deteriorates. In addition, the amount of proper refrigerant to be filled in the refrigeration cycle is large and the balance pressure becomes high, and the pressure resistance of the equipment must be taken into consideration.
(解決しようとする課題) この発明は、冷媒流れの圧力損失が少なく、また冷媒封
入量も少なくて済むカスケード熱交換器を備えた超低温
冷凍装置を提供することにある。(Problem to be Solved) The present invention is to provide an ultra-low temperature refrigerating apparatus including a cascade heat exchanger, in which the pressure loss of the refrigerant flow is small and the refrigerant filling amount is small.
(課題を解決するための手段) この発明は前述事情に鑑みて、なされたものであって、
カスケード熱交換器は、冷媒の房り側を内管、供給側を
外管とて複数のカスケード熱交換器を一連のすなわち一
体構造の二重管にするとともに、各気液分離器を前記外
管に間隔を有して接続したことを特徴とする超低温冷凍
装置である。(Means for Solving the Problem) The present invention has been made in view of the above circumstances,
In the cascade heat exchanger, a plurality of cascade heat exchangers are made into a series, that is, a double pipe of an integrated structure, with the refrigerant side being an inner tube and the supply side being an outer tube, and each gas-liquid separator is connected to the outer tube. It is an ultra-low temperature refrigerating device characterized in that the pipes are connected with a space.
(作用) 各気液分離器で分離されたガス冷媒は、前記一連の二重
管の外管内を下流側へ流れる。その際二重管は継手部分
が少なく、管路の断面積の変化も少なく、圧力損失が低
減される。また接続配管が減るため、冷媒封入量も少な
くできる。(Operation) The gas refrigerant separated by each gas-liquid separator flows downstream in the outer pipe of the series of double pipes. In this case, the double pipe has few joints, changes in the cross-sectional area of the pipe are small, and pressure loss is reduced. In addition, since the number of connecting pipes is reduced, the amount of refrigerant enclosed can be reduced.
(実施例) まず第1図のカスケード熱交換器Aを説明する。(Example) First, the cascade heat exchanger A of FIG. 1 is demonstrated.
21は第3図の冷却器7からの配管8jに相当し、その配管
21には外管として配管22が嵌挿ろう付けされ、二重管に
構成されている。なお配管22は、4個のT形継手22a、2
2b、22c、2dを間隔を有して配置するとともに、隣接す
る継手間を管22e、22f、22gで接続、ろう付けして形成
され、両端のT形継手22a、22dが配管21にろう付けされ
る。23、24、25はそれぞれ気液分離器であり、第3図の
符号3、4、5に相当し、T形継手22a、22b、22cの下
端部に接続、ろう付けされる。26は第3図の配管8bに相
当し、気液分離器23に接続、ろう付けされる。27は第3
図の配管8hに相当し、T形継手22dに接続、ろう付けさ
れる。28、29、30は第3図の細管9、10、11に該当し、
その一端は気液分離器23、24、25の底部に、また他端は
T形継手22b、22c、22dを貫通して配管21に接続、ろう
付けされる。21 corresponds to the pipe 8j from the cooler 7 in FIG. 3, and its pipe
A pipe 22 as an outer pipe is fitted and brazed to the 21 to form a double pipe. The pipe 22 is composed of four T-shaped joints 22a, 2
2b, 22c, 2d are arranged with a space, and adjacent joints are connected and brazed by pipes 22e, 22f, 22g. T-shaped joints 22a, 22d at both ends are brazed to the pipe 21. To be done. Reference numerals 23, 24, and 25 are gas-liquid separators, which correspond to the reference numerals 3, 4, and 5 in FIG. 3, and are connected and brazed to the lower ends of the T-shaped joints 22a, 22b, and 22c. Reference numeral 26 corresponds to the pipe 8b in FIG. 3, and is connected and brazed to the gas-liquid separator 23. 27 is the third
Corresponding to the piping 8h in the figure, it is connected and brazed to the T-shaped joint 22d. 28, 29, 30 correspond to the thin tubes 9, 10, 11 in FIG. 3,
One end thereof is connected to the bottom of the gas-liquid separators 23, 24, 25, and the other end thereof is connected to the pipe 21 through the T-shaped joints 22b, 22c, 22d and brazed.
従って気液分離器23で分離されたガス冷媒は、主に管22
eを通過する際に冷却され、また気液分離器24で分離さ
れたガス冷媒は、主に管22fを通過する際に冷却され、
さらには気液分離器25で分離されたガス冷媒は、主に管
22gを通過する際に冷却されることになる。Therefore, the gas refrigerant separated in the gas-liquid separator 23 is mainly in the pipe 22.
The gas refrigerant which is cooled when passing through e, and which is separated by the gas-liquid separator 24 is mainly cooled when passing through the pipe 22f,
Furthermore, the gas refrigerant separated by the gas-liquid separator 25 is mainly piped.
It will be cooled when passing 22g.
次に第2図の実施例カスケード熱交換器A′につき、説
明する。Next, the embodiment cascade heat exchanger A'of FIG. 2 will be described.
カスケード熱交換器A′は、内管21の外周に両端を絞っ
た1本の外管22′を嵌挿し、その両端部をろう付けして
二重管を形成している。そして外管22′の下部に間隔を
おいて開口部を設け、これら開口部に気液分離器23、2
4、25および配管27を接続かつろう付けしてなる。その
他は前述実施例と同様であり、その説明は省略する。In the cascade heat exchanger A ', one outer tube 22' with both ends narrowed is fitted and inserted into the outer circumference of the inner tube 21, and both ends thereof are brazed to form a double tube. Then, openings are provided in the lower portion of the outer tube 22 'at intervals, and gas-liquid separators 23, 2 are provided in these openings.
4, 25 and pipe 27 are connected and brazed. Others are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.
なお前述実施例はいずれも3つのカスケード熱交換器を
一体化したものであるが、2つを一体化したものでも、
4つ以上を一体化したものでもよい。In addition, in all of the above-described embodiments, three cascade heat exchangers are integrated, but even if two are integrated,
It may be one in which four or more are integrated.
(発明の効果) この発明は複数のカスケード熱交換器を前述のように一
連のすなわち一体形の二重管構造としたので、従来の独
立したものを接続する場合に比し、継手部分が少なく、
管路の断面積の変化も少なくなり、圧力損失を低減でき
る。また従来のように隣接するカスケード熱交換器間の
配管が不要となり、液溜め容積が減り、冷媒封入量を減
らすことができ、運転停止時のバランス圧力を低くでき
る。またカスケード熱交換器全体がコンパクトとなり、
さらにろう付け個所も減り、冷媒漏れに対する信頼性が
増し、生産性も向上する。(Effect of the invention) Since a plurality of cascade heat exchangers have a series or integral double pipe structure as described above, the number of joint portions is smaller than that in the case where conventional independent ones are connected. ,
The change in the cross-sectional area of the pipeline is reduced, and the pressure loss can be reduced. Further, unlike the prior art, piping between adjacent cascade heat exchangers is not required, the liquid storage volume is reduced, the amount of refrigerant charged can be reduced, and the balance pressure at the time of operation stop can be lowered. Also, the entire cascade heat exchanger becomes compact,
Moreover, the number of brazing points is reduced, the reliability against refrigerant leakage is increased, and the productivity is improved.
第1図はこの発明の一実施例超低温冷凍装置のカスケー
ド熱交換器部分の縦断面図であり、第2図は別の実施例
カスケード熱交換器部分の縦断面図である。第3図は従
来の超低温冷凍装置の概略図である。 1……圧縮機、2……凝縮器、6……減圧装置、7……
冷却器、A,A′……カスケード熱交換器、21……内管、2
2,22′……外管、23〜25……気液分離器、28〜30……細
管。FIG. 1 is a vertical sectional view of a cascade heat exchanger portion of an ultra-low temperature refrigeration system according to an embodiment of the present invention, and FIG. 2 is a vertical sectional view of another embodiment cascade heat exchanger portion. FIG. 3 is a schematic diagram of a conventional ultra-low temperature refrigerator. 1 ... Compressor, 2 ... Condenser, 6 ... Pressure reducing device, 7 ...
Cooler, A, A '... Cascade heat exchanger, 21 ... Inner tube, 2
2,22 '... Outer tube, 23-25 ... Gas-liquid separator, 28-30 ... Thin tube.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 純一 大阪府豊中市箕輪3丁目7番1号 新明和 工業株式会社産業機械事業部内 審査官 上原 徹 (56)参考文献 特開 昭62−233647(JP,A) 実開 平1−88271(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Yamada 3-7-1, Minowa, Toyonaka-shi, Osaka Shinmeiwa Industrial Co., Ltd. Industrial Machinery Division Toru Uehara (56) Reference JP 62-233647 JP, A) Actual Kaihei 1-88271 (JP, U)
Claims (1)
装置および冷却器を順次接続するとともに、前記各気液
分離器で分離された液冷媒の減圧冷媒と戻りガス冷媒と
を熱交換するカスケード熱交換器を介設してなる混合冷
媒を用いた冷凍サイクルを含む超低温冷凍装置におい
て、前記カスケード熱交換器は、冷媒の戻り側を内管、
供給側を外管として複数の前記カスケード熱交換器を一
連の二重管にするとともに、前記各気液分離器を前記外
管に間隔を有して接続したことを特徴とする、前記超低
温冷凍装置。1. A compressor, a condenser, a plurality of gas-liquid separators, a pressure reducing device and a cooler are sequentially connected, and a reduced pressure refrigerant and a return gas refrigerant of the liquid refrigerant separated by each of the gas liquid separators are connected. In a cryogenic refrigeration apparatus including a refrigeration cycle using a mixed refrigerant formed by interposing a cascade heat exchanger for heat exchange, the cascade heat exchanger has an inner tube on the return side of the refrigerant,
While the supply side is an outer tube and a plurality of the cascade heat exchangers in a series of double tubes, each gas-liquid separator is connected to the outer tube with a space, the ultra-low temperature refrigeration apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8219489A JPH0756420B2 (en) | 1989-03-31 | 1989-03-31 | Ultra low temperature refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8219489A JPH0756420B2 (en) | 1989-03-31 | 1989-03-31 | Ultra low temperature refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02263058A JPH02263058A (en) | 1990-10-25 |
JPH0756420B2 true JPH0756420B2 (en) | 1995-06-14 |
Family
ID=13767620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8219489A Expired - Lifetime JPH0756420B2 (en) | 1989-03-31 | 1989-03-31 | Ultra low temperature refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0756420B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010043752A (en) * | 2008-08-08 | 2010-02-25 | Sanyo Electric Co Ltd | Refrigerating device |
JP6309739B2 (en) * | 2013-10-31 | 2018-04-11 | シャープ株式会社 | Air conditioner |
-
1989
- 1989-03-31 JP JP8219489A patent/JPH0756420B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02263058A (en) | 1990-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4432216A (en) | Cryogenic cooling apparatus | |
KR100905995B1 (en) | Air conditioner | |
US10401094B2 (en) | Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle | |
JP3627382B2 (en) | Refrigerant condensing device and refrigerant condenser | |
KR101319198B1 (en) | Thermal converter for condensation and refrigeration system using the same | |
JP2005077088A (en) | Condensation machine | |
JPWO2018029784A1 (en) | Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger | |
US5042578A (en) | Heat exchanger | |
JP2023109864A (en) | Mixed refrigerant liquefaction system and method with pre-cooling | |
JP2014224670A (en) | Double-pipe heat exchanger | |
EP4036507A1 (en) | Plate-fin heat exchanger and refrigeration system using same | |
JP7505748B2 (en) | Heat exchanger | |
JPH0756420B2 (en) | Ultra low temperature refrigerator | |
JP2000205735A (en) | Refrigerator | |
JP2734893B2 (en) | Cryogenic refrigerator | |
JP4814823B2 (en) | Refrigeration equipment | |
JP2002228380A (en) | Heat exchanger and cooling apparatus | |
CN106196883A (en) | A kind of gas liquefaction equipment | |
KR100805424B1 (en) | Dual flow condenser and refrigeration system using the same | |
JPH0579726A (en) | Freezing cycle device | |
WO2018168698A1 (en) | Heat exchanging device and heat exchanging method | |
JP7154427B2 (en) | heat exchangers and air conditioners | |
JPH05126420A (en) | Liquid cooler for refrigerating apparatus | |
JP2015087038A (en) | Heat exchanger and refrigeration cycle device | |
JPH10318618A (en) | Air conditioner |