[go: up one dir, main page]

JPH0754335A - Founation improvement method - Google Patents

Founation improvement method

Info

Publication number
JPH0754335A
JPH0754335A JP20616493A JP20616493A JPH0754335A JP H0754335 A JPH0754335 A JP H0754335A JP 20616493 A JP20616493 A JP 20616493A JP 20616493 A JP20616493 A JP 20616493A JP H0754335 A JPH0754335 A JP H0754335A
Authority
JP
Japan
Prior art keywords
pressure material
high pressure
injection pipe
material injection
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20616493A
Other languages
Japanese (ja)
Inventor
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20616493A priority Critical patent/JPH0754335A/en
Publication of JPH0754335A publication Critical patent/JPH0754335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To make it possible to create a clay soil and to accurately create an underground pile with a simple equipment. CONSTITUTION:Upon providing an agitation blade 30 on a monitor mechanism 7 of a high pressure material filling pipe 5, the agitation blade 30 of the high pressure material is changed over to an opened position Q after lowering it and a hardening underground pile is created in a slurry area 11 by agitating and mixing the surrounding soil with rotary jet, continuously injecting high pressure material, and rotary agitation of the agitation blade 30. At the slurry area 11, where soil is mixed by injecting high pressure material, an underground pile can be created with less energy because gems and stomes of heavier specific gravity go down to the bottom as they are caught by the agitation force of the agitation blade 30. Furthermore, excavation force is increased by the combination of agitation by the agitation blade 30 and injection of the high pressure material, thus making it possible to create clay soil as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、止水壁、地下連続壁、
基礎地盤の安定工事等において、基礎構造体を形成して
地盤を改良する技術に関し、粘性地盤の改良が可能であ
り、硬化地中杭の径の確認や排泥処理が簡便に行えるも
のを提供する。
BACKGROUND OF THE INVENTION The present invention relates to a water blocking wall, an underground continuous wall,
Regarding the technology to improve the ground by forming the foundation structure in the stable construction of the foundation ground, etc., it is possible to improve the viscous ground, and to provide the one that allows the diameter of hardened underground piles to be checked and sludge treatment to be performed easily. To do.

【0002】[0002]

【従来の技術1】一般的に、螺旋状の削孔翼で地盤を穿
孔して硬化材を充填する機械的撹拌方式の地盤改良工法
では、次の問題点がある。 (1)削孔翼で上から下に穿孔するので、玉石などの硬い
地盤では、穿孔に多大の時間を要する。また、必要のな
い地盤を穿孔してしまう。 (2)上記(1)により、埋設管などの障害物がある場合に
は、施工できない。 (3)回転軸から突出する削孔翼が既設の構造物に接触す
ると、その構造物が破損する虞れがある。 (4)掘削径の増大に伴い掘削のエネルギーも増すので、
大型の機械が必要になる。
2. Description of the Related Art Generally, a mechanical agitation type ground improvement method in which a ground is perforated by a spiral drilling blade and filled with a hardening material has the following problems. (1) Since holes are drilled from top to bottom with a blade, it takes a lot of time to drill on hard ground such as cobblestone. In addition, unnecessary ground is drilled. (2) Due to (1) above, construction is not possible if there are obstacles such as buried pipes. (3) If the boring blade protruding from the rotating shaft contacts an existing structure, the structure may be damaged. (4) As the excavation energy increases as the excavation diameter increases,
A large machine is needed.

【0003】[0003]

【従来の技術2】一方、上記(1)〜(3)などの問題点を解
消するものとして、高圧材の旋回噴流で地盤を混練する
ジェットグラウト式の地盤改良方式が従来より知られて
いる。即ち、ジェットグラウト式地盤改良工法として
は、例えば、本出願人の提案に係る特公平4−4889
4号公報に開示されたものがある。図11(a)〜(e)
は、当該ジェットグラウト式地盤改良工法の手順を示す
説明図であり、同図(a)は据付工程、同図(b)は穿孔工
程、同図(c)は噴射テスト工程、同図(d)は造成工
程、同図(e)は引抜洗浄工程である。以下、この従来技
術を図11(a)〜(e)に基づき説明する。
2. Description of the Related Art On the other hand, as a means for solving the above problems (1) to (3), a jet grout type ground improvement method of kneading the ground with a swirling jet of high-pressure material has been conventionally known. . That is, as a jet grout type ground improvement method, for example, Japanese Patent Publication No. 4-4889 proposed by the present applicant is proposed.
There is one disclosed in Japanese Patent No. 4 publication. 11 (a)-(e)
FIG. 4 is an explanatory view showing the procedure of the jet grout type ground improvement method, where FIG. 3 (a) is an installation process, FIG. 2 (b) is a drilling process, FIG. 3 (c) is an injection test process, and FIG. ) Is a forming process, and FIG. 8E is a drawing and washing process. Hereinafter, this conventional technique will be described with reference to FIGS.

【0004】据付工程《図11(a)》では地上に地中杭
の造成装置Mを設置する。この地中杭の造成装置Mは、
旋回昇降駆動装置1、硬化材超高圧供給装置2、超高圧
水供給装置3及び圧縮空気供給装置4と、旋回昇降駆動
装置1に支持された三重管からなる高圧材注入管5とを
備える。上記高圧材注入管5の上端部にはスイベル6を
接続し、高圧材注入管5の下端部にはモニター機構7を
接続する。上記スイベル6は、超高圧水Wと超高圧硬化
材Gとの兼用のジェット入口と、高圧エア入口と超高圧
水入口とを備えており、上記ジェット入口には、硬化材
超高圧供給装置2を、超高圧水入口には超高圧水供給装
置3を、高圧エア入口には圧縮空気供給装置4を接続す
る。
In the installation process << FIG. 11 (a) >>, an underground pile forming device M is installed on the ground. This underground pile construction device M is
The swivel lift drive device 1, the hardening material ultra-high pressure supply device 2, the ultra-high pressure water supply device 3 and the compressed air supply device 4 and the high-pressure material injection pipe 5 formed of a triple pipe supported by the swivel lift drive device 1 are provided. A swivel 6 is connected to the upper end of the high-pressure material injection pipe 5, and a monitor mechanism 7 is connected to the lower end of the high-pressure material injection pipe 5. The swivel 6 is provided with a jet inlet that also serves as the ultrahigh pressure water W and the ultrahigh pressure hardening material G, a high pressure air inlet and an ultrahigh pressure water inlet, and the jet inlet has a hardening material ultrahigh pressure supply device 2 The ultra high pressure water inlet is connected to the ultra high pressure water supply device 3, and the high pressure air inlet is connected to the compressed air supply device 4.

【0005】上記モニター機構7は、その周面に径方向
外向きに開口された硬化材噴射ノズルと、硬化材噴射ノ
ズルよりも高位置で、硬化材噴射ノズルの開口方向と反
対向きに開口された水噴射ノズルと、水噴射ノズルの周
囲から径方向外向きにエアを噴出するエアノズルとを備
え、モニター機構7の下部には縦孔10aを掘削する際
に泥水Wを噴出する水噴出孔と縦孔10aを掘削するた
めのメタルクラウンが付設されている。
The monitor mechanism 7 is provided with a hardening material injection nozzle which is opened radially outward on its peripheral surface, and is opened at a position higher than the hardening material injection nozzle in a direction opposite to the opening direction of the hardening material injection nozzle. A water jet nozzle and an air nozzle for jetting air radially outward from the periphery of the water jet nozzle, and a water jet hole for jetting muddy water W at the time of excavating the vertical hole 10a at the lower part of the monitor mechanism 7. A metal crown for excavating the vertical hole 10a is attached.

【0006】穿孔工程《図11(b)》では、縦孔掘削工
程と注入管挿入工程とが並行して行われる。即ち、所定
の施工位置に高圧材注入管5を垂直に立て、高圧材注入
管5の管上部に接続したスイベル6のジェット入口に超
高圧水供給装置3を接続し、高圧材注入管5の管下部に
接続したモニター機構7の給水ノズルから水Wを下向き
に吐出させ、旋回・昇降駆動装置1を作動させて高圧材
注入管5を旋回させながら下降させて、縦孔10aを穿
孔するとともに、高圧材注入管5を地中の所定の深さま
で挿入する。
In the drilling step << FIG. 11 (b) >>, the vertical hole excavating step and the injection tube inserting step are performed in parallel. That is, the high-pressure material injection pipe 5 is erected vertically at a predetermined construction position, the ultrahigh-pressure water supply device 3 is connected to the jet inlet of the swivel 6 connected to the upper part of the high-pressure material injection pipe 5, The water W is discharged downward from the water supply nozzle of the monitor mechanism 7 connected to the lower part of the pipe, the swivel / elevation drive device 1 is actuated, and the high pressure material injection pipe 5 is swung down to make a vertical hole 10a. , The high pressure material injection pipe 5 is inserted to a predetermined depth in the ground.

【0007】噴射テスト工程《図11(c)》では、スイ
ベル6のジェット入口に硬化材超高圧供給装置2を、超
高圧水入口に超高圧水供給装置3を、エア入口に圧縮空
気供給装置4をそれぞれ接続し、旋回昇降駆動装置1を
作動させて、高圧材注入管5を試行的に設定された回転
速度で旋回駆動するとともに、試行的に設定された上昇
ストローク速度で上昇させる。
In the injection test process << FIG. 11 (c) >>, the hardening material ultra-high pressure supply device 2 is provided at the jet inlet of the swivel 6, the ultra-high pressure water supply device 3 is provided at the ultra-high pressure water inlet, and the compressed air supply device is provided at the air inlet. 4 are connected to each other, and the turning / lifting drive device 1 is actuated to drive the high-pressure material injection pipe 5 to turn at a trially set rotational speed and to raise it at a trially set rising stroke speed.

【0008】造成工程《図11(d)》では、硬化材超高
圧装置2を作動させてスイベル6の硬化材入口からセメ
ントミルク等の硬化材Gを圧入するとともに、超高圧水
供給装置3を作動させてスイベル6の超高圧水入口から
超高圧水Wを圧入し、エア入口から圧縮空気を圧入す
る。これにより、高圧材注入管5の下部に組み付けたモ
ニター機構7の下段の噴射ノズルから硬化材Gを管半径
方向へ連続的に噴射させるとともに、上段の噴射ノズル
から超高圧水Wを管半径方向へ連続的に噴射させる。
In the forming step << FIG. 11 (d) >>, the hardening material ultra-high pressure device 2 is operated to press-in the hardening material G such as cement milk from the hardening material inlet of the swivel 6, and the ultra-high pressure water supply device 3 is connected. The swivel 6 is operated to pressurize the ultrahigh pressure water W from the ultrahigh pressure water inlet of the swivel 6 and press the compressed air from the air inlet. As a result, the hardening material G is continuously ejected in the pipe radial direction from the lower injection nozzle of the monitor mechanism 7 assembled to the lower part of the high pressure material injection pipe 5, and the super high pressure water W is emitted from the upper injection nozzle in the pipe radial direction. To continuously jet.

【0009】そして、旋回引上げ駆動装置1を作動させ
て、高圧材注入管5を旋回駆動しながら引上げ駆動する
ことにより、下段の噴射ノズルから超高圧で連続的に噴
出する硬化材Gを、上段の噴射ノズルから連続的に噴出
する超高圧水Wを、それぞれ旋回させながら引上げて行
き、その噴出力でその周囲の地盤を掘削して混練すると
ともに、その泥漿域11に未硬化地中杭Pを造成する。
Then, the swirl and pull-up drive device 1 is operated to drive the high-pressure material injection pipe 5 while swirling and driving, so that the hardened material G continuously ejected from the injection nozzle in the lower stage at an ultrahigh pressure is discharged. The ultra-high pressure water W continuously ejected from the jet nozzle of No. 2 is swirled and pulled up, and the ground around it is excavated and kneaded by the jet output, and the uncured underground pile P is formed in the sludge area 11. To create.

【0010】引抜洗浄工程《図11(e)》では、高圧材
注入管5を地上に引き抜き、管内を清水で洗浄する。こ
の後、次の造成地点に移動し、同様の手順で土中に未硬
化地中杭Pを造成する。この未硬化地中杭Pが硬化する
ことにより地中に基礎構造体13が造成される。
In the drawing and washing step << FIG. 11 (e) >>, the high-pressure material injection pipe 5 is drawn to the ground, and the inside of the pipe is washed with fresh water. Then, it moves to the next construction point and the uncured underground pile P is constructed in the soil by the same procedure. The foundation structure 13 is formed in the ground by hardening the uncured underground pile P.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来技術2には次の問題点がある。 (1)粘土地盤などの密な地盤では、高圧材のジェット噴
流の掘削力が不充分であり、地中杭の直径の確認ができ
ず(即ち、正確に地中杭が造成できず)、大深度の施工に
適さない。 (2)地中杭の径が大きくなると、高圧材注入管(具体的に
は、硬化材注入管)として三重管が必要となり、設備が複
雑で大型化する。 (3)地盤を超高圧で圧送した硬化材や泥水の旋回噴流で
掘削するので、多量の硬化材や泥水が必要になり、これ
に伴って排泥量が多くなり、その排泥処理費用が高くつ
く。 本発明はこのような事情に鑑みてなされたもので、粘土
地盤などの造成を可能にするとともに、地中杭を簡略な
設備で安価に、かつ、正確に造成することを技術的課題
とする。
However, the above-mentioned prior art 2 has the following problems. (1) In dense ground such as clay ground, the excavation force of the jet jet of high-pressure material is insufficient, and the diameter of the underground pile cannot be confirmed (that is, the underground pile cannot be accurately constructed), Not suitable for construction at large depths. (2) When the diameter of the underground pile increases, a triple pipe is required as a high-pressure material injection pipe (specifically, a hardening material injection pipe), and the equipment becomes complicated and large. (3) Since the ground is excavated by a swirling jet of hardened material and muddy water that have been pumped at ultra-high pressure, a large amount of hardened material and muddy water are required, and the amount of sludge discharged increases, which incurs the cost of sludge treatment. Expensive. The present invention has been made in view of such circumstances, and an object thereof is to enable creation of clay ground and the like, and to create underground piles inexpensively and accurately with simple equipment. .

【0012】[0012]

【課題を解決するための手段】本発明は新規な機械的撹
拌方式とジェットグラウト方式を各々採用したものであ
る。即ち、請求項1の発明は、高圧材注入管5の上端部
にスイベル6を、その下端部にモニター機構7を夫々組
み付け、モニター機構7の上部に高圧材噴射ノズル8
を、その下部に撹拌翼30を夫々設け、撹拌翼30を折
り畳み姿勢Rと開放姿勢Qとに姿勢切り換え可能に構成
して、先導管10を地表から地中の目標深さまで挿入
し、上記高圧材注入管5を先導管10内に沿って撹拌翼
30を折り畳み姿勢Rで下降させ、先導管10を上昇さ
せて高圧材注入管5の撹拌翼30を開放姿勢Qに切り換
えて、高圧材注入管5を旋回及び引き上げ駆動しなが
ら、スイベル6及び高圧材注入管5を介してモニター機
構7の高圧材噴射ノズル8から高圧材を管半径方向へ連
続的に噴射することにより、連続的に噴射する上記高圧
材の旋回噴流と上記撹拌翼30の旋回撹拌でその周囲の
地盤を掘削するとともに撹拌混練して、泥漿域11を形
成し、この泥漿域11に硬化地中杭を造成することを特
徴とする地盤改良工法である。
The present invention employs a novel mechanical stirring method and jet grout method, respectively. That is, in the invention of claim 1, the swivel 6 is attached to the upper end of the high pressure material injection pipe 5, and the monitor mechanism 7 is attached to the lower end thereof, and the high pressure material injection nozzle 8 is attached to the upper part of the monitor mechanism 7.
, Each of which is provided with a stirring blade 30 at its lower portion, and the stirring blade 30 is configured to be capable of switching its posture between a folding posture R and an open posture Q, and the tip conduit 10 is inserted from the surface of the earth to a target depth in the ground, The material injection pipe 5 is lowered along the inside of the leading conduit 10 with the stirring blade 30 folded down and in the posture R, and the leading conduit 10 is moved up to switch the stirring blade 30 of the high pressure material feeding pipe 5 to the open posture Q to inject the high pressure material. While swirling and pulling up the pipe 5, the high-pressure material is continuously ejected from the high-pressure material injection nozzle 8 of the monitor mechanism 7 through the swivel 6 and the high-pressure material injection pipe 5 in the radial direction of the pipe. With the swirling jet of the high-pressure material and the swirling stirring of the stirring blades 30, the surrounding ground is excavated and kneaded and kneaded to form a sludge zone 11, and a hardened underground pile is formed in the sludge zone 11. Characteristic ground improvement method A.

【0013】請求項2の発明は、上記請求項1の発明に
おいて、高圧材が硬化材であることを特徴とするもので
ある。請求項3の発明は、上記請求項1の発明におい
て、当初は高圧材として泥水Wを使用し、高圧材注入管
5を引き上げながら泥水Wの旋回噴流と撹拌翼30の旋
回撹拌で地盤を掘削するとともに撹拌混練して泥漿域1
1を形成し、次いで、高圧材注入管5の下降に際して、
折り畳み姿勢Sと開放姿勢Tとに姿勢切り換え可能に構
成した芯材50を先導管10内に沿って折り畳み姿勢S
で下降させ、当該泥漿域11に複数個の芯材50を横方
向に放射状の開放姿勢Tで上下に多段状に埋設し、次い
で、高圧材として硬化材Gを使用し、高圧材注入管5を
引き上げながら泥漿域11内の泥漿11を芯材50と硬
化材Gに置き換えることを特徴とするものである。上記
高圧材注入管5の旋回は、一方向への回転及び揺動回転
の両方を含む。上記高圧材とは、高圧硬化材G、高圧泥
水Wなどをいう。
The invention of claim 2 is characterized in that, in the invention of claim 1, the high-pressure material is a hardening material. According to the invention of claim 3, in the invention of claim 1, initially, the mud water W is used as the high-pressure material, and the ground is excavated by a swirling jet of the mud water W and swirling stirring of the stirring blades 30 while pulling up the high-pressure material injection pipe 5. Mix with stirring and mixing 1
1 is formed, and then when the high pressure material injection pipe 5 is lowered,
A core member 50 configured to be switchable between a folded position S and an open position T is provided with a core member 50 in a folded position S along the inside of the leading conduit 10.
, And a plurality of core materials 50 are embedded in the sludge area 11 in a horizontal direction in a radially open posture T in a multi-tiered manner, and then a hardening material G is used as a high-pressure material, and a high-pressure material injection pipe 5 is used. The sludge 11 in the sludge area 11 is replaced with the core material 50 and the hardened material G while pulling up. The turning of the high-pressure material injection pipe 5 includes both rotation in one direction and swing rotation. The high-pressure material is a high-pressure hardening material G, high-pressure muddy water W, or the like.

【0014】[0014]

【作用】[Action]

(1)請求項1の発明では、次のように作用をする。硬化
材又は泥水などから成る高圧材の旋回噴流及び撹拌翼3
0の旋回で周囲の地盤を掘削するとともに混練するの
で、高圧材の噴出力を従来例2のように大きくしなくて
も掘削力を高めることができる。即ち、撹拌翼30の上
側から高圧材が噴射されるので、高圧材注入管5の引き
上げ時には、高圧材の噴流で予め掘削した地盤を引き続
き撹拌翼30で掘削撹拌することになるので、撹拌駆動
時の撹拌翼30の負荷が軽減される。また、高圧材の噴
流で混練された泥漿域11では、比重の大きな玉石など
は撹拌翼30の撹拌力に捕捉・案内されながら泥漿域1
1の底部に沈んでしまうので、掘削・混練撹拌作業の効
率が増す。
(1) The invention of claim 1 operates as follows. Swirl jet of high-pressure material consisting of hardened material or muddy water and stirring blade 3
Since the surrounding ground is excavated and kneaded with the turning of 0, the excavation force can be increased without increasing the jetting force of the high-pressure material as in Conventional Example 2. That is, since the high-pressure material is injected from the upper side of the stirring blade 30, when the high-pressure material injection pipe 5 is pulled up, the ground previously excavated by the jet of the high-pressure material is continuously excavated and stirred by the stirring blade 30. The load on the stirring blade 30 at that time is reduced. Further, in the sludge region 11 kneaded by the jet of high-pressure material, boulders or the like having a large specific gravity are captured and guided by the stirring force of the stirring blade 30, and the sludge region 1
Since it sinks to the bottom of No. 1, the efficiency of excavation and kneading and stirring work increases.

【0015】(2)請求項2の発明では、高圧材にセメン
トミルクなどの硬化材を使用するので、高圧材注入管5
を下降して引き上げる一つの行程で地中杭を造成でき
る。 (3)請求項3の発明では、最初の行程では泥水を噴射し
て円柱状の泥漿域11を形成し、次の行程では、この軟
らかな泥漿域11に複数個の芯材50を上下多段状に埋
設し、引き続き高圧材注入管5を上昇させつつ、硬化材
を噴射注入して、その泥漿域11内の泥漿を芯材50と
高圧材Gに置換するので、地中杭の強度を高められる。
(2) In the invention of claim 2, since the hardening material such as cement milk is used as the high pressure material, the high pressure material injection pipe 5
Underground piles can be constructed in one step of descending and pulling up. (3) In the invention of claim 3, in the first step, muddy water is injected to form a cylindrical sludge area 11, and in the next step, a plurality of core materials 50 are vertically stacked in the soft sludge area 11. Since the hardening material is injected and injected while the high pressure material injection pipe 5 is continuously raised to replace the sludge in the sludge area 11 with the core material 50 and the high pressure material G, the strength of the underground pile is increased. To be enhanced.

【0016】[0016]

【発明の効果】【The invention's effect】

(1)請求項1の発明では次の効果を奏する。 地盤のうちでも、玉石などの硬い部分は泥漿域の底部
に沈んで容易に排除できるので、従来例1に比較して、
より少ないエネルギーで(即ち、簡略な設備で)地中杭を
造成できる。 撹拌翼の撹拌と高圧材の噴射との組み合わせで、掘削
力が高まるので、粘土地盤などの密な地盤にも本発明を
適用することにより、地盤改良工法の効率化に貢献する
ことができる。 撹拌翼で泥漿域の撹拌径が略決定できるので、地中杭
の径が施工と同時に確認でき、正確に地中杭を造成でき
る。 上記及びにより、硬化材の噴出力を従来例2のよ
うに強力にしなくても大きな掘削力が得られるので、硬
化材の消費量が少なくなり、これに伴って排泥量が少な
くなり、排泥処理費用も安価になる。
(1) The invention of claim 1 has the following effects. Even in the ground, hard parts such as cobblestones sink to the bottom of the sludge area and can be easily removed, so compared to Conventional Example 1,
Underground piles can be created with less energy (ie simple equipment). Since the excavation force is enhanced by combining the stirring of the stirring blades and the injection of the high-pressure material, by applying the present invention to dense ground such as clay ground, it is possible to contribute to the efficiency of the ground improvement method. Since the stirring diameter of the sludge area can be roughly determined by the stirring blade, the diameter of the underground pile can be confirmed at the same time as construction, and the underground pile can be accurately constructed. Due to the above, since a large excavating force can be obtained without increasing the jetting force of the hardened material unlike the conventional example 2, the consumption of the hardened material is reduced, and accordingly, the amount of sludge discharged is reduced. Mud disposal costs will also be low.

【0017】(2)請求項2の発明では、一段で迅速且つ
簡便に地中杭を造成できる。 (3)請求項3の発明では、予め泥水で泥漿域11を形成
し、この泥漿域11内に芯材50を埋設して、その泥漿
域11内の泥漿を芯材50と高圧材Gに置換するので、
少ないエネルギーで強度の高い地中杭を迅速に造成でき
る。
(2) According to the second aspect of the invention, the underground pile can be constructed quickly and simply in one step. (3) In the invention of claim 3, the sludge zone 11 is previously formed with mud water, the core material 50 is embedded in the sludge zone 11, and the sludge in the sludge zone 11 is used as the core material 50 and the high pressure material G. Because it replaces
High strength underground piles can be quickly constructed with little energy.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図3は本実施例の地盤改良工法の手順を示
す説明図、図4は地中杭造成装置の全体説明図、図5は
スイベル及びスライム(泥漿)回収器の説明図、図6は高
圧材注入管及びモニター機構の説明図、図7及び図8は
撹拌翼の説明図、図9は撹拌翼の翼形態を示す要部斜視
図、図10は芯材の説明図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are explanatory views showing the procedure of the ground improvement method of the present embodiment, FIG. 4 is an overall explanatory view of an underground pile building device, FIG. 5 is an explanatory view of a swivel and a slime (sludge) collector, and FIG. 7 is an explanatory view of a high-pressure material injection pipe and a monitoring mechanism, FIGS. 7 and 8 are explanatory views of a stirring blade, FIG. 9 is a perspective view of a main part showing a blade configuration of the stirring blade, and FIG. 10 is an explanatory view of a core material.

【0019】上記地中杭造成装置Mは、図4に示すよう
に、装置本体の前方に突出する旋回・昇降駆動装置1
と、旋回・昇降駆動装置1に支持された先導管10と、
先導管10内に挿通される高圧材注入管5と、高圧材注
入管5の上端部に付設されたスイベル6と、先導管10
の上端部に付設されたスライム回収器20と、当該スラ
イム回収器20の排出口21aに連通したスライム排出
ポンプ(図示省略)とから構成される。図4及び図6に示
すように、上記高圧材注入管5の下端部にはモニター機
構7が接続され、モニター機構7には一対の撹拌翼30
・30が開閉可能に付設されている。
The underground pile forming device M, as shown in FIG. 4, is a turning / elevating drive device 1 projecting forward of the main body of the device.
And a leading conduit 10 supported by the turning / lifting drive device 1,
The high-pressure material injection pipe 5 inserted into the front conduit 10, the swivel 6 attached to the upper end of the high-pressure material injection pipe 5, and the front conduit 10
And a slime discharge pump (not shown) communicating with the discharge port 21a of the slime collector 20. As shown in FIGS. 4 and 6, a monitor mechanism 7 is connected to the lower end of the high-pressure material injection pipe 5, and the monitor mechanism 7 has a pair of stirring blades 30.
・ 30 is attached so that it can be opened and closed.

【0020】図6(A)(B)に示すように、上記高圧材注
入管5は二重管で構成され、この高圧材注入管5にスイ
ベル6とモニター機構7とを連結した状態では、スイベ
ル6の各ジェット入口6c及びエア入口6aは、それぞ
れモニター機構7のジェット通路8g及びエア通路8e
を介して高圧材噴射ノズル8a及びエアノズル8dと連
通する。上記モニター機構7の高圧材噴射ノズル8a
は、その周面に径方向外向きに開口され、エアノズル8
dは上記高圧材噴射ノズル8aの周囲から径方向外向き
に高圧エアAを噴出するように形成されている。
As shown in FIGS. 6 (A) and 6 (B), the high-pressure material injection pipe 5 is composed of a double pipe, and in the state in which the swivel 6 and the monitor mechanism 7 are connected to the high-pressure material injection pipe 5, Each of the jet inlet 6c and the air inlet 6a of the swivel 6 has a jet passage 8g and an air passage 8e of the monitor mechanism 7, respectively.
Through the high pressure material injection nozzle 8a and the air nozzle 8d. High-pressure material injection nozzle 8a of the monitor mechanism 7
Is opened radially outward on its peripheral surface, and the air nozzle 8
d is formed so as to eject the high-pressure air A radially outward from the periphery of the high-pressure material injection nozzle 8a.

【0021】上記スイベル6は、図5(A)に示すよう
に、その中央側にエア通路6eが、その周辺にはジェッ
ト通路6gが夫々形成されている。エア通路6eには前
記撹拌翼30の開放角度測定用のロッド40が上下進退
可能に下向きに嵌挿され、当該ロッド40の上端部40
aはスイベル6の上端面より突出している。スイベル6
の上端部には当該ロッド上端部40aの突出高さを検出
する光センサー等から成る検出装置41が臨み、同検出
装置41は、モニター機構7の一対の撹拌翼30・30
の開放度合い(即ち、掘削直径)を測定値表示装置42
に表示するように構成されている。尚、上記ジェット通
路6gには硬化材超高圧供給装置又は水超高圧供給装置
が、上記エア通路6eには圧縮空気供給装置が連通され
る。
As shown in FIG. 5 (A), the swivel 6 has an air passage 6e formed in the center thereof and a jet passage 6g formed in the periphery thereof. A rod 40 for measuring the opening angle of the stirring blade 30 is vertically inserted into the air passage 6e so that the rod 40 can move up and down.
a projects from the upper end surface of the swivel 6. Swivel 6
A detection device 41 including an optical sensor or the like for detecting the protruding height of the rod upper end portion 40a faces the upper end portion of the pair of stirring blades 30, 30 of the monitor mechanism 7.
Of the degree of opening (ie, excavation diameter) of the measured value display device 42
Is configured to display. It should be noted that the jet passage 6g communicates with a hardening material ultra-high pressure supply device or a water ultra-high pressure supply device, and the air passage 6e communicates with a compressed air supply device.

【0022】上記スライム回収器20は、図5(B)に示
すように、高圧材注入管5の上端部にネジ部5cを介し
て連通連結される注入管連通部5Aと、この注入管連通
部5Aの上端部に固定され、前記スイベル6の連通部6
dを回転自在に接続するボス連通部15と、このボス連
通部15に鍔部16を介して固設された先導管連通部1
0Aと、この先導管連通部10Aの上半部にアンギュラ
軸受17を介して相対回転可能に組付けられたケース本
体21と、ケース本体21の横側に突設したスライム排
出口21aとから構成されている。
As shown in FIG. 5 (B), the slime collector 20 has an injection pipe communicating portion 5A which is connected to the upper end of the high-pressure material injection pipe 5 through a screw portion 5c, and the injection pipe communicating portion 5A. Fixed to the upper end of the portion 5A, the communication portion 6 of the swivel 6
A boss communication part 15 for rotatably connecting d, and a leading conduit communication part 1 fixed to the boss communication part 15 via a collar part 16.
0A, a case body 21 that is relatively rotatably assembled to the upper half of the leading conduit communication portion 10A via an angular bearing 17, and a slime discharge port 21a that projects from the side of the case body 21. ing.

【0023】即ち、旋回・昇降駆動装置1のチャック機
構で先導管10を拘束して、先導管10に回転力を付与
すると、その回転力は、先導管10からネジ部10cを
介して先導管連通部10A、鍔部16、ボス連通部1
5、注入管連通部5A、高圧材注入管5を順に介してに
モニター機構7に伝達されることになる。また、スライ
ム排出口21aは、図2に示すように、先導管10と高
圧材注入管5との挿通間隙20aに連通しており、前記
スライム排出ポンプを作動させることにより、この挿通
間隙20aを排泥通路としてスライムを排出するように
構成される。
That is, when the front conduit 10 is constrained by the chuck mechanism of the turning / lifting drive device 1 and a rotational force is applied to the front conduit 10, the rotational force is transmitted from the front conduit 10 via the screw portion 10c. Communication part 10A, collar part 16, boss communication part 1
5, the injection pipe communicating portion 5A, and the high pressure material injection pipe 5 are sequentially transmitted to the monitor mechanism 7. Further, as shown in FIG. 2, the slime discharge port 21a communicates with the insertion gap 20a between the leading conduit 10 and the high-pressure material injection pipe 5, and by operating the slime discharge pump, the insertion gap 20a is opened. It is configured to discharge slime as a mud passage.

【0024】前記一対の撹拌翼30は、図6(A)、図7
(A)及び図8に示すように、モニター機構7に支点軸3
1を介して支持され、モニター機構7から下向きに導出
した案内棒33と、この案内棒33と各撹拌翼30との
間に介装したリンク機構34と、案内棒33に沿って外
嵌した弾圧バネ32との組み合わせにより、弾圧バネ3
2で当該リンク機構34を上向きに付勢される。このた
め、外方空間に先導管10のような拘束物がある場合に
は、折り畳み姿勢Rになり(図7(A)参照)、拘束物から
脱すると、弾圧バネ32の付勢力により開放姿勢Qに姿
勢切り換えされる(図7(B)及び図8参照)。また、図8
に示すように、上記開放角度測定ロッド40の下端部4
0bを撹拌翼30に係合させ、撹拌翼30の開放動作に
伴って当該ロッド40を下降連携可能に構成する。
The pair of stirring blades 30 are shown in FIGS.
As shown in (A) and FIG. 8, the fulcrum shaft 3 is attached to the monitor mechanism 7.
The guide rod 33 supported downwardly through the monitor mechanism 7 and the link mechanism 34 interposed between the guide rod 33 and each of the stirring blades 30 and the guide rod 33 is externally fitted along the guide rod 33. In combination with the elastic spring 32, the elastic spring 3
At 2, the link mechanism 34 is biased upward. Therefore, when there is a restraint such as the front conduit 10 in the outer space, it is in the folded posture R (see FIG. 7 (A)), and when it is released from the restraint, it is opened by the biasing force of the elastic spring 32. The posture is switched to Q (see FIG. 7 (B) and FIG. 8). Also, FIG.
As shown in FIG.
0b is engaged with the stirring blade 30, and the rod 40 is configured to be able to descend and cooperate with the opening operation of the stirring blade 30.

【0025】以下、上記実施例に係る地盤改良工法につ
いて説明する。 a.据付・穿孔工程《図1(A)》 地上にパイル造成装置Mを設置し、高圧材注入管5によ
らずに、予め先導管10を地中の目標深さまで挿入す
る。即ち、先導管10の上端部には専用のスイベル6A
が接続され、下端部には専用のメタルクラウンを有する
先導管用モニター2が接続される。所定の施工位置に先
導管10を垂直に立て、上記スイベル6Aの泥水入口6
cにベントナイト泥水供給装置(図示省略)を接続し、上
記モニター2からベントナイト泥水Wを下向きに吐出さ
せ、旋回・昇降駆動装置1を作動させて先導管10を旋
回しながら下降させて、縦孔10aを穿孔しつつ、先導
管10を地中の所定の深さまで挿入する。
The ground improvement method according to the above embodiment will be described below. a. Installation / Drilling Step << FIG. 1 (A) >> The pile forming device M is installed on the ground, and the leading conduit 10 is inserted in advance to a target depth in the ground without using the high-pressure material injection pipe 5. That is, a dedicated swivel 6A is provided at the upper end of the leading conduit 10.
And a monitor 2 for a leading conduit having a dedicated metal crown is connected to the lower end. The tip conduit 10 is vertically set at a predetermined construction position, and the swirl 6A has a muddy water inlet 6
A bentonite muddy water supply device (not shown) is connected to c, the bentonite muddy water W is discharged downward from the monitor 2, the swivel / elevation drive device 1 is operated, and the leading conduit 10 is swung down to make a vertical hole. While piercing 10a, the leading conduit 10 is inserted to a predetermined depth in the ground.

【0026】 b.撹拌翼付き高圧材注入管の建込み工程《図1(B)》 図1(B)及び図7(A)に示すように、上記先導管10内
に上記高圧材注入管5を挿入して下降させていく。この
とき、高圧材注入管5の下端部のモニター機構7に設け
た撹拌翼30は、先導管10の内壁により折り畳み姿勢
Rを保持する。
B. Assembling process of high pressure material injection pipe with stirring blade << Fig. 1 (B) >> As shown in Fig. 1 (B) and Fig. 7 (A), the high pressure material injection pipe 5 is inserted into the tip conduit 10. I will lower it. At this time, the stirring blade 30 provided in the monitor mechanism 7 at the lower end of the high-pressure material injection pipe 5 maintains the folded posture R by the inner wall of the leading conduit 10.

【0027】 c.スライム回収器装着行程《図1(C)》 高圧材注入管5の上端部にスライム回収器20を付設
し、このスライム回収器20を介して上記高圧材注入管
5とスイベル6とを連通連結する。また、高圧材注入管
5のモニター機構7を先導管10の下端縁より下方に突
出して、先導管10と上記高圧材注入管5と撹拌翼30
とを一体に旋回・引上げ駆動可能に構成する。このと
き、図1(C)、図4及び図8に示すように、撹拌翼30
は、先導管10の内壁の拘束を解除されるので、弾圧バ
ネ32の付勢力で折り畳み姿勢Rから開放姿勢Qに切り
換わる。尚、図1中の符号25はスイベル6や高圧材注
入管5等を吊持するための吊持用フックであり、高圧材
注入管5や先導管10を継ぎたし、或は旋回・昇降駆動
装置1のチャック機構で先導管10を持ち替える場合
に、安全上の見地から使用される。
C. Slime recovery device mounting process << Fig. 1 (C) >> A slime recovery device 20 is attached to the upper end of the high pressure material injection pipe 5, and the high pressure material injection pipe 5 and the swivel 6 are connected and connected via this slime recovery device 20. To do. Further, the monitoring mechanism 7 of the high-pressure material injection pipe 5 is projected downward from the lower end edge of the front conduit 10, so that the front conduit 10, the high-pressure material injection pipe 5, and the stirring blade 30 are provided.
It is configured so that the and can be driven to rotate and pull up integrally. At this time, as shown in FIG. 1 (C), FIG. 4 and FIG.
Since the restraint on the inner wall of the front conduit 10 is released, the folding posture R is switched to the open posture Q by the urging force of the elastic spring 32. Reference numeral 25 in FIG. 1 is a hanging hook for suspending the swivel 6, the high-pressure material injection pipe 5 and the like. It is used from a safety point of view when the front conduit 10 is replaced by the chuck mechanism of the drive device 1.

【0028】d.撹拌テスト工程《図1(D)》 図1(D)と図4及び図5(A)に示すように、前記スイベ
ル6のエア入口6aに圧縮空気供給装置を、ジェット入
口6cに泥水超高圧供給装置をそれぞれ接続し、モニタ
ー機構7の高圧材噴射ノズル8aからベントナイト泥水
Wを管半径方向へ連続的に噴射させ、噴射ノズル8aの
周囲のエア噴射ノズル8dから高圧エアAを噴射させる
とともに、管旋回・昇降駆動装置1を作動させて、先導
管10を試行的に設定された回転速度で旋回駆動する。
これにより高圧材注入管5とともに撹拌翼30が旋回す
る。噴射テストが順調なら造成工程へ移行する。
D. Stirring test process << Fig. 1 (D) >> As shown in Fig. 1 (D) and Figs. 4 and 5 (A), a compressed air supply device is provided at the air inlet 6a of the swivel 6, and a muddy water super high pressure is provided at the jet inlet 6c. The supply devices are connected to each other, the bentonite muddy water W is continuously jetted from the high-pressure material jet nozzle 8a of the monitor mechanism 7 in the pipe radial direction, and the high-pressure air A is jetted from the air jet nozzle 8d around the jet nozzle 8a. The pipe swivel / elevation drive device 1 is operated to swivel the leading conduit 10 at a trially set rotational speed.
As a result, the stirring blade 30 swirls together with the high pressure material injection pipe 5. If the injection test is successful, move to the creation process.

【0029】 e.掘削・撹拌による造成工程《図2(E)》 旋回・昇降駆動装置1を作動させて、先導管10及び高
圧材注入管5をともに旋回駆動しながら引上げ駆動する
ことにより、超高圧で泥水Wを連続的に噴出させ、当該
ジエット噴流と撹拌翼30の撹拌とで地盤を掘削すると
共に、泥水Wと地盤を撹拌混練して、所要直径内の地盤
を強力に泥漿化する。また、撹拌翼30は3〜50rp
mの条件で回転され、泥水Wは30〜400kg/cm
2、吐出量70〜300l/minの条件で、圧縮空気
Aは6〜15kg/cm2 、1.5〜5.0m3 /min
の条件で夫々噴射される。上記撹拌翼30は図9(A)に
示すように、先端30aに近づくに従い回転方向に向か
って傾斜するように形成し、一方向に回転させても良い
し、図9(B)に示すように、上側部を略山型30bに形
成して、正転・逆転方向に旋回揺動させても良い。
E. Construction process by excavation / agitation << Fig. 2 (E) >> The swirl / elevation drive device 1 is actuated to drive the leading pipe 10 and the high-pressure material injection pipe 5 while swirling and driving them, thereby making the muddy water W at ultrahigh pressure. Is continuously ejected, the ground is excavated by the jet jet flow and the stirring blades 30 are stirred, and the mud water W and the ground are stirred and kneaded to strongly mudize the ground within the required diameter. Further, the stirring blade 30 is 3 to 50 rp
Rotated under the condition of m, the muddy water W is 30 to 400 kg / cm
2 , under the condition that the discharge rate is 70 to 300 l / min, the compressed air A is 6 to 15 kg / cm 2 , 1.5 to 5.0 m 3 / min.
Are injected under the conditions of. As shown in FIG. 9 (A), the stirring blade 30 may be formed so as to incline toward the rotation direction as it approaches the tip 30a, and may be rotated in one direction, or as shown in FIG. 9 (B). In addition, the upper portion may be formed in a substantially mountain shape 30b and swung in the forward / reverse direction.

【0030】この場合、図4に示すように、泥水W及び
エアAの旋回噴流で周囲の地盤を掘削するとともに、撹
拌翼30の旋回撹拌で当該地盤を強力に掘削するので、
噴流の噴出圧は従来例2よりも弱くても掘削力は高ま
る。また、撹拌翼30の上側で泥水W及びエアAが噴射
されるので、高圧材注入管5を引き上げつつ掘削する時
には、これらの噴流である程度掘削された地盤を撹拌翼
30でさらに掘削するので、従来例1に比較して撹拌翼
30が負担する負荷は少ない。しかも、ジェット噴流で
混練された泥漿域11内では、比重の大きな玉石などは
撹拌翼30の撹拌力に捕捉・案内されながら下方に沈み
排除されるので、従来例1のように玉石などにより掘削
効率が著しく低下することもなく、掘削・混練撹拌作業
の効率が増す。
In this case, as shown in FIG. 4, since the surrounding ground is excavated by the swirling jet flow of the muddy water W and the air A, and the ground is strongly excavated by the swirling stirring of the stirring blade 30,
Even if the jet pressure of the jet flow is weaker than that of Conventional Example 2, the excavating force is increased. Moreover, since the muddy water W and the air A are jetted on the upper side of the stirring blade 30, when excavating while pulling up the high-pressure material injection pipe 5, the ground excavated to some extent by these jets is further excavated by the stirring blade 30, The load that the stirring blade 30 bears is smaller than that in Conventional Example 1. Moreover, in the sludge area 11 kneaded by the jet jet, the cobbles having a large specific gravity are caught and guided by the stirring force of the stirring blades 30 and are sunk and removed downward. The efficiency of excavation, kneading and stirring work is increased without significantly lowering the efficiency.

【0031】なお、撹拌翼30の開放姿勢Qに対応して
前記開放角度測定ロッド40が上昇し、そのロッド上端
部40aの昇降位置を検出装置41で測定することで、
測定値表示装置42により撹拌翼30の開度、ひいては
掘削直径が確認できる。つまり、埋設管などの障害物に
遭遇すると、その抵抗により撹拌翼30の開度が萎むこ
とになるが、撹拌翼30の開度はロッド上端部40aの
昇降位置を目視することにより、又は測定値表示装置4
2により容易に確認出来るので、障害物の存在を容易に
知ることができる。また、埋設管を破損する恐れもなく
なる。
The open angle measuring rod 40 rises corresponding to the open attitude Q of the stirring blade 30, and the elevating position of the rod upper end 40a is measured by the detecting device 41.
The opening of the stirring blade 30, and hence the excavation diameter, can be confirmed by the measurement value display device 42. That is, when an obstacle such as a buried pipe is encountered, the opening of the stirring blade 30 is reduced due to its resistance. The opening of the stirring blade 30 can be determined by visually observing the vertical position of the rod upper end 40a, or Measured value display device 4
Since it can be easily confirmed by 2, the presence of obstacles can be easily known. Further, there is no fear of damaging the buried pipe.

【0032】図4に示すように、所定域11が円滑に泥
漿化され、この泥漿域11内の泥漿は、ジェット噴流に
よって押し上げられ、かつ、スライム排出ポンプにより
吸い上げられ、先導管10と高圧材注入管5との間の排
泥通路20aを通ってスライム回収器20のスライム排
出口21aより排出される。これにより、後述する硬化
剤の注入が容易になる。
As shown in FIG. 4, the predetermined area 11 is smoothly converted into sludge, and the sludge in this sludge area 11 is pushed up by the jet jet flow and sucked up by the slime discharge pump, and the front conduit 10 and the high pressure material It is discharged from the slime discharge port 21a of the slime collector 20 through the sludge passage 20a between the injection pipe 5 and the pipe. This facilitates injection of the curing agent described below.

【0033】f.撹拌翼付き高圧材注入管の引き抜き工
程《図2(F)》 吊持用フック25で先導管10内から撹拌翼30の付設
された高圧材注入管5を引き抜く。
F. Step of Withdrawing High-Pressure Material Injection Pipe with Stirring Blade << FIG. 2 (F) >> The high-pressure material injection tube 5 having the stirring blade 30 attached thereto is pulled out from the inside of the leading conduit 10 by the hanging hook 25.

【0034】 g.硬化材注入管及び芯材の建て込み工程《図2(G)》 別の硬化材注入管5aを先導管10内に沿わせて降下さ
せて行くとともに、硬化材注入管5aと先導管10の間
隙に沿わせて芯材50を降ろして行く。この硬化材注入
管5aには、スライム回収器20を介してスイベル6が
連結される。上記芯材50は、図10(A)(B)に示すよ
うに、円環51に放射状に開閉可能に枢支した複数本の
芯棒52と、円環51を連結する支軸53と、支軸53
と芯棒52に介装したリンク機構54と、支軸53に外
嵌させてリンク機構54を上方に付勢する弾圧バネ55
とから構成される。当該芯材50は、図2(G)に示すよ
うに、前記撹拌翼30と同様に、先導管10内では折り
畳み姿勢Sを保持し、硬化材注入管5aに沿って泥漿域
11に下降されて先導管10の拘束を解除されると、上
記弾圧バネ55の付勢力により開放姿勢Tに切り換わ
る。
G. Step of Assembling Curing Material Injection Pipe and Core Material << Fig. 2 (G) >> While descending another curing material injection pipe 5a along the inside of the leading conduit 10, The core material 50 is lowered along the gap. A swivel 6 is connected to the hardening material injection pipe 5 a via a slime collector 20. As shown in FIGS. 10 (A) and 10 (B), the core member 50 includes a plurality of core rods 52 that are rotatably supported by a ring 51 in a radially openable and closable manner, and a support shaft 53 that connects the ring 51. Support shaft 53
And a link mechanism 54 mounted on the core rod 52, and an elastic spring 55 for externally fitting the support shaft 53 to urge the link mechanism 54 upward.
Composed of and. As shown in FIG. 2 (G), the core material 50 holds the folded posture S in the leading conduit tube 10 and is lowered to the sludge region 11 along the hardening material injection pipe 5a, as in the stirring blade 30. When the restraint of the front conduit 10 is released, the open posture T is switched by the urging force of the elastic spring 55.

【0035】h.硬化材注入工程《図2(H)》 硬化材注入管5aの下端部から硬化材Gを0〜50kg/
cm2、70〜300l/min の条件で噴射しながら硬化材
注入管5aを上昇駆動すると、超高圧硬化材Gが泥漿域
11内の泥漿を押し上げ、泥漿は先導管10と高圧材注
入管5との間の排泥通路20aを通ってスライム回収器
20のスライム排出口21aより排出する。これによ
り、泥漿域11内の泥漿が芯材50と硬化材Gに置換さ
れる。
H. Curing material injection step << Fig. 2 (H) >> 0 to 50 kg of curing material G from the lower end of the curing material injection pipe 5a
When the hardening material injection pipe 5a is driven to rise while being jetted under the conditions of cm 2 and 70 to 300 l / min, the ultra-high pressure hardening material G pushes up the sludge in the sludge area 11, and the sludge is injected into the tip conduit 10 and the high pressure material injection pipe 5. It is discharged from the slime discharge port 21a of the slime recovery unit 20 through the sludge discharge passage 20a between them. As a result, the slurry in the slurry area 11 is replaced with the core material 50 and the hardening material G.

【0036】i.引抜洗浄工程《図3(I)》 先導管10から硬化材注入管5aを引き抜き、管内を清
水で洗浄する。所定地盤域11に芯材50を有する円柱
状の地中杭Pが造成される。つまり、当該地中杭Pに
は、複数個の芯材50が上下多段状に埋設され、地中杭
Pの強度が高まる。
I. Drawing and Washing Process << FIG. 3 (I) >> The hardening material injection pipe 5a is drawn out from the tip conduit 10, and the inside of the pipe is washed with fresh water. A cylindrical underground pile P having a core material 50 is formed in the predetermined ground area 11. That is, a plurality of core materials 50 are embedded in the underground pile P in a vertically multi-tiered manner, and the strength of the underground pile P is increased.

【0037】上記実施例の地盤改良工法の機能を述べる
と、先ず、地盤のうちでも、玉石などの硬い部分は泥漿
域11の底部に沈んで容易に排除できるので、より少な
いエネルギーで(即ち、簡略な設備で)地中杭を造成で
きる。また、撹拌翼30の撹拌と高圧材の噴射との組み
合わせで、掘削力が高まるので、粘土地盤などの密な地
盤の改良にも本実施例を容易に適用できる。さらに、撹
拌翼30で泥漿域11の撹拌径が略決定できるうえ、上
記開放角度測定ロッド40でその開放角度を精密に計測
できるので、障害物の存在を知ることができ、埋設管等
を破損することなく、適確に地中杭Pを造成できる。し
かも、硬化材Gの噴出圧を従来例2のように強力にしな
くとも大きな掘削力にが得られるので、硬化材Gの消費
量が少なくなり、これに伴って排泥量も少なくなり、排
泥処理の費用も少なくできる。
The function of the ground improvement method of the above embodiment will be described. First, even in the ground, hard parts such as cobblestones sink to the bottom of the sludge area 11 and can be easily removed, so that less energy is required (ie, Underground piles can be created (with simple equipment). Further, since the excavation force is increased by combining the stirring of the stirring blade 30 and the injection of the high-pressure material, this embodiment can be easily applied to the improvement of dense ground such as clay ground. Further, since the stirring blade 30 can substantially determine the stirring diameter of the sludge region 11 and the opening angle measuring rod 40 can precisely measure the opening angle, it is possible to know the existence of obstacles and damage the buried pipe or the like. It is possible to accurately construct the underground pile P without doing so. Moreover, since a large excavating force can be obtained without increasing the jetting pressure of the hardened material G as in the case of the conventional example 2, the hardened material G is consumed less, and accordingly, the amount of sludge discharged is also reduced. The cost of mud treatment can be reduced.

【0038】一方、本発明では、上記実施例で示した撹
拌翼30による撹拌工程で、泥水Wを噴射する替わりに
硬化材Gを直接噴射して、高圧材注入管5を下降して引
き上げる一つの行程で地中杭Pを造成しても良い。この
場合には、上記実施例の後半の硬化材注入工程は省略で
き、一段で迅速且つ簡便に地中杭Pを造成できる。な
お、必ずしも上記芯材50を建込む必要はないが、芯材
50を建込む場合には、注入した硬化材Gが未硬化の時
点で速やかに芯材50を建込むことになる。
On the other hand, in the present invention, in the stirring process by the stirring blade 30 shown in the above embodiment, instead of injecting the muddy water W, the hardening material G is directly injected and the high pressure material injection pipe 5 is lowered and pulled up. You may construct underground pile P in one process. In this case, the step of injecting the hardening material in the latter half of the above-mentioned embodiment can be omitted, and the underground pile P can be constructed one step more quickly and easily. It is not always necessary to build the core material 50, but when building the core material 50, the core material 50 is built immediately when the injected hardened material G is uncured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の地盤改良工法の前段の手順を示す説
明図である。
FIG. 1 is an explanatory diagram showing a first-stage procedure of a ground improvement method of this embodiment.

【図2】本実施例の地盤改良工法の中段の手順を示す説
明図である。
FIG. 2 is an explanatory diagram showing a procedure in the middle stage of the ground improvement method of the present embodiment.

【図3】本実施例の地盤改良工法の後段の手順を示す説
明図である。
FIG. 3 is an explanatory diagram showing a procedure of a latter stage of the ground improvement method of the present embodiment.

【図4】地中杭造成装置の全体説明図である。FIG. 4 is an overall explanatory view of an underground pile building device.

【図5】図5(A)はスイベルの縦断面図、図5(B)はス
ライム回収器の縦断面図である。
5A is a vertical sectional view of a swivel, and FIG. 5B is a vertical sectional view of a slime collector.

【図6】図6(A)は高圧材注入管及びモニター機構の縦
断面図、図6(B)はモニター機構の横断平面図である。
6A is a vertical cross-sectional view of a high-pressure material injection pipe and a monitor mechanism, and FIG. 6B is a cross-sectional plan view of the monitor mechanism.

【図7】図7(A)は撹拌翼の折り畳み姿勢を示す側面
図、図7(B)は撹拌翼の開放姿勢を示す正面図である。
FIG. 7 (A) is a side view showing the stirring blade in a folded posture, and FIG. 7 (B) is a front view showing the stirring blade in an opened posture.

【図8】撹拌翼の開放姿勢を示す要部側面図である。FIG. 8 is a side view of an essential part showing an open attitude of a stirring blade.

【図9】図9(A)及び(B)はそれぞれ撹拌翼の異なる翼
形状を示す半部斜視図である。
9 (A) and 9 (B) are half-part perspective views showing different blade shapes of the stirring blades.

【図10】図10(A)は芯材の左半部側面図、図10
(B)は芯材の平面図である。
10 (A) is a left half side view of the core member, FIG.
(B) is a plan view of the core material.

【図11】従来技術2のジェットグラウト式地盤改良工
法の手順を示す説明図である。
FIG. 11 is an explanatory diagram showing a procedure of a jet grout type ground improvement method of the related art 2.

【符号の説明】[Explanation of symbols]

5…高圧材(硬化材)注入管、 6…スイベル、7…
モニター機構、 8…高圧材噴射ノズル、
10…先導管、 11…泥漿域、20
…スライム回収器、 30…撹拌翼、40…開
放角度測定用ロッド、 50…芯材、P…撹拌翼の折
り畳み姿勢、 Q…撹拌翼の開放姿勢、S…芯材の
折り畳み姿勢、 T…芯材の開放姿勢、A…高圧
エア、 G…高圧材(硬化材)、W…
高圧材(泥水)、 P…未硬化地中杭。
5 ... High-pressure material (curing material) injection pipe, 6 ... Swivel, 7 ...
Monitor mechanism, 8 ... High-pressure material injection nozzle,
10 ... Front conduit, 11 ... Sludge area, 20
... slime collector, 30 ... stirring blade, 40 ... open angle measuring rod, 50 ... core material, P ... stirring blade folding posture, Q ... stirring blade opening posture, S ... core material folding posture, T ... core Material open position, A ... High pressure air, G ... High pressure material (hardened material), W ...
High-pressure material (muddy water), P ... Unhardened underground pile.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高圧材注入管(5)の上端部にスイベル
(6)を、その下端部にモニター機構(7)を夫々組み付
け、 モニター機構(7)の上部に高圧材噴射ノズル(8)を、そ
の下部に撹拌翼(30)を夫々設け、撹拌翼(30)を折り
畳み姿勢(R)と開放姿勢(Q)とに姿勢切り換え可能に構
成し、 先導管(10)を地表から地中の目標深さまで挿入し、 上記高圧材注入管(5)を先導管(10)内に沿って撹拌翼
(30)を折り畳み姿勢(R)で下降させ、 先導管(10)を上昇させて高圧材注入管(5)の撹拌翼
(30)を開放姿勢(Q)に切り換えて、 高圧材注入管(5)を旋回及び引き上げ駆動しながら、ス
イベル(6)及び高圧材注入管(5)を介してモニター機構
(7)の高圧材噴射ノズル(8)から高圧材を管半径方向へ
連続的に噴射することにより、 連続的に噴射する上記高圧材の旋回噴流と上記撹拌翼
(30)の旋回撹拌でその周囲の地盤を掘削するとともに
撹拌混練して、泥漿域(11)を形成し、この泥漿域(1
1)に硬化地中杭(P)を造成することを特徴とする地盤
改良工法。
1. A swivel at the upper end of the high pressure material injection pipe (5).
The monitor mechanism (7) is attached to the lower end of the monitor mechanism (6), the high-pressure material injection nozzle (8) is installed in the upper part of the monitor mechanism (7), and the stirring blade (30) is installed in the lower part thereof. 30) is configured so that the posture can be switched between the folded posture (R) and the open posture (Q), the front conduit (10) is inserted from the surface to the target depth in the ground, and the high pressure material injection pipe (5) is connected first. Stirrer along the conduit (10)
(30) is lowered in the folded position (R) and the leading conduit (10) is raised to agitate the high pressure material injection pipe (5).
(30) is switched to the open position (Q), the high pressure material injection pipe (5) is swung and pulled up, and the monitor mechanism is operated via the swivel (6) and the high pressure material injection pipe (5).
By continuously injecting the high-pressure material in the pipe radial direction from the high-pressure material injection nozzle (8) of (7), the swirling jet of the high-pressure material and the stirring blade are continuously injected.
The surrounding ground is excavated by swirling and stirring in (30), and the mixture is stirred and kneaded to form a sludge zone (11).
A ground improvement method characterized in that a hardened underground pile (P) is created in 1).
【請求項2】 当初は高圧材として泥水(W)を使用し、
高圧材注入管(5)を引き上げながら泥水(W)の旋回噴流
と撹拌翼(30)の旋回撹拌で地盤を掘削するとともに撹
拌混練して泥漿域(11)を形成し、 次いで、高圧材注入管(5)の下降に際して、折り畳み姿
勢(S)と開放姿勢(T)とに姿勢切り換え可能に構成した
芯材(50)を先導管(10)内に沿って折り畳み姿勢(S)
で下降させ、当該泥漿域(11)に複数個の芯材(50)を
横方向に放射状の開放姿勢(T)で上下に多段状に埋設
し、 次いで、高圧材として硬化材(G)を使用し、高圧材注入
管(5)を引き上げながら泥漿域(11)内の泥漿(11)を
硬化材(G)で置き換えることを特徴とする請求項1に記
載の地盤改良工法。
2. Initially, muddy water (W) is used as the high pressure material,
While pulling up the high pressure material injection pipe (5), the ground is excavated by the swirling jet of muddy water (W) and the swirling stirring of the stirring blade (30), and the mixture is stirred and kneaded to form the sludge area (11). At the time of lowering the pipe (5), a core member (50) configured to be capable of switching between a folded position (S) and an open position (T) is folded along the inside of the tip conduit (10) (S).
, And a plurality of core materials (50) are buried in the sludge area (11) in a horizontal radial open posture (T) in a multi-step manner up and down, and then a hardening material (G) is applied as a high pressure material. The ground improvement method according to claim 1, wherein the sludge (11) in the sludge zone (11) is replaced with a hardening material (G) while the high-pressure material injection pipe (5) is being pulled up.
JP20616493A 1993-08-20 1993-08-20 Founation improvement method Pending JPH0754335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20616493A JPH0754335A (en) 1993-08-20 1993-08-20 Founation improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20616493A JPH0754335A (en) 1993-08-20 1993-08-20 Founation improvement method

Publications (1)

Publication Number Publication Date
JPH0754335A true JPH0754335A (en) 1995-02-28

Family

ID=16518870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20616493A Pending JPH0754335A (en) 1993-08-20 1993-08-20 Founation improvement method

Country Status (1)

Country Link
JP (1) JPH0754335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074957A (en) * 2013-10-11 2015-04-20 鹿島建設株式会社 Tunnel excavation method and deposit removal method
JP2016079745A (en) * 2014-10-21 2016-05-16 株式会社大林組 Drilling method and construction method for cast-in-place pile
JP2018025005A (en) * 2016-08-09 2018-02-15 那須 ▲丈▼夫 Drilling blade, excavator and excavation method
KR101960327B1 (en) * 2018-01-02 2019-03-20 재인스기초건설 주식회사 Drilling and grouting method and apparatus for forming underground pile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830444A (en) * 1981-08-13 1983-02-22 Mitsubishi Electric Corp Air-fuel ratio detector
JPS59118926A (en) * 1982-12-22 1984-07-09 Ohbayashigumi Ltd Improving work of ground under water pressure and iron-bar setter to be used therein
JPH04115014A (en) * 1990-09-03 1992-04-15 Penta Ocean Constr Co Ltd Ground improvement method using hardening material injection using high-pressure water jets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830444A (en) * 1981-08-13 1983-02-22 Mitsubishi Electric Corp Air-fuel ratio detector
JPS59118926A (en) * 1982-12-22 1984-07-09 Ohbayashigumi Ltd Improving work of ground under water pressure and iron-bar setter to be used therein
JPH04115014A (en) * 1990-09-03 1992-04-15 Penta Ocean Constr Co Ltd Ground improvement method using hardening material injection using high-pressure water jets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074957A (en) * 2013-10-11 2015-04-20 鹿島建設株式会社 Tunnel excavation method and deposit removal method
JP2016079745A (en) * 2014-10-21 2016-05-16 株式会社大林組 Drilling method and construction method for cast-in-place pile
JP2018025005A (en) * 2016-08-09 2018-02-15 那須 ▲丈▼夫 Drilling blade, excavator and excavation method
KR101960327B1 (en) * 2018-01-02 2019-03-20 재인스기초건설 주식회사 Drilling and grouting method and apparatus for forming underground pile

Similar Documents

Publication Publication Date Title
CN100494582C (en) Pile-forming device and construction method of cement-soil pile by high-pressure jet mixing method
JPH05141168A (en) Auger for soil cement composite pile
JP2009002082A (en) Foundation pile excavator
KR101510649B1 (en) Excavting and agitaing lod apparatus for emproving soft soil
KR20180019849A (en) DCM soft ground improved apparatus and method using a ground rig
KR101187582B1 (en) Auger device equiped with excavating rod and casing rod having same turning direction and different speed
KR100503755B1 (en) Multi-Folding Blade in Agitating Eqipment for Soil Improvement
JPH0754335A (en) Founation improvement method
KR20080112453A (en) Ground Improvement Method Using Ground Improvement Equipment
KR100398917B1 (en) Apparatus for Selected Chemical
JP4923011B2 (en) Construction method of columnar ground improvement body
JP7104870B1 (en) SOIL IMPROVEMENT METHOD AND EXCAVATOR FOR SOIL IMPROVEMENT
JP2530905B2 (en) Drill bit gravel crusher
JP2010242342A (en) Excavation member for earth retaining member construction and earth retaining member construction method
JP2587777Y2 (en) Drilling rod for soil cement composite pile construction
JP2002121988A (en) Drilling system and drilling equipment for soil
TW479097B (en) Excavation construction method and excavation device
JP3037609B2 (en) Drilling rig
JPH10159474A (en) Excavation method and device
KR102818076B1 (en) All-in-one percussion rotary drill method
CN116123954B (en) Blasting medicine feeding device capable of controlling medicine release
KR101299643B1 (en) Apparatus for drilling a pile hole
JP2002309568A (en) Device and method for columnar ground improvement
JP2020051191A (en) Excavation and agitation device
JPH06346436A (en) Ground improvement method by jet grouting