JPH0754255B2 - Position measurement method for cylindrical structures - Google Patents
Position measurement method for cylindrical structuresInfo
- Publication number
- JPH0754255B2 JPH0754255B2 JP8281386A JP8281386A JPH0754255B2 JP H0754255 B2 JPH0754255 B2 JP H0754255B2 JP 8281386 A JP8281386 A JP 8281386A JP 8281386 A JP8281386 A JP 8281386A JP H0754255 B2 JPH0754255 B2 JP H0754255B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical structure
- measured
- respect
- azimuth angle
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000691 measurement method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000009434 installation Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は円筒構造物の位置測定方法に係り、特に、円筒
構造物の水平外方の遠隔地から外周面上の位置を測定す
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position of a cylindrical structure, and more particularly to a method for measuring the position on the outer peripheral surface of a cylindrical structure from a remote location outside in the horizontal direction. .
「従来の技術及びその問題点」 タンク等の円筒構造物の立設後に、追加工事等により周
壁にノズル等の付属品を取り付ける場合、図面上で決定
した取り付け位置を実際に測定して円筒構造物にマーキ
ングする必要がある。"Prior art and its problems" When installing accessories such as nozzles on the peripheral wall due to additional work after the standing of a cylindrical structure such as a tank, the cylindrical structure is determined by actually measuring the mounting position determined on the drawing. Things need to be marked.
従来、円筒構造物の取り付け位置等を測定する場合、該
円筒構造物に予め設定されている基準方位線に対しては
取り付け位置等の方位角を図面上で指定しておき、円筒
構造物内の曲率中心位置からトランシット等を使用して
指定方位角を計測することにより、取り付け位置等を割
り出すことが行なわれている。Conventionally, when measuring a mounting position or the like of a cylindrical structure, an azimuth angle such as a mounting position is designated on a drawing with respect to a reference azimuth line preset in the cylindrical structure, The mounting position and the like are calculated by measuring the designated azimuth angle from the center position of the curvature using a transit or the like.
しかしながら、このような測定方法であると、円筒構造
物の中に油、ガス等が充満していて立ち入りできない場
合、あるいは円筒構造物の曲率中心位置に他の構造物が
配設されている場合などには、測定することができなく
なるという問題点がある。However, with such a measuring method, when the cylindrical structure is filled with oil, gas, etc. and cannot enter, or when another structure is arranged at the center of curvature of the cylindrical structure. However, there is a problem that it becomes impossible to measure.
「発明の目的とその達成手段」 本発明は前記問題点を有効に解決するもので、円筒構造
物の外方から測定する方法の提供を目的としており、こ
の目的を達成するため、円筒構造物から水平外方に離間
する位置にジャイロコンパスおよび距離計を設置してお
き、該設置位置を原点として円筒構造物の外周面におけ
る周方向に沿う任意の三箇所についての極座標距離およ
び真北方向に対する方位角をそれぞれ計測するととも
に、これら計測値に基づき円筒構造物の曲率中心位置と
外径とを算出し、これら算出結果と、基準方位線の真北
方向に対する角度差および指定方位角との演算により、
被測定位置を割り出して、ジャイロコンパスおよび距離
計により計測して決定することを特徴とし、円筒構造物
外方の遠隔地からの計測と、該計測値に基づく演算とに
より被測定位置を決定するようにしたものである。"Object of the Invention and Means for Achieving the Same" The present invention effectively solves the above-mentioned problems, and an object thereof is to provide a method of measuring from the outside of a cylindrical structure. A gyrocompass and a distance meter are installed at a position spaced horizontally outward from the polar coordinate distances and true north directions at arbitrary three points along the circumferential direction on the outer peripheral surface of the cylindrical structure with the installation position as the origin. While measuring each azimuth angle, the center of curvature of the cylindrical structure and the outer diameter are calculated based on these measured values, and the calculation result and the difference in angle between the true north direction of the reference azimuth line and the designated azimuth angle are calculated. Due to
The feature is that the measured position is determined and measured and determined by a gyro compass and a distance meter, and the measured position is determined by measurement from a remote place outside the cylindrical structure and calculation based on the measured value. It was done like this.
「実施例」 以下、本発明における円筒構造物の位置測定方法の一実
施例を図面に基づいて説明する。[Example] An example of the method for measuring the position of a cylindrical structure according to the present invention will be described below with reference to the drawings.
先に、本発明の方法を実施するために使用される測定装
置について説明すると、該測定装置1は、本出願人が先
に出願した実願昭58−192470号の「方位角測定装置」等
を適用したもので、第1図に示すように、ジャイロコン
パス2と距離計3とを有しているとともに、これら計測
値に基づき後述するような演算等を行なう中央処理装置
4が連設されている。ジャイロコンパス2は、指北性を
持つ指示針を有していて、該指示針が示す真北方向Nに
対する被測定位置の方位角を計測するようになってお
り、水平レベル調整機構等を備えている。また、距離計
3は、光波やレーザー光、あるいは超音波等を利用して
被測定位置までの直線距離を遠隔計測するもので、ジャ
イロコンパス2に、前記指示針の回転中心からの距離を
計測するようにかつ水平回転自在に取り付けられてい
る。中央処理装置4は、ジャイロコンパス2と距離計3
とから入力される計測値を演算して、該演算値をプリン
タ4aで表示するようになっている。First, the measuring device used for carrying out the method of the present invention will be described. The measuring device 1 is the “azimuth measuring device” of Japanese Patent Application No. 58-192470 filed by the applicant of the present invention. As shown in FIG. 1, a gyro compass 2 and a range finder 3 are provided, and a central processing unit 4 that performs calculations and the like to be described later based on these measured values is connected in series. ing. The gyro compass 2 has an indicator needle having a finger northing property, measures the azimuth angle of the measured position with respect to the true north direction N indicated by the indicator needle, and includes a horizontal level adjusting mechanism and the like. ing. Further, the range finder 3 remotely measures the linear distance to the measured position using light waves, laser light, ultrasonic waves, etc., and measures the distance from the rotation center of the pointer to the gyro compass 2. It is mounted so that it can be rotated horizontally. The central processing unit 4 includes a gyro compass 2 and a rangefinder 3
The measured values input from and are calculated, and the calculated values are displayed on the printer 4a.
次に、このような測定装置1を使用して、立設状態の円
筒構造物5における基準方位線Tnに対して指定方位角θ
a離れた外周面上の位置Xを測定する方法について説明
する。Next, using the measuring device 1 as described above, the designated azimuth angle θ is set with respect to the reference azimuth line Tn of the cylindrical structure 5 in the standing state.
A method of measuring the position X on the outer peripheral surface at a distance will be described.
まず、第1図に示すように前記測定装置1を円筒構造物
5の水平外方の任意位置に設置して、水平レベルに固定
し、ジャイロコンパス2を起動させて静定状態とする。
そして、該測定装置1の設置位置を極座標の原点とし
て、第2図に示す円筒構造物5の外周面上の周方向に沿
う任意の三箇所A・B・Cについて、真北方向Nに対す
る方位角θ1、θ2、θ3をジャイロコンパス2によ
り、また水平直線距離(極座標距離)ρ1、ρ2、ρ3
を距離計3によりそれぞれ計測する。次いで、これらの
計測値に基づき、円筒構造物5の曲率中心Pについての
極座標距離ρ0および真北方向Nに対する方位角θ
0と、円筒構造物5の外径Dとを次のように算出する。First, as shown in FIG. 1, the measuring device 1 is installed at an arbitrary position outside the horizontal of the cylindrical structure 5, fixed at a horizontal level, and the gyro compass 2 is activated to bring it into a static state.
Then, with the installation position of the measuring device 1 as the origin of polar coordinates, azimuths with respect to the true north direction N at arbitrary three points A, B, and C along the circumferential direction on the outer peripheral surface of the cylindrical structure 5 shown in FIG. The angles θ 1 , θ 2 , and θ 3 are set by the gyro compass 2 and the horizontal straight line distances (polar coordinate distances) ρ 1 , ρ 2 , and ρ 3
Are measured by the distance meter 3, respectively. Next, based on these measured values, the polar coordinate distance ρ 0 about the center of curvature P of the cylindrical structure 5 and the azimuth angle θ with respect to the true north direction N.
0 and the outer diameter D of the cylindrical structure 5 are calculated as follows.
すなわち、円の極方程式は ρ2−2ρ0ρcos(θ′−θ0′) +ρ0 2−(D/2)2=0 であるが、測定装置1により計測した方位角は真北方向
Nに対する角度であるから、θ′=(π/2)−θ、
θ0′=(π/2)−θ0となり、これを上式に代入する
と、 ρ2−2ρ0ρcos(θ0−θ)+ρ0 2−(D/2)2=0 となる。この極方程式を各測定点A(ρ1,θ1′)、B
(ρ2,θ2′)、C(ρ3,θ3′)についてそれぞれ求
めると、 ρ1 2−2ρ0ρ1cos(θ0−θ1) +ρ0 2−(D/2)2=0 ρ2 2−2ρ0ρ2cos(θ0−θ2) +ρ0 2−(D/2)2=0 ρ3 2−2ρ0ρ3cos(θ0-θ3) +ρ0 2−(D/2)2=0 となり、これらの式から 但し、α=ρ1(ρ2 2−ρ3 2) β=ρ2(ρ3 2−ρ1 2) γ=ρ3(ρ1 2−ρ2 2) がそれぞれ求められる。That is, the polar equation of the circle is ρ 2 −2ρ 0 ρcos (θ′−θ 0 ′) + ρ 0 2 − (D / 2) 2 = 0, but the azimuth angle measured by the measuring device 1 is the true north direction N. Θ ′ = (π / 2) −θ,
θ 0 ′ = (π / 2) −θ 0 , and when this is substituted into the above equation, ρ 2 −2ρ 0 ρcos (θ 0 −θ) + ρ 0 2 − (D / 2) 2 = 0. This polar equation is measured at each measurement point A (ρ 1 , θ 1 ′), B
(Ρ 2 , θ 2 ′) and C (ρ 3 , θ 3 ′) are respectively obtained, ρ 1 2 −2ρ 0 ρ 1 cos (θ 0 −θ 1 ) + ρ 0 2 − (D / 2) 2 = 0 ρ 2 2 -2 ρ 0 ρ 2 cos (θ 0 −θ 2 ) + ρ 0 2 − (D / 2) 2 = 0 ρ 3 2 −2 ρ 0 ρ 3 cos (θ 0 −θ 3 ) + ρ 0 2 − ( D / 2) 2 = 0, and from these equations However, α = ρ 1 (ρ 2 2 −ρ 3 2 ) β = ρ 2 (ρ 3 2 −ρ 1 2 ) γ = ρ 3 (ρ 1 2 −ρ 2 2 ) Are required respectively.
次に、これらθ0、ρ0、Dと、設計段階で予め設定し
ておいた円筒構造物5の基準方位線Tnにおける真北方向
Nとの角度差θn、基準方位線Tnからの指定方位角θa
とにより、被測定位置Xについての真北方向Nに対する
方位角θxおよび極座標距離ρxをそれぞれ求める。す
なわち、第3図に示すように、 θb=(θa+θn)−(θ0+π) の関係にあり、これらθy、θbにより θx=θ0−θy となる。Next, an angle difference θn between these θ 0 , ρ 0 , and D and the true north direction N in the reference azimuth line Tn of the cylindrical structure 5 preset in the design stage, and the designated azimuth from the reference azimuth line Tn. Angle θa
By using, the azimuth angle θx and the polar coordinate distance ρx with respect to the true north direction N of the measured position X are obtained. That is, as shown in FIG. θb = (θa + θn) − (θ 0 + π), and θx = θ 0 −θy from these θy and θb. Becomes
このような演算を前記中央処理装置4で行ない、必要に
応じて前記θ0、ρ0、Dの各データをプリンタ4aで表
示しながら、最終データθx、ρxを表示する。そし
て、これらθx、ρxをジャイロコンパス1および距離
計2により実測して、円筒構造物5における外周面上の
位置Xを決定するものである。Such calculation is performed by the central processing unit 4, and the final data θx, ρx is displayed while displaying each data of θ 0 , ρ 0 , D by the printer 4a as necessary. Then, these θx and ρx are actually measured by the gyro compass 1 and the distance meter 2, and the position X on the outer peripheral surface of the cylindrical structure 5 is determined.
なお、被測定位置の高さ方向の位置は、予め被測定位置
の指定高さ寸法に測定位置1の計測点を合わせておく
か、あるいは測定位置1により測定して得た位置を該測
定装置1の高さに応じて補正することにより、求めるこ
とができる。As for the position of the measured position in the height direction, the measuring point of the measuring position 1 is previously aligned with the designated height dimension of the measured position, or the position obtained by measuring the measuring position 1 is the measuring device. It can be obtained by correcting according to the height of 1.
「発明の効果」 以上説明したように、本発明における円筒構造物の位置
測定方法によれば、円筒構造物の水平外方位置にジャイ
ロコンパスと距離計とを設置しておき、該設置位置を極
座標の原点として円筒構造物外周面上の任意の三箇所に
ついての方位角と距離とを計測し、これらの計測値に基
づき算出した曲率中心位置と外径とから比較的簡単な演
算により被測定位置を割り出すことができ、かつその位
置をジャイロコンパスと距離計とにより実際に計測して
円筒構造物にマーキング等を行なうことができる。した
がって、円筒構造物の内部への立ち入りを伴わずに遠隔
地から測定し得て、該円筒構造物内部での計測が困難で
ある場合に有効に実施することができるとともに、水平
外方の任意の位置から測定を行ない得て、測定条件の制
限が少なくなり、各種の円筒構造物に適用することがで
きるという効果を奏する。"Effects of the Invention" As described above, according to the position measuring method for a cylindrical structure of the present invention, the gyro compass and the distance meter are installed at the horizontal outer position of the cylindrical structure, and the installation position is set. Measures the azimuth angle and distance at any three points on the outer peripheral surface of the cylindrical structure as the origin of polar coordinates, and performs the measurement by a relatively simple calculation from the curvature center position and the outer diameter calculated based on these measured values. The position can be determined, and the position can be actually measured by a gyrocompass and a distance meter to mark the cylindrical structure. Therefore, the measurement can be performed from a remote place without entering the inside of the cylindrical structure, and the measurement can be effectively performed when the measurement inside the cylindrical structure is difficult. Since the measurement can be performed from the position, the limitation of the measurement conditions is reduced, and the present invention can be applied to various cylindrical structures.
図面は本発明における円筒構造物の位置測定方法の一実
施例を示すもので、第1図は本発明の測定方法を実施す
るために使用される測定装置の一例を示す概略図、第2
図および第3図は計測値の演算方法を説明するために示
した第1図の極座標図である。 1……測定装置、2……ジャイロコンパス、3……距離
計、4……中央処理装置、4a……プリンタ、5……円筒
構造物。The drawings show an embodiment of the method for measuring the position of a cylindrical structure according to the present invention, and FIG. 1 is a schematic view showing an example of a measuring apparatus used for carrying out the measurement method according to the present invention.
FIG. 3 and FIG. 3 are polar coordinate diagrams of FIG. 1 shown for explaining the method of calculating measured values. 1 ... Measuring device, 2 ... Gyro compass, 3 ... Distance meter, 4 ... Central processing unit, 4a ... Printer, 5 ... Cylindrical structure.
Claims (1)
に対して指定方位角離れた外周面上の位置を測定する方
法であって、円筒構造物から水平外方に離間する位置に
ジャイロコンパスおよび距離計を設置しておき、該設置
位置を原点として円筒構造物の外周面における周方向に
沿う任意の三箇所についての極座標距離および真北方向
に対する方位角をそれぞれ計測するとともに、これら計
測値に基づき円筒構造物の曲率中心についての極座標距
離および真北方向に対する方位角と、円筒構造物の外径
とを算出し、これら算出結果と、前記基準方位線の真北
方向に対する角度差および前記指定方位角とにより、被
測定位置についての極座標距離および真北方向に対する
方位角を割り出し、これら極座標距離および方位角を前
記ジャイロコンパスおよび距離計により計測して被測定
位置を決定することを特徴とする円筒構造物の位置測定
方法。1. A method for measuring a position on an outer peripheral surface of a cylindrical structure in an upright state at a designated azimuth angle with respect to a reference azimuth line, wherein the gyro is located at a position spaced horizontally outward from the cylindrical structure. A compass and a distance meter are installed, and polar coordinate distances and azimuths with respect to the true north direction at arbitrary three points along the circumferential direction on the outer peripheral surface of the cylindrical structure with the installation position as the origin are measured, respectively. Based on the value, the polar coordinate distance about the center of curvature of the cylindrical structure and the azimuth angle with respect to the true north direction, and the outer diameter of the cylindrical structure are calculated, and these calculation results and the angle difference with respect to the true north direction of the reference azimuth line and From the specified azimuth angle, the polar coordinate distance and the azimuth angle with respect to the true north direction of the measured position are determined, and the polar coordinate distance and the azimuth angle are calculated from the gyrocompatibility Position measuring method of the cylindrical structure and determining a measured position measured by and rangefinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8281386A JPH0754255B2 (en) | 1986-04-10 | 1986-04-10 | Position measurement method for cylindrical structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8281386A JPH0754255B2 (en) | 1986-04-10 | 1986-04-10 | Position measurement method for cylindrical structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62238409A JPS62238409A (en) | 1987-10-19 |
JPH0754255B2 true JPH0754255B2 (en) | 1995-06-07 |
Family
ID=13784846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8281386A Expired - Lifetime JPH0754255B2 (en) | 1986-04-10 | 1986-04-10 | Position measurement method for cylindrical structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754255B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170105626A (en) * | 2015-11-25 | 2017-09-19 | 쿠모노스 코포레이션 | Optical device, reticle assembled to optical device, and method of measurement using optical device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08145668A (en) * | 1994-11-16 | 1996-06-07 | Nec Corp | Scanning laser survey system |
JP2003106838A (en) * | 2001-09-28 | 2003-04-09 | Nikon Geotecs Co Ltd | Surveying instrument, method for surveying and surveying program |
JP6110599B2 (en) * | 2012-04-10 | 2017-04-05 | 計測ネットサービス株式会社 | Optical apparatus and measurement method using the same |
JP6402526B2 (en) * | 2014-08-01 | 2018-10-10 | 株式会社大林組 | Movement control device, movement control method, movement control program, and target member used for movement control method |
CN113251885B (en) * | 2021-03-31 | 2022-09-27 | 山西阳煤化工机械(集团)有限公司 | Gasification furnace cylindrical shell reference azimuth line correction method |
-
1986
- 1986-04-10 JP JP8281386A patent/JPH0754255B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170105626A (en) * | 2015-11-25 | 2017-09-19 | 쿠모노스 코포레이션 | Optical device, reticle assembled to optical device, and method of measurement using optical device |
Also Published As
Publication number | Publication date |
---|---|
JPS62238409A (en) | 1987-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5369889A (en) | Single gyro northfinder | |
RU2269813C2 (en) | Method for calibrating parameters of platform-less inertial measuring module | |
EP1315945A2 (en) | Calibration of multi-axis accelerometer in vehicle navigation system using gps data | |
JP6767024B2 (en) | Gyro compass survey method | |
JP2007263689A (en) | Method of measuring the orientation of equipment in an environment where external information cannot be obtained | |
JPH0754255B2 (en) | Position measurement method for cylindrical structures | |
JPH0827192B2 (en) | How to measure angles and angle characteristic curves | |
JP2007327862A (en) | Surveying equipment | |
US11333498B2 (en) | Magnetic compass compensation | |
JP2609976B2 (en) | Compass | |
JPH0355053Y2 (en) | ||
RU2057291C1 (en) | Method of determination of angular orientation of well | |
CN106931955B (en) | Theodolite compass for geological work | |
RU2194948C1 (en) | Method of algorithm compensation of error of gyrocompassing by means of angular-rate sensor | |
JP2004050970A (en) | Position detection method and position detection device of vessel and system | |
RU2210740C1 (en) | Method of gyrocompassing with use of gyroscopic transmitter of angular velocity mounted on platform controlled by azimuth and stabilized in plane of local horizon | |
RU2832842C1 (en) | Method of levelling coordinate system of goniometric device by two reference points | |
CN114485642B (en) | Oil gas pipeline fault positioning method based on inertial measurement | |
JP3045458B2 (en) | Automatic surveying method of shield machine | |
RU1400226C (en) | Method of measuring twist of object | |
SU821919A1 (en) | Apparatus for determining theodolite eccentric position | |
RU2215994C1 (en) | Method of initial alignment of inertial navigational system | |
JP2916977B2 (en) | Surveying instrument with eccentricity correction function | |
JPH06158645A (en) | Method for managing construction work of underground continuous wall | |
Iacob et al. | Study of the Inclinometer Calibration Method using Geodetic Measurements |