[go: up one dir, main page]

JPH0755639A - Device and method for measuring focal length of optical system - Google Patents

Device and method for measuring focal length of optical system

Info

Publication number
JPH0755639A
JPH0755639A JP22830793A JP22830793A JPH0755639A JP H0755639 A JPH0755639 A JP H0755639A JP 22830793 A JP22830793 A JP 22830793A JP 22830793 A JP22830793 A JP 22830793A JP H0755639 A JPH0755639 A JP H0755639A
Authority
JP
Japan
Prior art keywords
optical system
measured
focal length
convergence point
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22830793A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimozono
裕明 下薗
Tsuneo Wakabayashi
常生 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22830793A priority Critical patent/JPH0755639A/en
Publication of JPH0755639A publication Critical patent/JPH0755639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure in an almost actual arrangement the focal length of an optical system which is specified to have finite focal length by providing an arithmetic means for computing the focal length of the optical system to be measured, from the position of the optical system to be measured and from the position of a light-beam convergent- point-detection means. CONSTITUTION:A generating means 1 for a divergent beam of light has a semiconductor laser 2, and an optical support 3 (stand 4 and bench 5) supports an optical system 19 to be measured, in such a manner that the optical system freely moves along its optical axis. The position of the optical system 19 is read by a reader means 6 (laser gage interferometer 7) and stored in a storage means 8. A light-beam convergent-point detection means 9 (two-dimensional CCD sensor 10) detects the convergent point of a beam of light emitted from the optical system 19. An optical support 12 (stand 13 and bench 14) supports the detection means 9 in such a manner that the means 9 freely moves along its optical axis. The position of the detection means 9 is read by a reader means 15 (laser gage interferometer 16) and stored in a storage means 17. An arithmetic means 18 computes the focal length of the optical system 19 from the values stored in the storage means 8, 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光学系の焦点距離の
測定装置および測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring the focal length of an optical system.

【0002】[0002]

【従来の技術】レンズの焦点距離測定装置として、図8
と図9で示される構成のものが従来から知られている。
2. Description of the Related Art As a lens focal length measuring device, FIG.
A configuration shown in FIG. 9 is conventionally known.

【0003】図8の測定装置は、ノーダルスライド法と
呼ばれる測定方法に用いる装置であって、光源51、標
線52、コリメーターレンズ53、光軸方向に移動でき
る摺動台54と回転台55からなるノーダルスライド台
56、光軸方向に移動可能な光学ベンチ57に設置され
た顕微鏡58を備えている。標線52はコリメーターレ
ンズ53の焦点位置に配置される。被験レンズ59はノ
ーダルスライド台56に載せてある。
The measuring apparatus shown in FIG. 8 is used in a measuring method called a nodal slide method, and includes a light source 51, a reference line 52, a collimator lens 53, a sliding base 54 and a rotary base movable in the optical axis direction. A nodal slide base 56 made of 55 and a microscope 58 installed on an optical bench 57 movable in the optical axis direction are provided. The marked line 52 is arranged at the focal position of the collimator lens 53. The test lens 59 is mounted on the nodal slide table 56.

【0004】被験レンズ59を、回転台55により光軸
に垂直な方向に僅かな角度回転してもコリメーターレン
ズ53の焦点に置いた標線52の像が動かなくなるよう
に、ノーダルスライド台56の摺動台54と顕微鏡58
を光軸方向に調整して、そのときの顕微鏡58の位置
「S」を読み取る。
The nodal slide base is used so that the image of the marked line 52 placed at the focus of the collimator lens 53 does not move even if the test lens 59 is rotated by a small amount in the direction perpendicular to the optical axis by the rotary base 55. 56 slide table 54 and microscope 58
Is adjusted in the optical axis direction, and the position "S" of the microscope 58 at that time is read.

【0005】次に被験レンズ59の代わりに標線を刻ん
だガラス板を、標線の方向が回転台55の回転軸とほぼ
平行に、かつ標線側を顕微鏡58に向けてノーダルスラ
イド台56に取り付け、回転台55により光軸方向に垂
直名方向に回転しても顕微鏡58で観察したガラスの標
線の像が動かなくなるように、摺動台54と顕微鏡58
を光軸方向に調整する。そのときの顕微鏡58の位置
「S0 」とすると、被験レンズ59の焦点距離は|S−
0 |で与えられる。
Next, instead of the test lens 59, a glass plate having a marked line is put on a nodal slide table with the direction of the marked line being substantially parallel to the rotation axis of the rotary base 55 and the marked line side facing the microscope 58. The slide table 54 and the microscope 58 are attached so that the image of the glass reference line observed by the microscope 58 does not move even if it is attached to the camera 56 and rotated in the direction perpendicular to the optical axis by the rotary table 55.
Is adjusted along the optical axis. If the position of the microscope 58 at that time is "S 0 ", the focal length of the test lens 59 is | S-.
It is given by S 0 |.

【0006】図9の測定装置は、倍率法と呼ばれる測定
方法に用いられる装置であって、光源60、長さyが既
知の標板61、焦点距離f0 が既知のコリメーターレン
ズ62、顕微鏡63を備えている。
The measuring apparatus shown in FIG. 9 is an apparatus used in a measuring method called a magnification method, and includes a light source 60, a reference plate 61 with a known length y, a collimator lens 62 with a known focal length f 0 , and a microscope. It is equipped with 63.

【0007】標板61はコリメーターレンズ62の焦点
位置に配置される。被験レンズ59をコリメーターレン
ズ62の後方に光軸を一致させて配置し、被験レンズ5
9の焦点面64に生ずる標板61の像の大きさy’を顕
微鏡63で測定する。そのとき被験レンズの焦点距離は
(y’/y)・f0 で与えられる。
The standard plate 61 is arranged at the focal position of the collimator lens 62. The test lens 59 is arranged behind the collimator lens 62 with the optical axes aligned with each other.
The image size y ′ of the image of the standard plate 61 generated on the focal plane 64 of 9 is measured by the microscope 63. At that time, the focal length of the test lens is given by (y ′ / y) · f 0 .

【0008】[0008]

【発明が解決しようとする課題】光ディスク用光学系に
おいて用いられる、光源から光束をコリメーターレンズ
を介さずに直接ディスク面に集光させるいわゆる有限仕
様の対物レンズは、コリメーターレンズが不要なため、
その構成が単純化される、コストダウンが図れる、等の
利点を有するため、広く用いられている。この種の光デ
ィスク用途の対物レンズは,プラスチックの射出成形に
よって、その量産化がなされているが、近年プラスチッ
クの射出成形技術の向上と相まって光ディスク用途の対
物レンズも更なる高精度化、高性能化が望まれるように
なった。したがって製造されたレンズが、設計値通りで
あるか厳しい検査が必要となり、光学系の最も基本的な
幾何光学的特性である焦点距離も、重要な検査項目のひ
とつとなっている。
The so-called finite specification objective lens used in the optical system for an optical disk, which collects the light beam from the light source directly on the disk surface without passing through the collimator lens, does not require a collimator lens. ,
It is widely used because of its advantages such as a simplified structure and cost reduction. This type of objective lens for optical discs has been mass-produced by injection molding of plastics. In recent years, along with the improvement of injection molding technology for plastics, objective lenses for optical discs have higher precision and higher performance. Came to be desired. Therefore, it is necessary to perform a strict inspection whether the manufactured lens is as designed, and the focal length, which is the most basic geometrical optical characteristic of the optical system, is also an important inspection item.

【0009】一方、前述の従来公知の焦点距離測定法で
あるノーダルスライド法も、倍率法も、平行光束を被験
レンズで結像させる構成となっており、無限遠の物体を
結像させるカメラレンズ等では良好に測定されるが、有
限仕様の光ディスク用途の対物レンズのように有限位置
の物体を集光するレンズでは、収差による像のボケの発
生が大きくなるため、高精度に測定できないという問題
があった。
On the other hand, in the above-mentioned conventionally known focal length measuring method, the nodal slide method and the magnification method, the parallel light flux is imaged by the test lens, and a camera for imaging an object at infinity is formed. Although it can be measured well with a lens or the like, a lens that focuses an object at a finite position, such as an objective lens for use in optical discs with finite specifications, causes a large amount of image blurring due to aberration, and therefore cannot be measured with high accuracy. There was a problem.

【0010】[0010]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、発散光束生成手段と、被
測定光学系をその光軸方向に移動自在に支持する光学支
持体と、被測定光学系の位置の読取手段と、読取手段で
読み取られた位置の記憶手段と、被測定光学系から出射
する光束の収束点を検出する光束収束点検出手段と、光
束収束点検出手段を、被測定光学系から出射する光束の
光軸方向に移動自在に支持する光学支持体と、検出手段
の位置の読取手段と、読取手段で読み取られた位置の記
憶手段と、被測定光学系の位置および光束収束点検出手
段の位置から、被測定光学系の焦点距離を算出する演算
手段とを備えたことを特徴とする光学系の焦点距離の測
定装置を提供する。
The present invention has been made to solve the above-mentioned problems, and includes a divergent light beam generating means and an optical support for movably supporting an optical system to be measured in its optical axis direction. A reading means for the position of the optical system to be measured, a storage means for the position read by the reading means, a light flux convergence point detecting means for detecting the convergence point of the light flux emitted from the optical system under measurement, and a light flux convergence point detecting means Is movably supported in the optical axis direction of the light beam emitted from the optical system to be measured, reading means for the position of the detecting means, storage means for the position read by the reading means, and the optical system under measurement. And a calculation means for calculating the focal length of the optical system to be measured from the position of the position b and the position of the light beam convergence point detection means, and a measuring device of the focal length of the optical system.

【0011】また、本発明は少なくとも3箇所のN箇所
の被測定光学系の位置をxi (i=1,2,・・・,
N)とし、光束収束点検出手段の位置をyi (i=1,
2,・・・,N)とするとき、上記焦点距離を算出する
演算手段が、数3により算出する演算手段であることを
特徴とする光学系の焦点距離の測定装置を提供する。
Further, according to the present invention, the positions of at least three N optical systems to be measured are x i (i = 1, 2, ...,
N), and the position of the light flux convergence point detection means is y i (i = 1,
2, ..., N), the calculation means for calculating the focal length is a calculation means for calculating by the formula 3, to provide a measuring device of the focal length of the optical system.

【0012】[0012]

【数3】 [Equation 3]

【0013】また、本発明は光束収束点検出手段を移動
し、被測定光学系からの光束の収束点を検出すること
を、少なくとも3箇所の被測定光学系の位置で行い、各
々における被測定光学系の位置と、光束収束点検出手段
の位置とから、被測定光学系の焦点距離を求めることを
特徴とする光学系の焦点距離の測定方法を提供する。
Further, according to the present invention, the light flux convergence point detecting means is moved to detect the convergence point of the light flux from the optical system to be measured at at least three positions of the optical system to be measured, and the measured points in each of them are measured. There is provided a method for measuring the focal length of an optical system, characterized in that the focal length of the optical system to be measured is obtained from the position of the optical system and the position of the light beam convergence point detection means.

【0014】また、本発明は被測定光学系を移動し、被
測定光学系から出射する光束の収束点が光束収束点検出
手段により検出される位置を求めることを、少なくとも
3箇所の光束収束点検出手段の位置に対して行い、各々
における光束収束点検出手段の位置と、被測定光学系の
位置とから、被測定光学系の焦点距離を求めることを特
徴とする光学系の焦点距離の測定方法を提供する。
Further, according to the present invention, it is necessary to move the optical system to be measured and obtain the position where the convergence point of the light beam emitted from the optical system to be measured is detected by the light beam convergence point detecting means. Measurement of the focal length of the optical system, which is performed for the position of the output means, and obtains the focal length of the measured optical system from the position of the light beam convergence point detection means and the position of the measured optical system. Provide a way.

【0015】さらに本発明は、少なくとも3箇所の被測
定光学系の位置xi (i=1,2,・・・,N)と、光
束収束点検出手段の位置をyi (i=1,2,・・・,
N)とから、前記数3により被測定光学系の焦点距離を
算出することを特徴とする上記光学系の焦点距離の測定
方法を提供する。
Further, according to the present invention, at least three positions x i (i = 1, 2, ..., N) of the optical system to be measured and positions of the light beam convergence point detecting means are y i (i = 1, 1. 2, ...,
N) is used to calculate the focal length of the optical system to be measured by the mathematical formula 3, and a method for measuring the focal length of the optical system is provided.

【0016】本発明の測定装置の構成を、図面にしたが
って詳細に説明する。
The configuration of the measuring apparatus of the present invention will be described in detail with reference to the drawings.

【0017】図1に本発明の測定装置の構成図を示す。
本発明の測定装置は、発散光束生成手段1(実施例では
半導体レーザー2)と、被測定光学系19をその光軸方
向に移動自在に支持する光学支持体3(実施例では載物
台4および光学ベンチ5)と、被測定光学系19の位置
の読取手段6(実施例ではレーザー干渉測長器7)と、
読取手段6で読み取られた位置の記憶手段8と、被測定
光学系19から出射する光束の収束点を検出する光束収
束点検出手段9(実施例では2次元CCDセンサー1
0)と、光束収束点検出手段9を、被測定光学系19か
ら出射する光束の光軸方向に移動自在に支持する光学支
持体12(実施例では載物台13および光学ベンチ1
4)と、光束収束点検出手段9の位置の読取手段15
(実施例ではレーザー干渉測長器16)と、読取手段1
5で読み取られた位置の記憶手段17と、記憶手段8、
および記憶手段17に記憶された値から被測定光学系の
焦点距離を演算する演算手段18とを備える。
FIG. 1 shows a block diagram of the measuring apparatus of the present invention.
The measuring apparatus of the present invention comprises a divergent light flux generating means 1 (semiconductor laser 2 in the embodiment) and an optical support 3 (movable table 4 in the embodiment) that movably supports the optical system 19 under measurement. And an optical bench 5), a reading unit 6 (a laser interference length measuring device 7 in the embodiment) for reading the position of the optical system 19 to be measured,
The storage means 8 for the position read by the reading means 6 and the light flux convergence point detection means 9 for detecting the convergence point of the light flux emitted from the measured optical system 19 (in the embodiment, the two-dimensional CCD sensor 1
0) and the light flux converging point detection means 9 movably in the optical axis direction of the light flux emitted from the optical system to be measured 19 (in the embodiment, the stage 13 and the optical bench 1).
4) and the reading means 15 at the position of the light flux convergence point detecting means 9
(Laser interferometer length measuring device 16 in the embodiment) and reading means 1
Storage means 17 for the position read in 5, storage means 8,
And a calculation means 18 for calculating the focal length of the optical system to be measured from the value stored in the storage means 17.

【0018】次に、本発明の測定方法を、図1および図
2により説明する。本発明の測定方法は以下の手順から
なる。
Next, the measuring method of the present invention will be described with reference to FIGS. The measuring method of the present invention comprises the following steps.

【0019】被測定光学系19の光軸方向の位置の設定
数N(≧3)を決めた後、発散光束生成手段1からの光
束が、光軸がほぼ一致して導かれるように、被測定光学
系19を第1の設定位置に設置する(ステップ1)。
After the set number N (≧ 3) of the positions of the optical system 19 to be measured in the optical axis direction is determined, the light beam from the divergent light beam generating means 1 is guided so that its optical axes are substantially coincident with each other. The measurement optical system 19 is installed at the first setting position (step 1).

【0020】光束収束点検出手段9、を被測定光学系か
ら出射する光束の光軸方向に一致させて移動し、光束収
束点を検出する(実施例ではCCDセンサー10により
画像として観察された光束の光束径が最小になる位置と
して検出する。)(ステップ2)。
The light flux converging point detecting means 9 is moved in conformity with the optical axis direction of the light flux emitted from the optical system to be measured to detect the light flux converging point (in the embodiment, the light flux observed as an image by the CCD sensor 10). Is detected as the position where the diameter of the light flux is minimized) (step 2).

【0021】被測定光学系19の位置x1 および光束収
束点検出手段9の位置y1 を読み取り、記憶させた後
(ステップ3)、被測定光学系19を第2の設定位置へ
移動する(ステップ4)。
[0021] reads the position y 1 of the position x 1 and the light beam converging point detecting means 9 of the measurement optical system 19, after storing (step 3), to move the measurement optical system 19 into a second set position ( Step 4).

【0022】以下被測定光学系19の位置の設定数Nを
満足するまでステップ2、3、4を繰り返す。
Hereinafter, steps 2, 3, and 4 are repeated until the set number N of positions of the optical system to be measured 19 is satisfied.

【0023】こうして求めたN組の共役配置における、
被測定光学系19の設定位置xi (i=1,2,・・
・,N)と、光束収束点検出手段9の位置yi (i=
1,2,・・・,N)とから、演算手段18を用いて焦
点距離を算出する。
In the N sets of conjugate arrangements thus obtained,
Setting position x i of the optical system to be measured 19 (i = 1, 2, ...
, N) and the position y i (i =
1, 2, ..., N), the focal length is calculated using the calculating means 18.

【0024】また、本発明の他の測定方法を説明する。
図1および図3により説明する。本発明の他の測定方法
は以下の手順からなる。
Another measuring method of the present invention will be described.
This will be described with reference to FIGS. 1 and 3. Another measuring method of the present invention comprises the following steps.

【0025】光束収束点検出手段9の光軸方向の位置の
設定数N(≧3)を決めた後、第1の設定位置に設置す
る(ステップ11)。
After the set number N (≧ 3) of the positions of the light beam convergence point detecting means 9 in the optical axis direction is determined, it is set at the first setting position (step 11).

【0026】被測定光学系19を、光軸方向に移動し、
光束収束点検出手段9により光束収束点が検出される被
測定光学系19の位置を求める(実施例では2次元CC
Dセンサー10により画像として観察された光束の光束
径が最小になる被測定光学系19の位置を求める。)
(ステップ12)。
The measured optical system 19 is moved in the optical axis direction,
The position of the optical system to be measured 19 at which the light flux convergence point is detected by the light flux convergence point detection means 9 is obtained (in the embodiment, two-dimensional CC).
The position of the measured optical system 19 where the light flux diameter of the light flux observed as an image by the D sensor 10 is minimized is obtained. )
(Step 12).

【0027】被測定光学系19の位置x1 および光束収
束点検出手段9の位置y1 を読み取り、記憶させた後
(ステップ13)、光束収束点検出手段9を第2の設定
位置へ移動する(ステップ4)。
After reading and storing the position x 1 of the optical system 19 to be measured and the position y 1 of the light flux convergence point detection means 9 (step 13), the light flux convergence point detection means 9 is moved to the second set position. (Step 4).

【0028】以下光束収束点検出手段9の位置の設定数
Nを満足するまでステップ2、3、4を繰り返す。
Hereinafter, steps 2, 3, and 4 are repeated until the set number N of positions of the light beam convergence point detecting means 9 is satisfied.

【0029】こうして求めたN組の共役配置における、
被測定光学系19の位置xi (i=1,2,・・・,
N)と、光束収束点検出手段9の位置yi (i=1,
2,・・・,N)とから、演算手段18を用いて焦点距
離を算出する。
In the N sets of conjugate arrangements thus obtained,
The position x i of the optical system to be measured 19 (i = 1, 2, ...,
N) and the position y i (i = 1, 1) of the light beam convergence point detection means 9.
2, ..., N), the focal length is calculated using the calculating means 18.

【0030】[0030]

【作用】図4を参照して、本発明に用いた焦点距離算出
の原理を説明する。レンズLから有限の位置にある物点
をO、物点OのレンズLによる像点をI、レンズLの前
側(物体側)焦点位置をF、レンズLの後側(像側)焦
点位置をF’とし、OとFの距離をx、F’とIの距離
をy、レンズLの焦点距離をfとすると、ニュートンの
式(数4)が成り立つ。
The principle of focal length calculation used in the present invention will be described with reference to FIG. The object point at a finite position from the lens L is O, the image point of the object point O by the lens L is I, the front (object side) focal position of the lens L is F, and the rear (image side) focal position of the lens L is Let F ′ be the distance between O and F be x, the distance between F ′ and I be y, and the focal length of the lens L be f, then Newton's equation (Equation 4) holds.

【0031】[0031]

【数4】x・y=f・f[Formula 4] x · y = f · f

【0032】レンズLをΔx移動(レンズLが物点Oか
ら遠ざかる方向を正とする)させたときに、像点Iが
I’にΔy移動(像点IがレンズLから遠ざかる方向を
正とする)したとすると、OとI’が共役であるから数
5もまた成立する。
When the lens L is moved by Δx (the direction in which the lens L moves away from the object point O is positive), the image point I moves in Δ'by Δy (the direction in which the image point I moves away from the lens L is positive). Then, since O and I ′ are conjugates, Formula 5 also holds.

【0033】[0033]

【数5】(x+Δx)(y+Δy−Δx)=f・f(5) (x + Δx) (y + Δy−Δx) = f · f

【0034】したがって、レンズLを光軸方向に異なる
3箇所x1 、x2 、x3 に設定し、それぞれに対する像
点がy1 、y2 、y3 であったとすると、数6の2つの
式が成立し、またニュートンの式(数4)も成立してい
るので、これら3つの式を連立方程式として解き、x、
y、fを数7により求めることができる。
Therefore, assuming that the lens L is set at three different locations in the optical axis direction, x 1 , x 2 , and x 3 , and the image points for each are y 1 , y 2 , and y 3 , the two equations 6 Since the equation is established and Newton's equation (Equation 4) is also established, these three equations are solved as simultaneous equations, and x,
y and f can be calculated by the equation 7.

【0035】[0035]

【数6】(x+(x2 −x1 ))(y+(y2 −y1
−(x2 −x1 ))=f・f (x+(x3 −x1 ))(y+(y3 −y1 )−(x3
−x1 ))=f・f
[6] (x + (x 2 -x 1 )) (y + (y 2 -y 1)
− (X 2 −x 1 )) = f · f (x + (x 3 −x 1 )) (y + (y 3 −y 1 ) − (x 3
-X 1 )) = f · f

【0036】[0036]

【数7】 [Equation 7]

【0037】さらに、レンズLを光軸方向に異なるN箇
所(N≧3)xi (i=1,2,・・・,N)に設定し
た場合には、次のように焦点距離fを求めることができ
る。すなわち、物点xi に対する像点位置をyi (i=
1,2,・・・,N)として、数8ののN個の式が成立
する。
Further, when the lens L is set at different N positions (N ≧ 3) x i (i = 1, 2, ..., N) in the optical axis direction, the focal length f is set as follows. You can ask. That is, the image point position with respect to the object point x i is y i (i =
1, 2, ..., N), the N equations of Equation 8 hold.

【0038】[0038]

【数8】(x+(xi −xj ))(y+(yi −yj
−(xi −xj ))=f・f (i=1,2,・・・,N) (jは1からNまでの任意の整数)
(8) (x + (x i −x j )) (y + (y i −y j )
− (X i −x j )) = f · f (i = 1, 2, ..., N) (j is an arbitrary integer from 1 to N)

【0039】数9の(N−1)個の式にニュートンの式
(数4)を代入し、両辺を展開整理すると、数10とな
り、x、yについて線形の(N−1)個の式を得る。
By substituting Newton's equation (Equation 4) into (N-1) equations of Equation 9 and expanding and rearranging both sides, Equation 10 is obtained, and (N-1) equations linear in x and y are obtained. To get

【0040】[0040]

【数9】(x+(xi −xj ))(y+(yi −yj
−(xi −xj ))=f・f (i=1,2,・・・,N ただしi=jを除く)
(X + (x i −x j )) (y + (y i −y j )
− (X i −x j )) = f · f (i = 1, 2, ..., N, except i = j)

【0041】[0041]

【数10】((yi −yj )−(xi −xj ))x+
(xi −xj )y=(xi −xj )((yi −yj )−
(xi −xj )) (i=1,2,・・・,N ただしi=jを除く) (jは1からNまでの任意の整数)
(10) ((y i −y j ) − (x i −x j )) x +
(X i −x j ) y = (x i −x j ) ((y i −y j ) −
(X i −x j )) (i = 1, 2, ..., N, except i = j) (j is an arbitrary integer from 1 to N)

【0042】これら(N−1)個の式を観測方程式と
し、最小自乗法を適用することにより数3のようにx、
y、fが求めることができる。
By using these (N-1) equations as observation equations and applying the least squares method, x,
y and f can be calculated.

【0043】測定箇所が3箇所の場合と3箇所以上の場
合に分けて説明したが、数3においてN=3、j=1の
場合は数7の結果に一致するので、数3が焦点距離を求
める一般式となる。
The description has been given separately for the case where there are three measurement points and the case where there are three or more measurement points. However, in the case of N = 3 and j = 1 in the equation 3, the result of the equation 7 agrees, so the equation 3 is the focal length. It becomes a general formula to obtain.

【0044】本発明の測定装置、および測定方法はこの
原理に基づき構成されたものであり、被測定光学系19
を、光学支持体3で移動自在に支持することで、被測定
光学系19と物点の距離を変更できる。
The measuring apparatus and the measuring method of the present invention are constructed on the basis of this principle.
By movably supporting the optical support member 3, the distance between the measured optical system 19 and the object point can be changed.

【0045】被測定光学系19の移動量は、被測定光学
系19の位置の移動として読取手段6により知ることが
できる。読取手段6により読み取った値は、後の焦点距
離算出に利用するため記憶手段8に記憶される。
The amount of movement of the measured optical system 19 can be known by the reading means 6 as the movement of the position of the measured optical system 19. The value read by the reading unit 6 is stored in the storage unit 8 for use in later calculation of the focal length.

【0046】光束収束点検出手段9を、光学支持体12
で移動自在に支持することにより、像点の移動は、光束
の収束点が検出されるときの光束収束点検出手段9の位
置の移動として、読取手段15により知ることができ
る。
The light beam converging point detecting means 9 is connected to the optical support 12.
By movably supporting the light source, the movement of the image point can be known by the reading means 15 as the movement of the position of the light flux convergence point detection means 9 when the light flux convergence point is detected.

【0047】読取手段15により読み取った値は、後の
焦点距離算出に利用するため記憶手段17に記憶され
る。
The value read by the reading means 15 is stored in the storage means 17 for use in later calculation of the focal length.

【0048】被測定光学系19の位置を固定し、光束収
束点検出手段9を移動させ、光束収束点を検出すること
で、物点と像点が共役であることを確認できる。また、
光束収束点検出手段9を固定し、光束収束点検出手段9
が光束収束点を検出するように、被測定光学系19を移
動させて、物点と像点の共役の確認をしてもよい。
It is possible to confirm that the object point and the image point are conjugate by fixing the position of the optical system to be measured 19 and moving the light flux convergence point detection means 9 to detect the light flux convergence point. Also,
The light flux convergence point detection means 9 is fixed and the light flux convergence point detection means 9 is fixed.
The measured optical system 19 may be moved so as to detect the light flux convergence point, and the conjugation between the object point and the image point may be confirmed.

【0049】演算手段18は、少なくとも3箇所の共役
配置に対する、被測定光学系19の位置の値と、光束収
束点検出手段9の位置の値とから被測定光学系19の焦
点距離を演算する機能を有する。
The calculating means 18 calculates the focal length of the measured optical system 19 from the value of the position of the measured optical system 19 and the value of the position of the light beam convergence point detecting means 9 with respect to at least three conjugate arrangements. Have a function.

【0050】以上により、本発明は、被測定光学系の物
像間距離を有限の配置にして焦点距離の測定を可能とす
るのもである。
As described above, according to the present invention, it is possible to measure the focal length with a finite disposition of the object-image distance of the optical system to be measured.

【0051】[0051]

【実施例】実施例の測定装置を、図1にしたがって詳細
に説明する。実施例の測定装置は、発散光束生成手段1
と、被測定光学系19をその光束の光軸方向に移動自在
に支持する光学支持体3と、被測定光学系19の位置の
読取手段6と、読取手段6で読み取られた位置の記憶手
段8と、被測定光学系からの光束の収束点を検出する光
束収束点検出手段9と、光束収束点検出手段9を被測定
光学系からの光束の光軸方向に移動自在に支持する光学
支持体12と、光束収束点検出手段9の位置の読取手段
15と、読取手段15で読み取られた位置の記憶手段1
7と、記憶手段8と記憶手段17で記憶された発散光束
生成手段1と光束収束点検出手段9の位置情報をもと
に、被測定光学系の焦点距離を演算する演算手段18と
を備える。被測定光学系19は、発散光束生成手段1か
らの発散光束中に、光軸をほぼ一致させて配置される。
EXAMPLE A measuring apparatus of an example will be described in detail with reference to FIG. The measuring apparatus according to the embodiment has a divergent light flux generating means 1
An optical support 3 for movably supporting the optical system to be measured 19 in the direction of the optical axis of the light flux, a reading means 6 for the position of the optical system to be measured 19, and a storage means for the position read by the reading means 6. 8, a light flux convergence point detection means 9 for detecting a convergence point of the light flux from the measured optical system, and an optical support for movably supporting the light flux convergence point detection means 9 in the optical axis direction of the light flux from the measured optical system. The body 12, the reading means 15 at the position of the light flux convergence point detection means 9, and the storage means 1 at the position read by the reading means 15.
7 and a computing means 18 for computing the focal length of the optical system to be measured based on the positional information of the divergent luminous flux generating means 1 and the luminous flux convergence point detecting means 9 stored in the storing means 8 and the storing means 17. . The optical system to be measured 19 is arranged in the divergent light flux from the divergent light flux generation means 1 with their optical axes substantially aligned.

【0052】以下に各部位毎の説明を行う。Each part will be described below.

【0053】(発散光束生成手段1)半導体レーザー2
からの発散光束を用いる。
(Divergent light beam generating means 1) semiconductor laser 2
The divergent light flux from is used.

【0054】(光学支持体3)被測定光学系19を保持
する載物台4と光学ベンチ5からなり、光学ベンチ5
は、被測定光学系の光軸方向に長くなったものである。
この上に置かれた載物台4は図示せぬパルスモーターと
送りねじで光軸方向に移動自在となっている。
(Optical support 3) The optical bench 5 comprises a stage 4 for holding the optical system to be measured 19 and an optical bench 5.
Is elongated in the optical axis direction of the optical system to be measured.
The stage 4 placed on this is movable in the optical axis direction by a pulse motor and a feed screw (not shown).

【0055】(読取手段6)載物台4に図示しないコー
ナーキューブを取り付け、レーザー干渉測長器7により
半導体レーザー2と一体で移動する載物台4の光学ベン
チ5に対する位置を読み取る。方向は、載物台4(半導
体レーザー2)が発散光生成手段1から遠ざかる方向を
正とする。
(Reading Unit 6) A corner cube (not shown) is attached to the stage 4, and the position of the stage 4 moving integrally with the semiconductor laser 2 with respect to the optical bench 5 is read by the laser interference length measuring device 7. The positive direction is the direction in which the stage 4 (semiconductor laser 2) moves away from the divergent light generating means 1.

【0056】(記憶手段8)レーザー干渉測長器7で読
み取られた位置情報はA/D変換され、記憶手段8に記
憶される。
(Storage Unit 8) The position information read by the laser interference length measuring device 7 is A / D converted and stored in the storage unit 8.

【0057】(光束収束点検出手段9)2次元CCDセ
ンサー10である。得られる画像はモニター11で観察
する。2次元CCDセンサー10を収束点をもつ光束中
を光束の光軸方向に移動させ、光束径が最小となる位置
を収束点として検出する。
(Light flux convergence point detecting means 9) The two-dimensional CCD sensor 10. The obtained image is observed on the monitor 11. The two-dimensional CCD sensor 10 is moved in a light beam having a converging point in the optical axis direction of the light beam, and the position where the light beam diameter is the minimum is detected as the converging point.

【0058】(光学支持体12)収束点検出手段9を保
持する載物台13と光学ベンチ14からなり、光学ベン
チ14は、被測定光学系から出射する光束の光軸方向に
長くなったものである。この上に置かれた載物台13は
図示しないパルスモーターと送りねじで光軸方向に移動
自在となっている。
(Optical support 12) A stage 13 for holding the convergence point detecting means 9 and an optical bench 14 are provided. The optical bench 14 is elongated in the optical axis direction of the light beam emitted from the optical system to be measured. Is. The stage 13 placed on this is movable in the optical axis direction by a pulse motor and a feed screw (not shown).

【0059】(読取手段15)載物台13に図示しない
コーナーキューブを取り付け、レーザー干渉測長器16
により、収束点検出手段9と一体で移動する載物台13
の光学ベンチ14に対する位置を読み取る。方向は、載
物台13(2次元CCDセンサー10)が被測定光学系
19から遠ざかる方向を正とする。
(Reading means 15) A corner cube (not shown) is attached to the stage 13 and a laser interferometer 16 is installed.
The stage 13 that moves integrally with the convergence point detection means 9
The position of the optical disc with respect to the optical bench 14 is read. The direction is positive when the stage 13 (two-dimensional CCD sensor 10) moves away from the measured optical system 19.

【0060】(記憶手段17)レーザー干渉測長器16
で読み取られた位置情報はA/D変換され、記憶手段1
7に記憶される。
(Storage 17) Laser interferometer 16
The position information read by is A / D converted and stored in the storage unit 1.
Stored in 7.

【0061】(演算手段18)記憶手段8に記憶された
N箇所(N≧3)の被測定光学系19の位置(載物台4
の光学ベンチ5に対する位置として読み込んだ値)xi
(i=1,2,・・・,N)と、記憶手段17に記憶さ
れた、各々の位置に対して収束点を検出したときの2次
元CCDセンサー10の位置(載物台13の光学ベンチ
14に対する位置として読み込んだ値)yi (i=1,
2,・・・,N)とから数11により被測定光学系の焦
点距離を演算する機能を有する。
(Calculating means 18) N positions (N ≧ 3) of the measured optical system 19 stored in the storage means 8 (the stage 4)
Value read as the position of the optical bench 5) x i
(I = 1, 2, ..., N) and the position of the two-dimensional CCD sensor 10 stored in the storage unit 17 when the convergence point is detected for each position (optical of the stage 13). The value read as the position for the bench 14) y i (i = 1,
2, ..., N) and the function of calculating the focal length of the optical system to be measured by the equation 11.

【0062】[0062]

【数11】 [Equation 11]

【0063】実施例の測定方法を、図1および図2によ
り説明する。
The measuring method of the embodiment will be described with reference to FIGS. 1 and 2.

【0064】被測定光学系19の位置の設定数N(≧
3)を決めた後、発散光束生成手段1からの光束の光軸
に被測定光学系19に光軸がほぼ一致して導かれるよう
に、被測定光学系19を第1の設定位置に設置する(ス
テップ1)。
The set number N of positions of the optical system to be measured 19 (≧
After determining 3), the optical system to be measured 19 is installed at the first setting position so that the optical axis of the light beam from the divergent light beam generating means 1 is guided to the optical system to be measured 19 in a substantially coincident manner. (Step 1).

【0065】光束収束点検出手段9を光束の光軸方向に
移動し、光束径が最小となる位置を光束の収束点として
検出する(ステップ2)。
The light beam convergence point detecting means 9 is moved in the optical axis direction of the light beam, and the position where the light beam diameter is minimum is detected as the light beam convergence point (step 2).

【0066】被測定光学系19の位置x1 および光束収
束点検出手段9の位置y1 を読み取り、記憶させた後
(ステップ3)、被測定光学系19を第2の設定位置へ
移動する(ステップ4)。
[0066] reads the position y 1 of the position x 1 and the light beam converging point detecting means 9 of the measurement optical system 19, after storing (step 3), to move the measurement optical system 19 into a second set position ( Step 4).

【0067】以下被測定光学系19の位置の設定数Nを
満足するまでステップ2、3、4を繰り返す。i (1≦
i≦N)番目の被測定光学系19の設定位置xi と、お
よび対応する検出手段9の位置yi とから演算手段18
により被測定光学系の焦点距離を算出する。
Hereinafter, steps 2, 3, and 4 are repeated until the set number N of positions of the optical system to be measured 19 is satisfied. i (1 ≦
From the set position x i of the ( i ≦ N) th measured optical system 19 and the corresponding position y i of the detection means 9, the calculation means 18
The focal length of the optical system to be measured is calculated by.

【0068】また、実施例の他の測定方法を図1および
図3により説明する。
Another measuring method of the embodiment will be described with reference to FIGS. 1 and 3.

【0069】光束収束点検出手段9の位置の設定数N
(≧3)を決めた後、光束収束点検出手段9を第1の設
定位置に設置する(ステップ11)。
Set number N of positions of the light beam convergence point detecting means 9
After determining (≧ 3), the light flux convergence point detection means 9 is installed at the first setting position (step 11).

【0070】光束収束点検出手段9が、光束径最小であ
ることを検出する被測定光学系19の位置を、被測定光
学系19をその光軸方向に移動することにより求める
(ステップ12)。
The position of the measured optical system 19 for detecting that the luminous flux convergent point detecting means 9 detects the minimum luminous flux diameter is obtained by moving the measured optical system 19 in the optical axis direction (step 12).

【0071】被測定光学系19の位置x1 および光束収
束点検出手段9の位置y1 を読み取り、記憶させた後
(ステップ13)、光束収束点検出手段9を第2の設定
位置へ移動する(ステップ14)。
After reading and storing the position x 1 of the optical system 19 to be measured and the position y 1 of the light flux convergence point detection means 9 (step 13), the light flux convergence point detection means 9 is moved to the second set position. (Step 14).

【0072】以下光束収束点検出手段9の位置の設定数
Nを満足するまでステップ12、13、14を繰り返
す。i (1≦i≦N)番目の被測定光学系19の設定位
置xiと、および対応する検出手段9の位置yi とから
演算手段18により被測定光学系の焦点距離を算出す
る。
Thereafter, steps 12, 13, and 14 are repeated until the set number N of positions of the light beam convergence point detecting means 9 is satisfied. The focal length of the optical system to be measured is calculated by the calculating means 18 from the set position x i of the i (1 ≦ i ≦ N) th measured optical system 19 and the corresponding position y i of the detecting means 9.

【0073】ところで、この発明は上述の実施例に限定
されない。光束の収束点の検出手段としては,光束中に
1次元のラインセンサーをおき、光束径が最小となると
ころを検出してもよい。
The present invention is not limited to the above embodiment. As a means for detecting the convergence point of the light flux, a one-dimensional line sensor may be placed in the light flux to detect the location where the light flux diameter is minimum.

【0074】また、図5に示すような検出手段でもよ
い。すなわちピンホール20、リレーレンズ21、光電
変換素子22からなり、光電変換素子22をピンホール
20のリレーレンズ21による共役位置に配置する。こ
の検出手段を収束点をもつ光束中を光束の光軸方向に移
動させると、ピンホール20が光束の収束点に一致した
ときに光電変換素子22の出力が最大となり、収束点を
検出できる。
Further, the detecting means as shown in FIG. 5 may be used. That is, it is composed of a pinhole 20, a relay lens 21, and a photoelectric conversion element 22, and the photoelectric conversion element 22 is arranged at a conjugate position of the relay lens 21 of the pinhole 20. When this detecting means is moved in the optical axis direction of the light beam having the convergence point, the output of the photoelectric conversion element 22 becomes maximum when the pinhole 20 coincides with the convergence point of the light beam, and the convergence point can be detected.

【0075】あるいは、図6に示す干渉パターンを利用
する構成でもよい。すなわちレーザー光源23、レンズ
(24、25、26)からなる発散光束生成手段1の光
束中に設けた、光束の一部を来た光路に沿って逆行反射
させる反射手段27と、被測定光学系19出射後の光束
を逆行反射させる反射手段28と、により構成するので
ある。
Alternatively, the structure using the interference pattern shown in FIG. 6 may be used. That is, the reflection means 27 provided in the light flux of the divergent light flux generation means 1 including the laser light source 23 and the lenses (24, 25, 26) for retroreflecting a part of the light flux along the optical path that came, and the optical system under test. The reflecting means 28 for retroreflecting the luminous flux emitted from 19 is constituted.

【0076】反射手段28が図6に示すような凹面の場
合は、収束点の後方に配置し、凹面の球心が光束の収束
点に一致したときに、光束が来た光路に沿って逆行反射
するので、反射手段27で反射された光束との干渉によ
り干渉パターンが得られる。反射手段28が凸面の場合
は、収束点より被測定光学系19に近付けて配置し、凸
面の球心が光束の収束点に一致したときに、光束が来た
光路に沿って逆行反射するので、反射手段27で反射さ
れた光束との干渉により干渉パターンが得られる。反射
手段24が平面の場合は、光束の収束点がその平面上に
あるとき、光束は光軸に対称に反射し、反射手段27に
より反射された光束と干渉し、干渉パターンを得る。
When the reflecting means 28 has a concave surface as shown in FIG. 6, it is arranged behind the converging point, and when the spherical center of the concave surface coincides with the converging point of the light beam, it goes backward along the optical path along which the light beam comes. Since the light is reflected, an interference pattern is obtained by the interference with the light flux reflected by the reflection means 27. When the reflecting means 28 is a convex surface, it is arranged closer to the optical system 19 to be measured than the converging point, and when the spherical center of the convex surface coincides with the converging point of the luminous flux, it is retroreflected along the optical path where the luminous flux came. An interference pattern is obtained by the interference with the light flux reflected by the reflection means 27. When the reflection means 24 is a plane, when the convergence point of the light flux is on that plane, the light flux is reflected symmetrically with respect to the optical axis and interferes with the light flux reflected by the reflection means 27 to obtain an interference pattern.

【0077】いずれの場合も、干渉パターンはレンズ3
0を介して、2次元CCDセンサー31、モニター32
で観察される。このように、反射手段28を、収束点の
検出手段として用いるのである。
In any case, the interference pattern is the lens 3
Two-dimensional CCD sensor 31, monitor 32 through 0
Observed in. In this way, the reflection means 28 is used as a convergence point detection means.

【0078】さらには、発散光束生成手段をインコヒー
レント光源と、レンズとで構成し、収束点検出手段を接
眼レンズを有する光学系とし、収束点を目視で判断して
もよい。発散光束生成手段については、白色光源と、分
光手段であるモノクロメーターと、を用いて構成し、被
測定光学系の波長による焦点距離の違いを測定する構成
としてもよい。
Further, the divergent light beam generating means may be composed of an incoherent light source and a lens, and the convergence point detecting means may be an optical system having an eyepiece lens, and the convergence point may be visually judged. The divergent light beam generation means may be configured by using a white light source and a monochromator that is a spectroscopic means, and may be configured to measure the difference in focal length depending on the wavelength of the optical system to be measured.

【0079】演算手段については、実施例では数3にお
いてj=1と置くことによって得られた数11を用いる
ことを示したが、j=1に限らない。jは1からNまで
N通りの選択が可能である。また、数3においてjを1
からNまでN通りの計算で求めその一部または全部を平
均して焦点距離の値としてもよい。
As for the calculation means, in the embodiment, it is shown that the equation 11 obtained by setting j = 1 in the equation 3 is used, but it is not limited to j = 1. j can be selected from 1 to N in N ways. Also, in Equation 3, j is 1
It is also possible to obtain the focal length value by averaging a part or all of the values obtained from N to N calculations.

【0080】被測定光学系として、実施例では屈折系の
場合の配置を示したが、図7に示すように、発散光束生
成手段1からの光束を、被測定光学系34で反射させ、
その光束をハーフミラー33で折り曲げ光束収束点の検
出手段9に導く配置にすることにより、反射系光学系の
焦点距離の測定も可能である。
As the optical system to be measured, the arrangement in the case of the refraction system is shown in the embodiment, but as shown in FIG. 7, the light beam from the divergent light beam generating means 1 is reflected by the optical system 34 to be measured,
By arranging the light flux by the half mirror 33 to guide it to the detecting means 9 of the light flux convergence point, it is possible to measure the focal length of the reflection system optical system.

【0081】[0081]

【発明の効果】以上説明したように本発明によれば、物
像間距離が有限の配置で測定できるので、光ディスク用
対物レンズをはじめ、複写機用レンズ、ファクシミリ用
レンズ等、有限で使用される目的で設計された光学系
を、配置の違いから生じる収差の影響をほとんど受ける
ことなく、実使用に非常に近い配置で測定できる。
As described above, according to the present invention, since the object-image distance can be measured in a finite arrangement, it can be used in a finite amount such as an optical disk objective lens, a copying machine lens, a facsimile lens, etc. The optical system designed for this purpose can be measured in an arrangement very close to that in actual use, with almost no influence of aberration caused by the difference in arrangement.

【0082】従来の技術の項で述べたノーダルスライド
法は、被験レンズの節点をノーダルスライド台回転軸上
に載せるために、レンズの回転と光軸方向の移動を交互
に繰り返す、繁雑な、熟練を要する操作が必要である
が、本発明では、発散光生成手段と収束点検出手段を光
軸方向に移動させる操作だけでよく、測定が容易であ
る。また倍率法では、焦点距離が既知にコリメーターレ
ンズおよび寸法が既知の指標を必要としたが、本発明で
は、光学ベンチ上の載物台の移動量読取手段に用いるス
ケール以外に、光学特性あるいは寸法が既知の参照物を
必要としない。
The nodal slide method described in the section of the prior art is complicated in that the lens and the movement in the optical axis direction are alternately repeated in order to place the nodal point of the test lens on the rotary axis of the nodal slide base. Although an operation requiring skill is required, in the present invention, only the operation of moving the divergent light generation means and the convergence point detection means in the optical axis direction is required, and the measurement is easy. Further, in the magnification method, a collimator lens having a known focal length and an index having a known dimension are required. However, in the present invention, in addition to the scale used for the moving amount reading means of the stage on the optical bench, the optical characteristic or Does not require a reference of known dimensions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学系の焦点距離測定装置の実施例の
構成図
FIG. 1 is a configuration diagram of an embodiment of a focal length measuring device for an optical system according to the present invention.

【図2】本発明の光学系の焦点距離測定方法の実施例の
手順を示す工程図
FIG. 2 is a process chart showing the procedure of an embodiment of a method for measuring the focal length of an optical system according to the present invention.

【図3】本発明の光学系の焦点距離測定方法の他の実施
例の手順を示す工程図
FIG. 3 is a process chart showing the procedure of another embodiment of the method for measuring the focal length of an optical system according to the present invention.

【図4】本発明の光学系の焦点距離測定の原理の説明に
供する被測定光学系の構成図
FIG. 4 is a block diagram of an optical system to be measured, which is used to explain the principle of measuring the focal length of the optical system of the present invention.

【図5】本発明の光学系の焦点距離測定装置における光
束収束点検出手段の変形例の構成図
FIG. 5 is a configuration diagram of a modified example of the light beam convergence point detection means in the optical system focal length measurement device of the present invention.

【図6】本発明の光学系の焦点距離測定装置における光
束収束点検出手段の他の変形例の構成図
FIG. 6 is a configuration diagram of another modified example of the light beam convergence point detection means in the focal length measuring device for an optical system according to the present invention.

【図7】本発明を反射凹面鏡に対して実施する場合の配
置を示す構成図
FIG. 7 is a configuration diagram showing an arrangement when the present invention is applied to a reflective concave mirror.

【図8】従来技術であるノーダルスライド法による焦点
距離測定装置の構成図
FIG. 8 is a block diagram of a conventional focal length measuring device by a nodal slide method.

【図9】従来技術である倍率法による焦点距離測定装置
の構成図
FIG. 9 is a block diagram of a conventional focal length measuring device using a magnification method.

【符号の説明】[Explanation of symbols]

1:発散光束生成手段 2:半導体レーザー 3:光学支持体 4:載物台 5:光学ベンチ 6:読取手段 7:レーザー干渉測長器 8:記憶手段 9:収束点検出手段 10:2次元CCDセンサー 11:モニター 12:光学支持体 13:載物台 14:光学ベンチ 15:読取手段 16:レーザー干渉測長器 17:記憶手段 18:演算手段 19:被測定光学系 20:ピンホール 21:リレーレンズ 22:光電変換素子 23:レーザー光源 24:レンズ 25:レンズ 26:レンズ 27:反射手段 28:反射手段 29:ハーフミラー 30:レンズ 31:2次元CCDセンサー 32:モニター 33:ハーフミラー 34:被測定光学系 51:光源 52:標線 53:コリメーターレンズ 54:摺動台 55:回転台 56:ノーダルスライド台 57:光学ベンチ 58:顕微鏡 59:被験レンズ 60:光源 61:標板 62:コリメーターレンズ 63:顕微鏡 64:被験レンズの焦点面 1: Divergent light flux generating means 2: Semiconductor laser 3: Optical support 4: Mounting table 5: Optical bench 6: Reading means 7: Laser interferometer 8: Storage means 9: Convergence point detection means 10: Two-dimensional CCD Sensor 11: Monitor 12: Optical support 13: Mounting table 14: Optical bench 15: Reading means 16: Laser interferometer 17: Storage means 18: Computing means 19: Measured optical system 20: Pinhole 21: Relay Lens 22: Photoelectric conversion element 23: Laser light source 24: Lens 25: Lens 26: Lens 27: Reflecting means 28: Reflecting means 29: Half mirror 30: Lens 31: Two-dimensional CCD sensor 32: Monitor 33: Half mirror 34: Target Measurement optical system 51: Light source 52: Mark line 53: Collimator lens 54: Sliding table 55: Rotating table 56: Nodal slide table 57: Optical bench 58: Microscope 59: Test lens 60: Light source 61: Standard plate 62: Collimator lens 63: Microscope 64: Focal plane of test lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発散光束生成手段と、被測定光学系をその
光軸方向に移動自在に支持する光学支持体と、被測定光
学系の位置の読取手段と、読取手段で読み取られた位置
の記憶手段と、被測定光学系から出射する光束の収束点
を検出する光束収束点検出手段と、光束収束点検出手段
を、被測定光学系から出射する光束の光軸方向に移動自
在に支持する光学支持体と、検出手段の位置の読取手段
と、読取手段で読み取られた位置の記憶手段と、被測定
光学系の位置および光束収束点検出手段の位置から、被
測定光学系の焦点距離を算出する演算手段とを備えたこ
とを特徴とする光学系の焦点距離の測定装置。
1. A divergent light beam generating means, an optical support for movably supporting an optical system to be measured in its optical axis direction, a reading means for reading the position of the measured optical system, and a position read by the reading means. The storage means, the light flux convergence point detection means for detecting the convergence point of the light flux emitted from the optical system to be measured, and the light flux convergence point detection means are movably supported in the optical axis direction of the light flux emitted from the optical system to be measured. The focal length of the optical system to be measured is calculated from the optical support, the reading unit for the position of the detecting unit, the storage unit for the position read by the reading unit, the position of the measured optical system, and the position of the light beam convergence point detecting unit. An apparatus for measuring a focal length of an optical system, comprising: a calculating means for calculating.
【請求項2】少なくとも3箇所のN箇所の被測定光学系
の位置をxi (i=1,2,・・・,N)とし、光束収
束点検出手段の位置をyi (i=1,2,・・・,N)
とするとき、請求項1の焦点距離を算出する演算手段
が、数1により算出する演算手段であることを特徴とす
る光学系の焦点距離の測定装置。 【数1】
2. The positions of at least three N measured optical systems are set to x i (i = 1, 2, ..., N), and the position of the light beam convergence point detection means is set to y i (i = 1). , 2, ..., N)
In this case, the calculation means for calculating the focal length according to claim 1 is the calculation means for calculating the focal length according to the equation (1). [Equation 1]
【請求項3】光束収束点検出手段を移動し、被測定光学
系からの光束の収束点を検出することを、少なくとも3
箇所の被測定光学系の位置で行い、各々における被測定
光学系の位置と、光束収束点検出手段の位置とから、被
測定光学系の焦点距離を求めることを特徴とする光学系
の焦点距離の測定方法。
3. At least three steps of moving the light flux convergence point detection means to detect the convergence point of the light flux from the optical system to be measured.
The focal length of the optical system is characterized in that the focal length of the optical system to be measured is obtained from the position of the optical system to be measured and the position of the light flux convergence point detection means at each position. Measuring method.
【請求項4】被測定光学系を移動し、被測定光学系から
出射する光束の収束点が光束収束点検出手段により検出
される位置を求めることを、少なくとも3箇所の光束収
束点検出手段の位置に対して行い、各々における光束収
束点検出手段の位置と、被測定光学系の位置とから、被
測定光学系の焦点距離を求めることを特徴とする光学系
の焦点距離の測定方法。
4. The method of moving the optical system to be measured to obtain the position at which the convergence point of the light beam emitted from the optical system to be measured is detected by the light beam convergence point detecting means, at least at three light beam convergence point detecting means. A method for measuring the focal length of an optical system, characterized in that the focal length of the optical system to be measured is obtained from the positions of the light flux convergence point detecting means and the position of the optical system to be measured in each position.
【請求項5】少なくとも3箇所の被測定光学系の位置x
i (i=1,2,・・・,N)と、光束収束点検出手段
の位置をyi (i=1,2,・・・,N)とから、数2
により被測定光学系の焦点距離を算出することを特徴と
する請求項3または請求項4の光学系の焦点距離の測定
方法。 【数2】
5. A position x of at least three optical systems to be measured.
From i (i = 1, 2, ..., N) and the position of the light beam convergence point detection means y i (i = 1, 2, ..., N),
The focal length of the optical system to be measured is calculated by the following method. [Equation 2]
JP22830793A 1993-08-20 1993-08-20 Device and method for measuring focal length of optical system Pending JPH0755639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22830793A JPH0755639A (en) 1993-08-20 1993-08-20 Device and method for measuring focal length of optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22830793A JPH0755639A (en) 1993-08-20 1993-08-20 Device and method for measuring focal length of optical system

Publications (1)

Publication Number Publication Date
JPH0755639A true JPH0755639A (en) 1995-03-03

Family

ID=16874394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22830793A Pending JPH0755639A (en) 1993-08-20 1993-08-20 Device and method for measuring focal length of optical system

Country Status (1)

Country Link
JP (1) JPH0755639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120298A (en) * 2011-12-07 2013-06-17 V Technology Co Ltd Focal length measuring instrument and method of microlens array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120298A (en) * 2011-12-07 2013-06-17 V Technology Co Ltd Focal length measuring instrument and method of microlens array

Similar Documents

Publication Publication Date Title
AU2007235239B2 (en) Geometric measurement system and method of measuring a geometric characteristic of an object
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
US20140043469A1 (en) Chromatic sensor and method
JPH11500833A (en) Wavefront measurement system using integrated geometric reference (IGR)
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
WO2012083764A1 (en) Method and device for measuring multiple parameters of differential confocal interference component
US5355210A (en) Method and apparatus for measuring optical properties of optical devices
JPH02161332A (en) Device and method for measuring radius of curvature
GB2265215A (en) Optical apparatus for measuring surface curvature
EP0561178B1 (en) Improvements in or relating to surface curvature measurement
JPH0755638A (en) Device and method for measuring focal length of optical system
JP2005140673A (en) Aspherical eccentricity measuring device and aspherical eccentricity measuring method
JPH0769219B2 (en) Interference fringe analysis method and apparatus therefor
JPH0755640A (en) Device and method for measuring focal length of optical system
JP2005201703A (en) Interference measuring method and system
JPH0755639A (en) Device and method for measuring focal length of optical system
Prause et al. Toward areal chromatic confocal metrology
JP2025506745A (en) Apparatus and method for wafer measurement - Patents.com
JP2831428B2 (en) Aspherical shape measuring machine
JPH0763649A (en) Method and device for measuring focal length of divergent optical system
US4758731A (en) Method and arrangement for aligning, examining and/or measuring two-dimensional objects
JPH07311117A (en) Apparatus for measuring position of multiple lens
JPH0763647A (en) Apparatus and method for measuring focal length of divergent optical system
JP2511271B2 (en) Curvature radius measuring device and measuring method
JPH0763648A (en) Apparatus and method for measuring focal length of divergent optical system