[go: up one dir, main page]

JPH0754255A - Nonwoven fabric having water absorption property - Google Patents

Nonwoven fabric having water absorption property

Info

Publication number
JPH0754255A
JPH0754255A JP5217912A JP21791293A JPH0754255A JP H0754255 A JPH0754255 A JP H0754255A JP 5217912 A JP5217912 A JP 5217912A JP 21791293 A JP21791293 A JP 21791293A JP H0754255 A JPH0754255 A JP H0754255A
Authority
JP
Japan
Prior art keywords
water
nonwoven fabric
fibers
water absorption
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217912A
Other languages
Japanese (ja)
Inventor
Kozo Tajiri
耕三 田尻
Haruo Tsukamoto
治夫 塚本
Toshio Maekawa
俊夫 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP5217912A priority Critical patent/JPH0754255A/en
Priority to EP94305926A priority patent/EP0638679B1/en
Priority to DE69421348T priority patent/DE69421348T2/en
Publication of JPH0754255A publication Critical patent/JPH0754255A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain water absorbing nonwoven fabric having high water absorbing ability, excellent flexibility, handle, processing suitability and high tensile strength. CONSTITUTION:This water absorbing nonwoven fabric comprises a composite sheet wherein synthetic yarn is interlaced with cellulosic yarn and the cellulosic yarn has 0.35-1.6 substitution degree of carboxymethyl group and cross-linked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸水性不織布に関する
ものである。さらに詳しくは、本発明は、合成繊維と高
吸水性セルロース系繊維が交絡した複合シートからな
り、高吸水性樹脂と同等の吸水能力を有し、柔軟性、風
合い、加工適性に優れるだけでなく、吸水した後でもシ
ート強度に優れた吸水性不織布に関するものである。
FIELD OF THE INVENTION The present invention relates to a water absorbent nonwoven fabric. More specifically, the present invention is composed of a composite sheet in which synthetic fibers and superabsorbent cellulose-based fibers are entangled with each other, having a water absorption capacity equivalent to that of the superabsorbent resin, and having not only excellent flexibility, texture and processability. The present invention relates to a water-absorbent non-woven fabric having excellent sheet strength even after absorbing water.

【0002】[0002]

【従来の技術】水または食塩水など塩類を含んだ水溶液
の吸水材料としては、近年、高吸水性樹脂と呼ばれる一
群の材料が知られている。これらの樹脂材料は、基本的
には、水溶性高分子をわずかに架橋し、水に対して不溶
化した化学構造を有するものである。このような高吸水
性材料としては、例えば澱粉にアクリロニトリルをグラ
フト重合した後、これを加水分解したもの、澱粉にアク
リル酸金属塩をグラフト重合したもの、アクリル酸を共
重合性架橋剤とともに重合した架橋樹脂、メタクリル酸
メチル−酢酸ビニル共重合体の加水分解物など数多くの
ものが提案されており、これらのいくつかは実用化され
ている。
2. Description of the Related Art In recent years, a group of materials called super water absorbent resins have been known as water absorbent materials for water or aqueous solutions containing salts such as saline. Basically, these resin materials have a chemical structure in which a water-soluble polymer is slightly crosslinked to make it insoluble in water. Examples of such a highly water-absorbent material include, for example, starch obtained by graft-polymerizing acrylonitrile and then hydrolyzing it, starch obtained by graft-polymerizing an acrylic acid metal salt, and acrylic acid polymerized with a copolymerizable cross-linking agent. A large number of crosslinking resins, hydrolysates of methyl methacrylate-vinyl acetate copolymers, etc. have been proposed, and some of them have been put to practical use.

【0003】これらの従来の材料はほとんどが細かい粉
末或いは粒状であるため、実用に供する場合、そのまま
用いられることはほとんど無く、なんらかの支持材料を
必要とする。例えば使い捨て紙おむつの製造にはフラッ
フパルプマットの間に散布することが広く行われている
し、その他の製品の場合でも紙、不織布、合成樹脂シー
トなどのシート材料の中間に挟んで用いられる。
Since most of these conventional materials are fine powders or granules, they are hardly used as they are in practical use and require some kind of support material. For example, in the production of disposable paper diapers, it is widely spread between fluff pulp mats, and in the case of other products, it is sandwiched between sheet materials such as paper, non-woven fabric and synthetic resin sheet.

【0004】このような複合材料は、製造する際に、所
定量の吸水性樹脂を均一に散布しなくてはならず、かつ
散布した吸水性樹脂が脱落しないよう固定する工夫も必
要となりやっかいなものである。また使用する時にも、
吸水した吸水性樹脂ゲル粒子が支持材料からはみだした
り、脱落が起こりやすいという欠点があり、また支持材
料として最も一般的なフラッフパルプマットや紙を用い
た場合、吸水後に強度が大幅に低下し、型くずれしやす
いという問題を抱えている。
When manufacturing such a composite material, a predetermined amount of the water-absorbent resin must be evenly dispersed, and it is necessary to fix the dispersed water-absorbent resin so as not to fall off, which is troublesome. It is a thing. Also when using,
The water-absorbent resin gel particles that have absorbed water have a drawback that they are likely to fall out of the support material or fall off, and when using the most common fluff pulp mat or paper as the support material, the strength is greatly reduced after water absorption, It has a problem that it easily loses its shape.

【0005】これらの、従来の高吸水性樹脂が抱える問
題を解決する試みとして、繊維状の高吸水性樹脂を製造
し、そのまま、あるいはシート状に加工して用いる方法
(特開昭57−21549号公報、特開昭63−159
440号公報)、吸水性樹脂粉末をバインダー樹脂溶液
中に分散させて塗料化し、これを支持材料に塗布する方
法(特公昭55−50074号公報)、水溶性モノマー
を架橋性モノマーとともにフラッフパルプ、紙、不織布
等に含浸後、重合させて吸水性樹脂を形成させ、複合吸
水材料とする方法(特開昭59−204975号、特開
昭60−149609号、特開昭63−10638号、
特開昭63−105044号、特開平2−111484
号、特開昭61−194300号の各公報)などが知ら
れている。
As an attempt to solve these problems of conventional superabsorbent polymers, a method of producing a fibrous superabsorbent resin and using it as it is or after processing it into a sheet (Japanese Patent Laid-Open No. 57-21549). JP-A-63-159
No. 440), a method in which a water-absorbent resin powder is dispersed in a binder resin solution to form a paint, and this is applied to a support material (Japanese Patent Publication No. 55-50074), a water-soluble monomer together with a crosslinkable monomer is added to fluff pulp, After impregnating paper, non-woven fabric or the like, polymerization is performed to form a water-absorbent resin to obtain a composite water-absorbing material (JP-A-59-204975, JP-A-60-149609, JP-A-63-10638).
JP-A-63-105044 and JP-A-2-111484
And Japanese Patent Laid-Open No. 61-194300).

【0006】また同様の試みとして、水溶性高分子を架
橋剤とともに、フラッフパルプ、紙、不織布等に含浸
後、架橋反応を行わせて吸水性樹脂を形成させ、複合吸
水材料とする方法(特公昭59−45695号、特開昭
62−275146号、特開平1−203084号の各
公報)、さらにはセルロース系繊維よりなるシートを、
シートの構造を保持したまま、架橋構造を有するカルボ
キシメチルセルロース塩化して吸水性を持たせる方法
(特開昭60−71797号公報、特開昭61−893
64号公報)などが知られている。
Further, as a similar attempt, a method of impregnating fluff pulp, paper, nonwoven fabric, etc. with a water-soluble polymer together with a cross-linking agent and then carrying out a cross-linking reaction to form a water-absorbing resin to obtain a composite water-absorbing material JP-A-59-45695, JP-A-62-275146, JP-A-1-203084), and a sheet made of a cellulose fiber,
A method in which carboxymethyl cellulose having a crosslinked structure is chlorinated to impart water absorbability while maintaining the sheet structure (JP-A-60-71797, JP-A-61-893).
No. 64) is known.

【0007】上記の各方法のうち、繊維状の高吸水性樹
脂を製造し、そのまま、あるいはシート状に加工して用
いる方法では、製造工程が複雑であることや、特殊な原
料を必要とするためコスト高である。吸水性樹脂粉末を
バインダー樹脂溶液中に分散させて塗料化し、これを支
持材料に塗布する方法では、バインダー樹脂の皮膜が吸
水を阻害するため吸水速度が著しく低下する。これをさ
けるためにバインダー樹脂の使用量を押さえたり、水溶
性樹脂をバインダーとして用いると吸水時にゲル粒子が
支持材料から脱落することは免れない。
Among the above-mentioned methods, the method of producing a fibrous superabsorbent resin and using it as it is or by processing it into a sheet form requires complicated manufacturing steps and requires special raw materials. Therefore, the cost is high. In a method in which a water-absorbent resin powder is dispersed in a binder resin solution to form a coating material and the coating material is applied to a support material, the film of the binder resin inhibits water absorption, resulting in a marked decrease in water absorption rate. In order to avoid this, if the amount of binder resin used is suppressed, or if a water-soluble resin is used as a binder, it is inevitable that gel particles fall off from the support material during water absorption.

【0008】水溶性モノマーを架橋性モノマーとともに
フラッフパルプ、パルプ紙、不織布等に含浸後、重合さ
せて吸水性樹脂を形成させ、複合吸水材料とする方法
は、数多く研究されているが、モノマー含浸量が多い
と、支持体の柔軟性がなくなって堅く、そしてもろくな
り、加工性、風合いなどは著しく損なわれる。これと類
似の方法で、水溶性樹脂を架橋剤とともにフラッフパル
プ、紙、不織布等に含浸後、架橋反応を行わせて吸水性
樹脂を形成させ、複合吸水材料とする方法も知られてい
るが、吸水量の高い吸水性樹脂を形成させるためには、
高分子量の水溶性樹脂を含浸させる必要があり、これは
粘度が非常に高いため困難である。
Many methods have been studied for impregnating fluff pulp, pulp paper, non-woven fabric and the like with a water-soluble monomer together with a cross-linking monomer, and then polymerizing them to form a water absorbent resin to obtain a composite water absorbent material. When the amount is large, the support becomes inflexible and hard and brittle, and the workability and texture are remarkably impaired. In a similar method to this, a method of impregnating fluff pulp, paper, nonwoven fabric or the like with a water-soluble resin together with a cross-linking agent and then performing a cross-linking reaction to form a water-absorbent resin to form a composite water-absorbing material is also known. In order to form a water absorbent resin with a high water absorption,
It is necessary to impregnate a high molecular weight water-soluble resin, which is difficult due to its very high viscosity.

【0009】また得られる複合吸水材料が堅く、そして
もろくなり、加工性、風合いなどが著しく損なわれる欠
点はモノマー含浸の場合と同様である。またセルロース
系繊維よりなるシートを、シートの構造を保持したま
ま、架橋構造を有するカルボキシメチルセルロース塩化
して吸水性を持たせる方法では、柔軟性、風合い、加工
適性に優れてはいるものの、吸水後にシート強度は全く
無くなり、離解してしまうという欠点を有している。
Further, the same drawbacks as in the case of the monomer impregnation are that the obtained composite water-absorbing material becomes hard and brittle, and the workability and the texture are remarkably impaired. Further, a sheet made of a cellulosic fiber, while maintaining the structure of the sheet, in a method of chlorinated carboxymethylcellulose having a crosslinked structure to give water absorption, although flexibility, texture, and processability are excellent, after absorbing water. It has the drawback that the sheet strength is completely lost and the material is defibrated.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述の従来
の高吸水性材料の有する欠点を解消し、高吸水性樹脂と
同等の吸水能力を有し、かつ柔軟性、風合い、加工適性
及び吸水後のシート強度などに優れた吸水性不織布を提
供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional superabsorbent material, has a water absorption capacity equivalent to that of the superabsorbent resin, and has flexibility, texture, processability and An object of the present invention is to provide a water-absorbent nonwoven fabric having excellent sheet strength after absorbing water.

【0011】[0011]

【課題を解決するための手段】本発明の吸水性不織布
は、合成繊維とセルロース系繊維とを含む複合シートか
らなり、前記セルロース系繊維がカルボキシメチル基を
有し、かつ架橋結合されており、前記カルボキシメチル
基の置換度が0.35〜1.6であることを特徴とする
ものである。そして、前記複合シートのJIS P81
35に示された方法で測定した25mm幅の試験片の湿
潤引張り強さが0.1〜10.0Kgfであり、かつ純
水吸水量が吸水前の前記複合シート重量に対して25〜
160倍であることが必要である。
The water absorbent nonwoven fabric of the present invention comprises a composite sheet containing synthetic fibers and cellulosic fibers, wherein the cellulosic fibers have a carboxymethyl group and are crosslinked. The degree of substitution of the carboxymethyl group is 0.35 to 1.6. And JIS P81 of the composite sheet
The wet tensile strength of a 25 mm wide test piece measured by the method shown in No. 35 is 0.1 to 10.0 Kgf, and the pure water absorption is 25 to the composite sheet weight before water absorption.
It needs to be 160 times.

【0012】以下に、本発明の吸水性不織布を構成する
材料について詳述する。本発明において使用される合成
繊維としては、従来公知の繊維を使用することができ
る。例えば、ポリオレフィン系繊維、ポリエステル系繊
維、ポリアミド系繊維、ポリアクリル酸エステル系繊
維、ポリウレタン系繊維等を使用することができる。こ
れらの合成繊維は、繊維の状態で使用してもよく、ある
いはシートの状態すなわち不織布の状態で使用してもよ
い。
The materials constituting the water absorbent nonwoven fabric of the present invention will be described in detail below. As the synthetic fibers used in the present invention, conventionally known fibers can be used. For example, polyolefin fibers, polyester fibers, polyamide fibers, polyacrylic acid ester fibers, polyurethane fibers and the like can be used. These synthetic fibers may be used in a fiber state, or may be used in a sheet state, that is, a nonwoven fabric state.

【0013】不織布としては、従来公知の方法で作製し
た不織布、例えば乾式不織布、湿式不織布、スパンボン
ド不織布、メルトブロー不織布などを使用することがで
きる。繊維の繊度は特に制約はないが、0.3〜10デ
ニールであるのが好ましい。繊維の繊度が10デニール
を超えて太くなると、不織布の柔軟性が低下し、吸水性
不織布とした場合の柔軟性、風合い、加工適性が劣って
くる。また繊維の繊度が0.3未満になると、不織布の
密度が高くなり紙状化する傾向にあり、不織布の性状を
コントロールすることが困難になる。
As the non-woven fabric, a non-woven fabric produced by a conventionally known method, for example, a dry non-woven fabric, a wet non-woven fabric, a spunbonded non-woven fabric, a melt blown non-woven fabric or the like can be used. The fineness of the fiber is not particularly limited, but it is preferably 0.3 to 10 denier. When the fineness of the fiber exceeds 10 denier and becomes thicker, the flexibility of the non-woven fabric decreases, and the flexibility, texture and processability of the water absorbent non-woven fabric deteriorate. If the fiber fineness is less than 0.3, the density of the non-woven fabric tends to be high, and the non-woven fabric tends to be paper-like, making it difficult to control the properties of the non-woven fabric.

【0014】本発明において使用するセルロース系繊維
としては、木材から製造されるパルプ繊維、草本類から
製造される非木材パルプ繊維、再生セルロース繊維など
が挙げられる。木材から製造されるパルプ繊維として
は、例えば針葉樹あるいは広葉樹をクラフト法、サルフ
ァイト法、ソーダ法、ポリサルファイド法などで蒸解し
た化学パルプ繊維、レファイナー、グラインダーなどの
機械的力によってパルプ化した機械パルプ繊維、薬品に
よる前処理の後、機械的力によってパルプ化したセミケ
ミカルパルプ繊維、あるいは古紙パルプ繊維などを例示
でき、それぞれ未晒若しくは晒の状態で使用することが
できる。草本類から製造される非木材パルプ繊維として
は、例えば綿、マニラ麻、亜麻、藁、竹、パガス、ケナ
フ、楮、三椏などを木材パルプと同様の方法でパルプ化
した繊維が挙げられる。
The cellulosic fibers used in the present invention include pulp fibers produced from wood, non-wood pulp fibers produced from herbs, regenerated cellulose fibers and the like. Pulp fibers produced from wood include, for example, chemical pulp fibers obtained by cooking softwood or hardwood with the Kraft method, sulfite method, soda method, polysulfide method, refiner, mechanical pulp fiber pulped by mechanical force such as grinder. Examples include semi-chemical pulp fibers that have been pulped by mechanical force after chemical pretreatment, or waste paper pulp fibers, and they can be used in unbleached or bleached states, respectively. Examples of the non-wood pulp fibers produced from herbs include fibers obtained by pulping cotton, manila hemp, flax, straw, bamboo, pagas, kenaf, mulberry, sanpei, etc. in the same manner as wood pulp.

【0015】再生セルロース繊維としては、セルロース
をビスコースの形で溶液としたのち、酸の中でセルロー
スを再生・紡糸したビスコースレーヨン、セルロースを
銅アンモニア溶液中に溶解したのち、酸の中で再生・紡
糸した銅アンモニアレーヨン、N−メチルモルフォリン
−N−オキサイドの如き、非水系セルロース溶媒に溶解
したしたのち、紡糸して得られる再生セルロース繊維な
どが例示される。
As the regenerated cellulose fiber, cellulose is made into a solution in the form of viscose, and then viscose rayon is prepared by regenerating and spinning cellulose in an acid, and cellulose is dissolved in a copper ammonia solution and then in an acid. Examples thereof include regenerated and spun copper ammonia rayon and regenerated cellulose fibers obtained by spinning after dissolving in a non-aqueous cellulose solvent such as N-methylmorpholine-N-oxide.

【0016】本発明において、合成繊維とセルロース系
繊維とからなる複合シートを製造する方法としては、公
知の方法が使用できる。例えば、“Research
disclosure,17060,June 197
8”に記載されている、合成繊維不織布と紙シートを水
流交絡させる方法で得られる複合シートは、風合い、加
工性の面で優れており、本発明に有効に用いることがで
きる。この場合の合成繊維不織布としては水流の圧力に
耐える強度を有する必要があり、長繊維不織布が望まし
い。
In the present invention, a known method can be used as a method for producing a composite sheet comprising synthetic fibers and cellulosic fibers. For example, "Research
disclosure, 17060, June 197
The composite sheet obtained by the method of hydroentangling a synthetic fiber nonwoven fabric and a paper sheet described in 8 "is excellent in texture and processability and can be effectively used in the present invention. As the synthetic fiber non-woven fabric, it is necessary to have the strength to withstand the pressure of water flow, and the long fiber non-woven fabric is preferable.

【0017】また合成繊維短繊維とセルロース系繊維を
予め混合し、乾式または湿式の方法でウェブとし、複合
シートとする方法でも良い。この場合、複合シートの湿
潤引張り強度を維持するために、合成繊維を相互に部分
的に接着する必要がある。合成繊維を相互に部分的に接
着する方法としては、既知のいかなる方法で行ってもよ
く、接着剤を散布した後、加熱して接着する方法、熱融
着繊維を混合し、加熱によって接着する方法、ニードル
パンチによる方法、ステッチボンドによる方法などが使
用できる。
Alternatively, synthetic fiber short fibers and cellulosic fibers may be mixed in advance to form a web by a dry or wet method to form a composite sheet. In this case, it is necessary to partially bond the synthetic fibers to each other in order to maintain the wet tensile strength of the composite sheet. As a method of partially adhering the synthetic fibers to each other, any known method may be used, such as a method of spraying an adhesive and then heating and adhering it, or a method of mixing heat fusion fibers and adhering by heating. The method, the method using needle punch, the method using stitch bond, etc. can be used.

【0018】本発明において、複合シートを構成する合
成繊維とセルロース系繊維との配合割合は、合成繊維1
に対してセルロース系繊維が1〜19となるようにする
のが好ましい。合成繊維に対するセルロース系繊維の割
合が1未満では、合成繊維に対するセルロース系繊維の
量が相対的に少なくなり、得られるシートの吸水量が小
さくなる。逆にセルロース系繊維の割合が19を越えて
多くなると、合成繊維とセルロース系繊維との交絡が起
こりにくくなり、また、得られたシートを吸水させた場
合に膨潤したセルロース系繊維が脱落しやすくなり、さ
らに湿潤引張り強度が低下してしまう。
In the present invention, the compounding ratio of the synthetic fiber and the cellulosic fiber constituting the composite sheet is 1
On the other hand, it is preferable that the cellulosic fibers are 1 to 19. When the ratio of the cellulosic fibers to the synthetic fibers is less than 1, the amount of the cellulosic fibers to the synthetic fibers is relatively small, and the water absorption amount of the obtained sheet is small. On the other hand, when the ratio of the cellulosic fibers is more than 19, the entanglement between the synthetic fibers and the cellulosic fibers is less likely to occur, and the swollen cellulosic fibers easily fall off when the obtained sheet is made to absorb water. And the wet tensile strength is further reduced.

【0019】セルロース系繊維に架橋結合とカルボキシ
メチル基を付与すると高い吸水性を示すことは公知であ
り、カルボキシメチル化する方法も数多く知られてい
る。基本的には水酸化アルカリとモノクロロ酢酸塩を水
あるいはイソプロピルアルコールなどの溶媒中で複合シ
ートに反応させれば良い。複合シートの構造を維持した
まま反応させる方法としては、特開昭60−71797
号公報、特開昭61−89364号公報に示される方法
が知られていてる。水酸化アルカリとしてはアルカリ金
属の水酸化物が一般に用いられ、コストの面で水酸化ナ
トリウムが好適である。モノクロロ酢酸塩としてはアル
カリ金属塩またはアンモニウム塩が用いられ、一般的に
はモノクロロ酢酸ナトリウム、及びモノクロロ酢酸カリ
ウムが用いられる。
It is known that cross-linking and carboxymethyl groups are imparted to cellulosic fibers to show high water absorption, and many methods for carboxymethylation are also known. Basically, the alkali hydroxide and monochloroacetate may be reacted with the composite sheet in a solvent such as water or isopropyl alcohol. A method of reacting while maintaining the structure of the composite sheet is disclosed in JP-A-60-71797.
The methods disclosed in Japanese Patent Laid-Open No. 61-89364 and Japanese Patent Laid-Open No. 61-89364 are known. As the alkali hydroxide, an alkali metal hydroxide is generally used, and sodium hydroxide is preferable in terms of cost. As the monochloroacetate salt, an alkali metal salt or an ammonium salt is used, and generally sodium monochloroacetate and potassium monochloroacetate are used.

【0020】架橋結合を導入するための方法も格別の限
定はないが、予めセルロース系繊維に架橋剤を反応させ
た後、カルボキシメチル化させても良いし、カルボキシ
メチル化を行う際に架橋剤を同時に作用させても良い
し、カルボキシメチル化を行った後で架橋剤を作用させ
ても良い。架橋剤としては、ホルムアルデヒド、及びグ
リオキザールなどのアルデヒド類;ジメチロールウレ
ア、ジメチロールエチレンウレア、及びジメチロールイ
ミダゾリドンなどのN−メチロール化合物類;蓚酸、マ
レイン酸、こはく酸、及びポリアクリル酸などの多価カ
ルボン酸類;エチレングリコールジグリシジルエーテ
ル、ポリエチレングリコールジグリシジルエーテル、及
びジエポキシブタンなどの多価エポキシ化合物類;ジビ
ニルスルホン、及びメチレンビスアクリルアミドなどの
ジビニル化合物類、ジクロロアセトン、ジクロロプロパ
ノール、及びジクロロ酢酸などの多価ハロゲン化合物
類;エピクロロヒドリン、エピブロモヒドリンなどのハ
ロヒドリン化合物類;並びに多価アジリジン化合物類な
どが使用できる。
The method for introducing the cross-linking is not particularly limited, either, but it is also possible to react the cellulosic fiber with a cross-linking agent in advance and then carry out carboxymethylation. May be allowed to act simultaneously, or the crosslinking agent may be allowed to act after carboxymethylation. As the crosslinking agent, aldehydes such as formaldehyde and glyoxal; N-methylol compounds such as dimethylolurea, dimethylolethyleneurea, and dimethylolimidazolidone; oxalic acid, maleic acid, succinic acid, polyacrylic acid, and the like. Polyhydric carboxylic acids; polyhydric epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and diepoxy butane; divinyl sulfone and divinyl compounds such as methylenebisacrylamide, dichloroacetone, dichloropropanol, and dichloro Polyvalent halogen compounds such as acetic acid; halohydrin compounds such as epichlorohydrin and epibromohydrin; and polyvalent aziridine compounds can be used.

【0021】架橋剤の添加量は、架橋剤の種類あるいは
反応条件により異なるが、対セルロース系繊維当り0.
1〜10重量%であることが好ましい。架橋結合とカル
ボキシメチル基を有するセルロース系繊維の純水吸水量
は、主にカルボキシメチル基の置換度及び架橋密度によ
って決定される。純水吸水量はカルボキシメチル基の置
換度が高いほど理論的には高くなるが、実用的には置換
度が0.35〜1.6が適当である。置換度を1.6を
越えて高くしても、吸水量はほぼ飽和してしまい、得ら
れるシートのコストが高くなるため不利となる。またカ
ルボキシメチル化を行う際に、セルロース分子の解重合
が起こり、逆に吸水量が低下するという現象が起こるこ
とがある。一方、置換度が0.35未満では、十分な純
水吸水量が得られない。
The amount of the cross-linking agent added varies depending on the type of the cross-linking agent or the reaction conditions, but it is 0.
It is preferably from 1 to 10% by weight. The pure water absorption of the cellulosic fiber having crosslinks and carboxymethyl groups is determined mainly by the degree of substitution of carboxymethyl groups and the crosslink density. The pure water absorption is theoretically higher as the substitution degree of the carboxymethyl group is higher, but the substitution degree of 0.35 to 1.6 is suitable for practical use. Even if the degree of substitution exceeds 1.6, the amount of water absorption is almost saturated, which is disadvantageous because the cost of the obtained sheet increases. Further, when carrying out carboxymethylation, depolymerization of cellulose molecules may occur, and conversely, a phenomenon may occur in which the amount of water absorption decreases. On the other hand, if the degree of substitution is less than 0.35, a sufficient amount of pure water absorption cannot be obtained.

【0022】また純水吸水量は、架橋密度が小さいほど
高くなるが、あまり小さいと、吸水したときのゲルの強
度が弱く、また水溶性のカルボキシメチルセルロース塩
が残るのでべたついた感じとなり好ましくない。逆に架
橋密度があまり高いと吸水量が低下するので、用途によ
り最適の架橋密度を設定する必要がある。本発明では、
カルボキシメチル基置換度と架橋密度を調節することに
よって、純水吸水量が吸水前の複合シート重量に対して
25〜160倍となるようにすれば良い。
The water absorption of pure water increases as the crosslink density decreases, but if it is too low, the gel strength upon absorption of water is weak and the water-soluble carboxymethylcellulose salt remains, which is not preferable because it becomes sticky. On the contrary, if the crosslink density is too high, the amount of water absorption decreases, so it is necessary to set the optimum crosslink density depending on the application. In the present invention,
By adjusting the degree of carboxymethyl group substitution and the crosslink density, the amount of pure water absorbed may be 25 to 160 times the weight of the composite sheet before water absorption.

【0023】本発明の吸水性不織布は、合成繊維とセル
ロース系繊維とを含む複合シートからなり、セルロース
系繊維がカルボキシメチル基を有し、かつ架橋結合され
ているものからなる。合成繊維は、本発明の吸水性不織
布に柔軟性、風合い、加工適性を与えるだけではなく、
合成繊維自体はほとんど吸水性を有しないので、吸水し
た状態でも湿潤引張り強さを高く保つことができる。セ
ルロース系繊維は合成繊維に交絡しているだけであり、
吸水性不織布のもつ柔軟性、風合い、加工適性をほとん
ど低下させない。さらに、架橋結合とカルボキシメチル
基を有するので高い吸水性を示し、吸水した状態でも合
成繊維に交絡している構造のため、合成繊維から脱離し
にくいものである。
The water absorbent nonwoven fabric of the present invention comprises a composite sheet containing synthetic fibers and cellulosic fibers, and the cellulosic fibers have carboxymethyl groups and are crosslinked. Synthetic fibers not only give the water-absorbent nonwoven fabric of the present invention flexibility, texture and processability,
Since the synthetic fiber itself has almost no water absorption, the wet tensile strength can be kept high even when water is absorbed. Cellulosic fibers are only entangled with synthetic fibers,
It hardly deteriorates the flexibility, texture and processability of the water absorbent nonwoven fabric. Further, since it has a cross-linking bond and a carboxymethyl group, it exhibits high water absorption, and even if it absorbs water, it is entangled with the synthetic fiber, so that it is difficult to detach from the synthetic fiber.

【0024】本発明で得られる吸水性不織布は、多量の
水を吸水するばかりでなく、食塩水や尿などのようにイ
オンを含んでいる水性溶液に対しても高い吸水能力を示
すものである。また吸水状態で圧力がかかっても簡単に
水を再放出しないという優れた特徴を有している。この
ため、使いすて紙おむつ、生理用品などの衛生材料分
野、土壌保水剤、育苗用シートなどの農業資材分野、食
品鮮度保持材、脱水材などの食品分野、建物の結露防止
シートなどの建築材料として広範囲に使用できるもので
ある。
The water-absorbent nonwoven fabric obtained by the present invention not only absorbs a large amount of water, but also exhibits a high water-absorbing ability to an aqueous solution containing ions such as saline and urine. . Further, it has an excellent feature that it does not easily re-emit water even if pressure is applied in a water absorbing state. Therefore, used disposable diapers, sanitary materials such as sanitary products, soil water retention agents, agricultural material fields such as nursery sheets, food freshness retaining materials, food fields such as dehydration materials, and building materials such as dew condensation prevention sheets for buildings. It can be used as a wide range.

【0025】[0025]

【実施例】以下、本発明を実施例を挙げて具体的に説明
するが、もとより本発明の範囲は、これらの実施例によ
って限定されるものではない。なお、各実施例および比
較例における吸水量、湿潤引張り強さ、及びカルボキシ
メチル基置換度は、以下に述べる方法により測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples. The water absorption, the wet tensile strength, and the degree of carboxymethyl group substitution in each example and comparative example were measured by the methods described below.

【0026】純水吸水量:2.5cm×2.5cm平方
の供試試料4枚を、10cm×10cm平方の250メ
ッシュナイロンワイヤー製の袋に封入し、これをイオン
交換樹脂を通して脱イオンした水を蒸留して得た純水中
に10分間浸漬して吸水させ、次いで、これを引き上げ
て吊り下げ、10分間水切りを行った後、供試試料の重
量を測定し、供試試料1g当たり吸収した純水の重量
(g)をもって吸水量を表示した。 湿潤引張り強さ:JIS P8135の方法に従い、2
5mm幅の試験片を用いて縦方向の値を測定した。
Pure water absorption: Four test samples of 2.5 cm × 2.5 cm square were enclosed in a bag of 250 cm nylon wire of 10 cm × 10 cm square and deionized through an ion exchange resin. Was immersed in pure water obtained by distillation for 10 minutes to absorb water, and then it was lifted and suspended, drained for 10 minutes, and then the weight of the test sample was measured. The amount of absorbed water was indicated by the weight (g) of the pure water. Wet tensile strength: 2 according to the method of JIS P8135
The value in the vertical direction was measured using a test piece having a width of 5 mm.

【0027】カルボキシメチル基置換度:2.5cm×
2.5cm平方の供試試料4枚を60℃の真空乾燥器中
で4時間乾燥した後、重量を測定し、この値から合成繊
維不織布の重量を差し引いた値を、複合シート中のカル
ボキシメチルセルロース重量とした。重量測定後の試料
をシャーレに移し、メタノール塩酸溶液(70重量%メ
タノール水溶液に塩化水素を1モル/リットルの濃度に
なるように溶解した混合液)50mlを添加し、1時間
放置した後、メタノールで充分洗浄して塩酸を完全に除
去し、風乾した。次いで、風乾した試料を300ml容
の三角フラスコに入れ、0.1規定の水酸化ナトリウム
溶液約20mlと純水100mlを添加して1時間ゆっ
くり撹拌した後、0.1規定塩酸でフェノールフタレイ
ンを指示薬として滴定し、次式により置換度を計算し
た。
Carboxymethyl group substitution degree: 2.5 cm ×
Four 2.5 cm square test samples were dried in a vacuum dryer at 60 ° C. for 4 hours, then weighed, and the value obtained by subtracting the weight of the synthetic fiber nonwoven fabric from this value was taken as carboxymethyl cellulose in the composite sheet. Weight and weight. The sample after the weight measurement was transferred to a petri dish, and 50 ml of a methanol / hydrochloric acid solution (a mixed solution of 70% by weight methanol aqueous solution with hydrogen chloride dissolved therein at a concentration of 1 mol / liter) was added and left for 1 hour, and then methanol was added. Was thoroughly washed with to completely remove hydrochloric acid, and air-dried. Then, the air-dried sample was placed in a 300 ml Erlenmeyer flask, about 20 ml of 0.1N sodium hydroxide solution and 100 ml of pure water were added, and the mixture was slowly stirred for 1 hour, and then phenolphthalein was added with 0.1N hydrochloric acid. Titration was performed as an indicator, and the substitution degree was calculated by the following formula.

【0028】 Y=0.1A−0.1B (1) 置換度=162Y/(1000W−80Y) (2) ただし式中 A:0.1規定水酸化ナトリウム溶液の
量(ml) B:0.1規定塩酸の量(ml) Y:カルボキシメチル基量(ミリ当量) W:カルボキシメチルセルロース重量(g)
Y = 0.1A-0.1B (1) Substitution degree = 162Y / (1000W-80Y) (2) However, in the formula, A: Amount of 0.1N sodium hydroxide solution (ml) B: 0. Amount of 1N hydrochloric acid (ml) Y: Amount of carboxymethyl group (milliequivalent) W: Weight of carboxymethyl cellulose (g)

【0029】実施例1 坪量12g/mのポリプロピレンスパンボンド不織布
(繊度2.5デニール)に針葉樹晒クラフトパルプ(N
BKP)を38g/mの量になるように水流交絡し、
複合シートを作製した。得られた複合シートを20cm
×30cm(重量3g)の寸法に切断し、水酸化ナトリ
ウム10.4重量%、モノクロロ酢酸カリウム34.6
重量%、エピクロロヒドリン1.0重量%、水54.0
重量%からなる混合液中に一分間浸漬した後、濾紙の間
に挟んでプレスし、複合シート1g当たり2gの混合液
が付着するようにした。これをポリエチレン製の袋に入
れ、60℃に保った乾燥器に4時間入れてNBKPのカ
ルボキシメチル化と架橋を行った。
Example 1 A polypropylene spun-bonded non-woven fabric (fineness: 2.5 denier) having a basis weight of 12 g / m 2 was bleached with softwood kraft pulp (N
BKP) is hydroentangled to an amount of 38 g / m 2 ,
A composite sheet was made. 20 cm for the obtained composite sheet
Cut to a size of 30 cm (weight 3 g), sodium hydroxide 10.4% by weight, potassium monochloroacetate 34.6
Wt%, epichlorohydrin 1.0 wt%, water 54.0
After soaking in a mixed solution of 1% by weight for 1 minute, it was sandwiched between filter papers and pressed so that 2 g of the mixed solution adhered to 1 g of the composite sheet. This was placed in a polyethylene bag and placed in a dryer kept at 60 ° C. for 4 hours to carry out carboxymethylation and crosslinking of NBKP.

【0030】次いで、70重量%メタノール水溶液に浸
漬し、濾紙の間に挟んでプレスする操作を4回繰り返
し、複合シートを十分洗浄した。最後に100%メタノ
ールに浸漬し、濾紙の間に挟んでプレスした後、風乾し
て吸水性不織布を得た。なお、得られた吸水性不織布中
のNBKPのカルボキシメチル基の置換度は0.47で
あった。吸水性不織布の純水吸水量と湿潤引張り強さの
測定結果を表1に示す。
Then, the operation of immersing in a 70 wt% methanol aqueous solution, sandwiching it between filter papers and pressing it was repeated 4 times to thoroughly wash the composite sheet. Finally, it was dipped in 100% methanol, sandwiched between filter papers, pressed, and then air-dried to obtain a water-absorbent nonwoven fabric. In addition, the substitution degree of the carboxymethyl group of NBKP in the obtained water absorbent nonwoven fabric was 0.47. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0031】実施例2 坪量12g/mのポリエチレンテレフタレートスパン
ボンド不織布(繊度2.3デニール)にNBKPを68
g/mの量になるように水流交絡して作製した複合シ
ートを、直径3cm、長さ30cmのポリプロピレン製
の円筒に20m巻いて巻取りとした。この巻取りを水酸
化ナトリウム10.4重量%、モノクロロ酢酸カリウム
34.6重量%、エピクロロヒドリン1.0重量%、水
54.0重量%からなる混合液に浸漬し、完全に含浸さ
せた。この時、混合液は複合シート1g当たり6.4g
付着していた。この巻取りをポリエチレン製の袋に入
れ、室温で24時間放置して、NBKPのカルボキシメ
チル化と架橋を行った。これを遠心脱水機で脱水した
後、70重量%メタノール水溶液に浸漬し、遠心脱水機
で脱水する操作を10回繰り返して充分洗浄した。最後
に100%メタノールに浸漬し遠心脱水機で脱水して、
60℃の乾燥機中で乾燥し、吸水性不織布を得た。な
お、得られた吸水性不織布中のNBKPのカルボキシメ
チル基の置換度は0.44であった。吸水性不織布の純
水吸水量と湿潤引張り強さの測定結果を表1に示す。
Example 2 NBKP was added to a polyethylene terephthalate spunbonded non-woven fabric (fineness 2.3 denier) having a basis weight of 12 g / m 2 with 68 NBKP.
A composite sheet produced by hydroentangling so as to have an amount of g / m 2 was wound around a polypropylene cylinder having a diameter of 3 cm and a length of 30 cm for 20 m. The roll is immersed in a mixed solution of 10.4% by weight of sodium hydroxide, 34.6% by weight of potassium monochloroacetate, 1.0% by weight of epichlorohydrin, and 54.0% by weight of water to completely impregnate it. It was At this time, the mixed liquid is 6.4 g per 1 g of the composite sheet.
It was attached. This roll was placed in a polyethylene bag and left at room temperature for 24 hours to carry out carboxymethylation and crosslinking of NBKP. This was dehydrated with a centrifugal dehydrator, then immersed in a 70% by weight aqueous methanol solution, and dehydrated with a centrifugal dehydrator, which was repeated 10 times for sufficient washing. Finally, soak in 100% methanol and spin-dry with a centrifugal dehydrator,
It was dried in a dryer at 60 ° C to obtain a water-absorbent nonwoven fabric. In addition, the substitution degree of the carboxymethyl group of NBKP in the obtained water absorbent nonwoven fabric was 0.44. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0032】実施例3 広葉樹晒クラフトパルプ(LBKP)70重量%にポリ
エステル繊維(繊度1.5デニール)30重量%を配合
し、坪量が50g/mになるよう抄紙した原紙に熱エ
ンボス加工をしてポリエステル繊維を部分的に融着させ
て互いに結合させ、複合シートを得た。この複合シート
に実施例1と同様の処理を施して、LBKPのカルボキ
シメチル化と架橋を行い、吸水性不織布を得た。なお、
得られた吸水性不織布中のLBKPのカルボキシメチル
基の置換度は0.48であった。吸水性不織布の純水吸
水量と湿潤引張り強さの測定結果を表1に示す。
Example 3 70% by weight of hardwood bleached kraft pulp (LBKP) was mixed with 30% by weight of polyester fiber (fineness: 1.5 denier), and heat embossing was applied to a base paper made to have a basis weight of 50 g / m 2. Then, the polyester fibers were partially fused and bonded to each other to obtain a composite sheet. This composite sheet was treated in the same manner as in Example 1 to carry out carboxymethylation and crosslinking of LBKP to obtain a water absorbent nonwoven fabric. In addition,
The degree of substitution of carboxymethyl groups of LBKP in the obtained water absorbent nonwoven fabric was 0.48. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0033】実施例4 繊度3デニール、繊維長51mmのレーヨンステープル
80重量%に繊度1.5デニール、繊維長40mmの熱
融着性ポリエステル繊維20重量%を混合し、カードを
用いて坪量60g/mのウェブとした後、加熱ロール
の間を通してポリエステル繊維を結合させ、複合シート
とした。この複合シートに実施例1と同様の処理を施し
てレーヨンステープルのカルボキシメチル化と架橋を行
い吸水性不織布を得た。得られた吸水性不織布中のレー
ヨンステープルのカルボキシメチル基の置換度は0.4
5であった。吸水性不織布の純水吸水量と湿潤引張り強
さの測定結果を表1に示す。
Example 4 80% by weight of rayon staple having a fineness of 3 denier and a fiber length of 51 mm was mixed with 20% by weight of heat-fusible polyester fiber having a fineness of 1.5 denier and a fiber length of 40 mm, and a basis weight of 60 g was obtained using a card. / M 2 web, and then the polyester fibers were bonded through the heating rolls to form a composite sheet. This composite sheet was treated in the same manner as in Example 1 to carboxymethylate and crosslink rayon staples to obtain a water absorbent nonwoven fabric. The degree of substitution of carboxymethyl groups of rayon staple in the obtained water-absorbent nonwoven fabric is 0.4.
It was 5. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0034】実施例5 NBKPのカルボキシメチル化と架橋の処理を2回繰り
返して行った以外は、実施例1と同様にして吸水性不織
布を得た。得られた吸水性不織布中のNBKPのカルボ
キシメチル基の置換度は0.81であった。吸水性不織
布の純水吸水量と湿潤引張り強さの測定結果を表1に示
す。
Example 5 A water absorbent nonwoven fabric was obtained in the same manner as in Example 1 except that the treatments of carboxymethylation and crosslinking of NBKP were repeated twice. The degree of substitution of carboxymethyl groups of NBKP in the resulting water absorbent nonwoven fabric was 0.81. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0035】実施例6 NBKPのカルボキシメチル化と架橋の処理を60℃で
15分間の反応条件で行った以外は、実施例1と同様に
して吸水性不織布を得た。得られた吸水性不織布中のN
BKPのカルボキシメチル基の置換度は0.35であっ
た。吸水性不織布の純水吸水量と湿潤引張り強さの測定
結果を表1に示す。
Example 6 A water-absorbent nonwoven fabric was obtained in the same manner as in Example 1 except that carboxymethylation and crosslinking of NBKP were carried out under the reaction conditions of 60 ° C. for 15 minutes. N in the obtained water-absorbent nonwoven fabric
The substitution degree of carboxymethyl group of BKP was 0.35. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0036】比較例1〜4 実施例1〜4において、パルプ繊維のカルボキシメチル
化と架橋を行う前の試料を用いて、それぞれ比較例1、
比較例2、比較例3、比較例4とした。それぞれの試料
の純水吸水量と湿潤引張り強さの測定結果を表1に示
す。
Comparative Examples 1 to 4 In Examples 1 to 4, Comparative Examples 1 and 2, respectively, were prepared by using samples before carrying out carboxymethylation and crosslinking of pulp fibers.
Comparative example 2, comparative example 3, and comparative example 4 were used. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of each sample.

【0037】比較例5 NBKPからなる坪量が50g/mの紙に、実施例1
と同様の処理を施してカルボキシメチル化と架橋を行
い、吸水性シートを得た。得られた吸水性シートのカル
ボキシメチル基の置換度は0.44であった。吸水性シ
ートの純水吸水量と湿潤引張り強さの測定結果を表1に
示す。
Comparative Example 5 Example 1 was applied to a paper of NBKP having a basis weight of 50 g / m 2.
The same treatment as above was performed to carry out carboxymethylation and crosslinking to obtain a water absorbent sheet. The degree of substitution of carboxymethyl groups of the resulting water absorbent sheet was 0.44. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent sheet.

【0038】比較例6 銅アンモニアレーヨンの連続フィラメントを交絡させて
製造される不織布で、繊度2デニール、坪量80g/m
、密度0.25g/cmのものを用いて、実施例1
と同様の処理を施して吸水性不織布を得た。得られた吸
水性不織布のカルボキシメチル基の置換度は0.45で
あった。吸水性不織布の純水吸水量と湿潤引張り強さの
測定結果を表1に示す。
Comparative Example 6 A non-woven fabric produced by intertwining continuous filaments of copper ammonia rayon, having a fineness of 2 denier and a basis weight of 80 g / m 2.
2 and a density of 0.25 g / cm 3 were used for Example 1.
The same treatment as above was performed to obtain a water-absorbent nonwoven fabric. The degree of substitution of carboxymethyl groups of the resulting water-absorbent nonwoven fabric was 0.45. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0039】比較例7 NBKPのカルボキシメチル化と架橋の処理を60℃で
10分間の反応条件で行った以外は、実施例1と同様に
して吸水性不織布を得た。得られた吸水性不織布中のN
BKPのカルボキシメチル基の置換度は0.32であっ
た。吸水性不織布の純水吸水量と湿潤引張り強さの測定
結果を表1に示す。
Comparative Example 7 A water absorbent nonwoven fabric was obtained in the same manner as in Example 1 except that NBKP was subjected to carboxymethylation and crosslinking treatment under the reaction conditions of 60 ° C. for 10 minutes. N in the obtained water-absorbent nonwoven fabric
The substitution degree of carboxymethyl group of BKP was 0.32. Table 1 shows the measurement results of the pure water absorption and the wet tensile strength of the water absorbent nonwoven fabric.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明かなように、各実施例の本発明
の吸水性不織布は、純水吸水量および湿潤引張り強さの
いずれもが良好であったが、本発明とは構成の異なる各
比較例の吸水性不織布は、いずれかの特性が劣るもので
あり、本発明の効果が確認された。
As is clear from Table 1, the water-absorbent nonwoven fabric of the present invention of each example had good pure water absorption and wet tensile strength, but each of the different constitutions from the present invention. The water-absorbent nonwoven fabric of Comparative Example was inferior in any of the properties, and the effect of the present invention was confirmed.

【0042】[0042]

【発明の効果】本発明の吸水性不織布は、高い吸水能力
を有し、高吸水性樹脂と同様に用いることができるだけ
ではなく、高吸収性樹脂の有する欠点、すなわち、細か
い粉末或いは粒状であるため応用製品を製造する上で扱
いにくいという問題点を大幅に改善したものである。さ
らに本発明の吸水性不織布は、柔軟性、風合い、加工適
性に優れているだけではなく、吸水後でもシート強度を
維持しており、他の材料と複合化しないで単独で用いる
ことができるため、広い分野で好適に使用できるもので
ある。
The water-absorbent nonwoven fabric of the present invention has a high water-absorbing ability and can be used in the same manner as the super-absorbent resin, but it has a drawback of the super-absorbent resin, that is, fine powder or granules. Therefore, the problem that it is difficult to handle when manufacturing applied products is greatly improved. Furthermore, the water-absorbent nonwoven fabric of the present invention is not only excellent in flexibility, texture, and processability, but also maintains sheet strength after absorbing water, and can be used alone without being complexed with other materials. It can be suitably used in a wide range of fields.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合成繊維とセルロース系繊維とを含む複
合シートからなり、該セルロース系繊維がカルボキシメ
チル基を有し、かつ架橋結合されており、該カルボキシ
メチル基の置換度が0.35〜1.6であることを特徴
とする吸水性不織布。
1. A composite sheet comprising synthetic fibers and cellulosic fibers, wherein the cellulosic fibers have a carboxymethyl group and are cross-linked, and the degree of substitution of the carboxymethyl group is 0.35. A water-absorbent non-woven fabric, which is 1.6.
JP5217912A 1993-08-11 1993-08-11 Nonwoven fabric having water absorption property Pending JPH0754255A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5217912A JPH0754255A (en) 1993-08-11 1993-08-11 Nonwoven fabric having water absorption property
EP94305926A EP0638679B1 (en) 1993-08-11 1994-08-10 Water-absorbent nonwoven fabric and process for producing same
DE69421348T DE69421348T2 (en) 1993-08-11 1994-08-10 Water absorbent nonwoven fabric and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217912A JPH0754255A (en) 1993-08-11 1993-08-11 Nonwoven fabric having water absorption property

Publications (1)

Publication Number Publication Date
JPH0754255A true JPH0754255A (en) 1995-02-28

Family

ID=16711696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217912A Pending JPH0754255A (en) 1993-08-11 1993-08-11 Nonwoven fabric having water absorption property

Country Status (3)

Country Link
EP (1) EP0638679B1 (en)
JP (1) JPH0754255A (en)
DE (1) DE69421348T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113222A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Cosmetic cotton
JP2001170104A (en) * 1999-12-22 2001-06-26 Asahi Kasei Corp Wetting base material and method for using the same
JP2021029668A (en) * 2019-08-26 2021-03-01 日本製紙クレシア株式会社 Bed sheet type absorbent article and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556919A (en) * 1967-07-14 1971-01-19 Du Pont Water-dispersible fabric
US3731686A (en) * 1971-03-22 1973-05-08 Personal Products Co Fluid absorption and retention products and methods of making the same
JPH03269144A (en) * 1990-03-20 1991-11-29 Toyobo Co Ltd Highly water-absorptive nonwoven sheet
JPH03279471A (en) * 1990-03-22 1991-12-10 Toyobo Co Ltd Production of staple fiber having ultra-high water-absorptivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113222A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Cosmetic cotton
JP2001170104A (en) * 1999-12-22 2001-06-26 Asahi Kasei Corp Wetting base material and method for using the same
JP2021029668A (en) * 2019-08-26 2021-03-01 日本製紙クレシア株式会社 Bed sheet type absorbent article and manufacturing method thereof

Also Published As

Publication number Publication date
EP0638679B1 (en) 1999-10-27
EP0638679A1 (en) 1995-02-15
DE69421348T2 (en) 2000-06-08
DE69421348D1 (en) 1999-12-02

Similar Documents

Publication Publication Date Title
JP3170594B2 (en) Cellulosic fiber
TWI376441B (en) Moisture transferring paper and process for producing the same
US4468428A (en) Hydrophilic microfibrous absorbent webs
US6071549A (en) Binder treated fibrous webs and products
CN1307489A (en) Wound dressings and their prep., and material suitable for use therein
SK280152B6 (en) Wound dressings
US5725601A (en) Process for producing water-absorbent cross-linked, carboxyalkylated cellulose-containing material
JP2007515562A (en) Useful materials for producing cellulose liquid diffusion fibers in sheet form
CA2518145A1 (en) Cross-linked fiber in sheet form and method of making
CN1070944C (en) Spunlace material with high bulk and high absorption capasity and method for producing such material
EP0333515A2 (en) Water-dispersible synthetic fibres
JPH07155595A (en) Water absorptive multiple body and its production
JPH09291456A (en) Production of deodorizing conjugated nonwoven fabric
JPH0754255A (en) Nonwoven fabric having water absorption property
JP3396961B2 (en) Method for producing water-absorbing cellulose material
Young Cross-linked cellulose and cellulose derivatives
JPH0967750A (en) Antimicrobial water absorbing sheet
JPH08269858A (en) Composite nonwoven fabric
JPH08284021A (en) Easily fibrillated fiber composed of polyvinyl alcohol and cellulosic polymer
CN1191581A (en) easily fibrillated fibers
JPH1025662A (en) Production of water-absorbing cellulose substance
JPH0985870A (en) Wiping cloth
JPH09279496A (en) Water-absorbing sheet and its production
JPS6262174B2 (en)
JPH08246341A (en) Production of water-absorbing cellulosic material