JPH07508590A - Configuration for point-like measurement of diffuse reflection on surfaces - Google Patents
Configuration for point-like measurement of diffuse reflection on surfacesInfo
- Publication number
- JPH07508590A JPH07508590A JP6523869A JP52386994A JPH07508590A JP H07508590 A JPH07508590 A JP H07508590A JP 6523869 A JP6523869 A JP 6523869A JP 52386994 A JP52386994 A JP 52386994A JP H07508590 A JPH07508590 A JP H07508590A
- Authority
- JP
- Japan
- Prior art keywords
- light
- refractive index
- led
- angle
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims description 14
- 230000005855 radiation Effects 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012790 adhesive layer Substances 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- 239000013307 optical fiber Substances 0.000 claims description 7
- 239000012780 transparent material Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 3
- 239000010410 layer Substances 0.000 claims 1
- 239000010453 quartz Substances 0.000 claims 1
- 239000002966 varnish Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 5
- 230000005469 synchrotron radiation Effects 0.000 description 4
- RZZPDXZPRHQOCG-OJAKKHQRSA-O CDP-choline(1+) Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OCC[N+](C)(C)C)O[C@H]1N1C(=O)N=C(N)C=C1 RZZPDXZPRHQOCG-OJAKKHQRSA-O 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
- G01N21/474—Details of optical heads therefor, e.g. using optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4298—Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 面の拡散反射の点状測定用構成 本発明は複数のスペクトル領域(可視光線、近赤外線及び中赤外線におけるスペ クトル領域)で固体及び液体の小さな面の拡散反射を測定するための構成に関し 、これによりスペクトル拡散反射度及び物体色、あるいは少なくともそのいずれ か一方の面分布の検出が可能である。[Detailed description of the invention] Configuration for point-like measurement of diffuse reflection on surfaces The present invention is applicable to multiple spectral regions (visible, near-infrared, and mid-infrared). Regarding the configuration for measuring the diffuse reflection of small surfaces of solids and liquids in the , thereby controlling the spectrum diffuse reflectance and/or object color. It is possible to detect one side distribution.
本発明は製品における色の均一性を保証し、色の偏りを検出し又は色を互いに調 和させるために、産業及び製造業の各種分野で応用可能である。色を互いに調和 させることは、例えば、義歯の色をできる限り歯の自然色と同じに合わせること が問題となる義歯製作においても大きな役割を果している。The present invention ensures color uniformity in products, detects color deviations or harmonizes colors with each other. It can be applied in various fields of industry and manufacturing to harmonize the environment. harmonize colors with each other For example, the color of the denture should match the natural color of the teeth as much as possible. It also plays a major role in denture manufacturing, which is a problem.
先行技術において、複数の順次制御可能なスペクトル選択放射源及び受信機によ り動作され、かつ物体のスペクトル拡散反射度を測定するための多数の構成が公 知である。これらの構成の光学的部分は、実質的には試験面に対して放射光を供 給する方法が異なっている6 ドイツ連邦共和国特許出願公開第4120749号に記載された方法並びにドイ ツ民主共和国特許第99439号に記載された装置では、試験表面が直接に照射 される。その結果、測定されるべき「点状」面(punktuellen″Fl aeche)の大きさは、LEDの放射光円錐並びに測定対象と放射源との間の 必要な離間距離によって決定される。このため、点状面を十分に小さくは選択す ることができない。In the prior art, a plurality of sequentially controllable spectrally selective radiation sources and receivers are used. There are many publicly available configurations for measuring the diffuse reflectance of objects. It is knowledge. The optical portion of these configurations essentially provides radiation to the test surface. There are different ways of providing The method described in German Patent Application No. 4120749 and the In the device described in Democratic Republic of China Patent No. 99439, the test surface is directly irradiated. be done. As a result, the "punctate" surface to be measured (punktuellen"Fl aeche) is the size of the emitted light cone of the LED and the distance between the measurement object and the radiation source. Determined by required separation distance. Therefore, it is important to select the dotted surface to be small enough. I can't do it.
放射光の発散があるので、吸収の強い表面において正確な測定結果を得るために は非常に高い光度が必要とされる。そのほかに、測定表面での各種LEDの過度 放射光精度は、LEDの放射特性における角度拡散が原因となって十分には得ら れない。Due to the divergence of synchrotron radiation, it is necessary to obtain accurate measurement results on surfaces with strong absorption. requires a very high luminous intensity. In addition, excessive amounts of various LEDs on the measurement surface Radiation accuracy cannot be achieved sufficiently due to angular dispersion in the radiation characteristics of LEDs. Not possible.
ドイツ連邦共和国特許第3626373号には、個々の放射源の放射光が2つの フィルタユニットを介して、試験されるべき試料に放射光の焦点を合わせるレン ズ構成部に導かれる装置が記載されている。この放射案内装置は、高い調整コス ト及び高い機械的安定性を必要とする。到達され得る面解像度は上述の特許の明 細書に記載されたものと同様にLEDの放射特性によて決定され、かつ制限され る。そのほかに放射強度はフィルタユニットによって低減されるとともに、画像 システムの開口によって制限される。ドイツ連邦共和国特許出願公開第3038 786号においては歯肉の色の測定装置が開示されている。この測定装置では、 柔軟性のある光導波路束を介して光源の光が試験面に導かれる。試験面に対する 光出口面の離間圧動くわずかであり、この光出口面が補助的にレンズ形状に研磨 されている場合には、非常にノIAさい測定点に光を集中させることが可能であ る。German Patent No. 3,626,373 discloses that the radiation of an individual radiation source is A lens that focuses the emitted light onto the sample to be tested via a filter unit. A device is described that leads to the lens component. This radial guide device has high adjustment costs. and high mechanical stability. The surface resolution that can be achieved is as specified in the above-mentioned patents. Determined and limited by the LED radiation characteristics as well as those listed in the specification. Ru. In addition, the radiation intensity is reduced by a filter unit and the image Limited by system aperture. Federal Republic of Germany Patent Application No. 3038 No. 786 discloses a device for measuring the color of gums. With this measuring device, Light from a light source is directed to the test surface via a flexible optical waveguide bundle. against the test surface The separation pressure of the light exit surface moves slightly, and this light exit surface is auxiliary polished into a lens shape. It is possible to focus the light on a very small measurement point if Ru.
そのような構成において問題となる事項として、十分に多くの放射エネルギを光 導波路束に集めることが挙げられる。The problem with such configurations is that they do not allow enough radiant energy to be absorbed into the light. One example is collecting them into a waveguide bundle.
本発明の課題は、異なる放射特性を備えた複数の放射源の放射光が簡単な手段に より、放射エネルギ損失の殆どないようにして可能な限り小さな試験面部分に集 中される、異なるスペクトル領域での拡散反射を点状測定するための構成を提供 することである。The object of the invention is to provide a simple means for emitting radiation from several radiation sources with different radiation characteristics. This allows the radiant energy to be concentrated on the smallest possible area of the test surface with almost no loss. Provides a configuration for point-wise measurements of diffuse reflection in different spectral regions It is to be.
この課題は、異なるスペクトル領域の少なくとも2つの放射源並びに少なくとも 選択された異なるスペクトル領域に感応する受信機を備えた、異なるスペクトル 領域での固体又は液体の拡散反射の点状測定のための構成であって、入射され拡 散反射される光の角度位置が異なっているとともに、この角度位置が一方では面 の面法線に、他方では面法線及び面平行線とは実質的に異なる角度に対応してい る構成において次のようにして解決される。即ち、放射源に集光体が後接続され ており、この集光体が円錐台の形を有するとともに、低屈折率の材料で覆われた 高屈折率の透明材料からなることにより、実質的に全反射によって面の/J%部 分に放射光が集中される。This task consists of at least two radiation sources of different spectral ranges as well as at least Different spectra with receivers sensitive to different selected spectral regions Arrangement for point-wise measurement of diffuse reflection of solids or liquids in an area where the incident and expanded The angular position of the diffusely reflected light is different, and on the other hand, this angular position is on the other hand corresponds to an angle substantially different from the surface normal and surface parallel. In this configuration, the problem is solved as follows. That is, the radiation source is followed by a concentrator. This condenser has the shape of a truncated cone and is covered with a low refractive index material. By being made of a transparent material with a high refractive index, /J% of the surface is substantially reflected by total reflection. The synchrotron radiation is concentrated in minutes.
集光体は、低屈折率の外周被覆部として浸せき又は吹付けによって生成されたフ ェス層を備えた任意の透明材料から成っているのが好適である。他の好適な形態 においては、集光体がガラス、特に石英ガラスからなり、低屈折率の集光体外周 被覆部はガラスを熱処理することにて形成される。The concentrator is made of a film produced by dipping or spraying as a low refractive index outer coating. It is preferably made of any transparent material with a surface layer. Other suitable forms In this case, the condenser is made of glass, especially quartz glass, and the outer periphery of the condenser has a low refractive index. The covering portion is formed by heat treating the glass.
好適には、発散LEDを使用する場合に石英ガラスから成る集光体の半円錐角は 、同じ材料から成る光導波路の開口数の約5分の1である。この場合に、集光体 は使用されるLEDの窓に接着されるのが好適である。また、接着層はLEDの 窓材料の屈折率及び集光体の屈折率に適合される。放射源は個別LEDとして面 法線の方向に配置された受信機の周りで等しい角度間隔で上下に面法線に対して 約45°で配置されているのが好適である。LEDの形で放射源の発散を補償す るために、好適には集光体の光出口面が球面状に形成されている。特に小さな検 出ヘッドを実現するためには、表面から離れた任意個所に放射源を配置し集光体 の光出口面に光ファイバを接着することが一般的に好都合であり、その場合には 光ファイバの端部が面法線の方向に配置された受(illの周囲において等角度 間隔をおいて面法線に対してほぼ45°をなすように配置されている。この場合 には、放射発散度が光ファイバの光出口面の球面状形態によって低減されるのが 好適である。本発明に従う構成の他の好適な形態は、三色LEDを使用すること によって達成される。すなわち、単一集光体のみがLED (3つの放射源を一 体化したLED)に続き、三色LED及び集光体が面法線の方向に配置されてい る。Preferably, when using a diverging LED, the semicone angle of the condenser made of quartz glass is , is approximately one-fifth of the numerical aperture of an optical waveguide made of the same material. In this case, the concentrator is preferably glued to the window of the LED used. In addition, the adhesive layer is for LED It is matched to the refractive index of the window material and the refractive index of the concentrator. The radiation source is a surface as an individual LED. at equal angular intervals around the receiver placed in the direction of the normal above and below the surface normal. Preferably, they are arranged at about 45°. Compensating for the divergence of the radiation source in the form of LEDs In order to achieve this, the light exit surface of the condenser is preferably formed spherically. Especially small inspection In order to realize a radiation head, it is necessary to place a radiation source at an arbitrary location away from the surface and use a light condenser. It is generally convenient to glue the optical fiber to the light exit face of the The end of the optical fiber is placed at equal angles around the receiver (ill) placed in the direction of the surface normal. They are arranged at intervals and at an angle of approximately 45° to the surface normal. in this case The radiant emittance is reduced by the spherical shape of the optical fiber's exit surface. suitable. Another preferred form of construction according to the invention is the use of tricolor LEDs. achieved by. i.e. only a single concentrator is an LED (three radiation sources in one) Following the integrated LED), a three-color LED and a condenser are arranged in the direction of the surface normal. Ru.
これに対して、同心円状に配置された光導波路(LWL)から成るファイバ束が 設けられており、このファイバ束が約45°の角度をもって拡散反射光を受信機 に導き、その際に三色LEDの各色が順次スイッチオンされる。この場合には、 拡散反射光を受容するためにLWL構成の2つの好適な変形形態がある。一方で は、LWL (LWL軸線に対して垂直な端面を備えている)が、単純に約45 ″の角度で配置される。しかしながら他方では、検出ヘッドの光入口面及び光出 口面が一貫した平滑表面を有している。従って、LWLの端面が傾斜切断されて いる場合には、幾つもの利点がある。ここでも約45″の角度で拡散反射された 光を受信機に導くために、LWL/空気の屈折率比(ここでは石英ガラス/空気 の屈折率比)に基づいて、LWLと物体表面の面法線との間の角度が低減される 。On the other hand, a fiber bundle consisting of optical waveguides (LWL) arranged concentrically is This fiber bundle receives the diffusely reflected light at an angle of approximately 45°. , and each color of the three-color LED is then switched on in sequence. In this case, There are two suitable variations of LWL configurations to accommodate diffusely reflected light. on the other hand The LWL (with end faces perpendicular to the LWL axis) is simply about 45 However, on the other hand, the light entrance face and light output face of the detection head Mouth surface has a consistent smooth surface. Therefore, the end face of LWL is cut at an angle. There are several advantages if you do. Here too, it was diffusely reflected at an angle of about 45″. In order to guide the light to the receiver, the LWL/air refractive index ratio (here, quartz glass/air The angle between the LWL and the surface normal of the object surface is reduced based on the refractive index ratio of .
それによって、空気−石英ガラス移行時の光屈折に基づきLWLに関しては面法 線に対する角度位置が約30″ となる。As a result, the plane method for LWL is based on the light refraction during air-silica glass transition. The angular position relative to the line will be approximately 30''.
さらに好適であるのは、接着層を介して集光体を三色LEDと固く接続すること である。この場合、接着層はLED窓及び集光体の屈折率に互いに適合する。It is further preferred to firmly connect the light collector to the tricolor LED via an adhesive layer. It is. In this case, the adhesive layer is mutually matched to the refractive index of the LED window and the concentrator.
集光体の光出口面はさらに′#面状に形成されているのが好適である。この基本 思想は、透明材料から成り内面全反射する簡単な円錐台によって複数の放射源の 、特にLEDの各種放射特性及び発散放射光を集中させ、それによって拡散反射 測定用物体表面の点状区域へ十分な放射強度を与えることのできるようにするこ とである。その際には、それ自体公知の暗視野照明法の原理が利用される。この 原理は、0’/45°の幾何的測定配置としても公知であり、本発明に従った点 状拡散反射測定の特殊性に応じて適合され変形されている。本発明に従った構成 によって、物体表面の最7ノ箋面での拡散反射測定を正確に行うことができると ともに、正確な拡散反射測定用のノド出力発散光源の放射をわずかな放射損失で 利用することができる。特に好適なのは、色適合のための拡散反射測定が産業及 び工業の各種分野で応用されることである。Preferably, the light exit surface of the condenser is further formed into a flat surface. This basic The idea is to detect multiple radiation sources using a simple truncated cone made of a transparent material that undergoes total internal reflection. , especially the various radiation characteristics of LEDs and concentrating the divergent radiation, thereby reducing the diffuse reflection. To be able to give sufficient radiant intensity to a point area on the surface of the object to be measured. That is. In this case, the principles of dark-field illumination, which are known per se, are used. this The principle is also known as the 0'/45° geometric measuring arrangement, and the point according to the invention It has been adapted and modified according to the particularities of diffuse reflectance measurements. Configuration according to the invention Accordingly, it is possible to accurately measure diffuse reflection on the most seven surfaces of an object. Together, they provide a nodal output diverging light source for accurate diffuse reflectance measurements with little radiation loss. can be used. Particularly suitable is the industrial use of diffuse reflectance measurements for color matching. It is applied in various fields of industry.
まず第1に背が低くコンパクトな本発明による特殊形態の構造形式は、臨界面が 容易に無菌で保持されるので、歯科医学(義歯製作)及び法医学(例えば、血液 の経時鑑定)における使用に有利でありかつ適していることが実証される。First of all, the special form of construction according to the present invention is short and compact, and the critical surface is Easily kept sterile, it can be used in dentistry (denture making) and forensic medicine (e.g. blood This proves to be advantageous and suitable for use in the chronological assessment of
次に2つの実施例を用いてさらに詳しく説明する。図面は以下について示す。Next, a more detailed explanation will be given using two examples. The drawings show:
図1は、本発明に従った構成の原理図を(不完全な)m面図で示し、図2は、図 1の上面図を示し、 図3は、本発明に従った他の構成の原理図を側面図で示し、図4は、図3の上面 図を示している。1 shows a principle diagram of the arrangement according to the invention in an (incomplete) m-plane, and FIG. 1 shows a top view of 3 shows a principle view of another configuration according to the invention in side view, and FIG. 4 shows a top view of FIG. The figure shows.
つ円錐台状に形成されている。この円錐台の外周被覆面は放射光を全反射すると ともに同時に集中させる。It is shaped like a truncated cone. If the outer covering surface of this truncated cone totally reflects the synchrotron radiation, Concentrate on both at the same time.
スペクトル領域の数に応じて、受信機5が配置されている面法線の周囲におV− て等角度間隔をもって配分されている。Depending on the number of spectral regions, V- They are distributed at equal angular intervals.
の1つを形成する。この構成部品群は本実施例例においては、図2に示すように 、受信機5の周囲で120°の位相差をもって配置されている。form one of the In this embodiment, this component group is as shown in FIG. , are arranged around the receiver 5 with a phase difference of 120°.
試験面1は赤色、緑色及び青色のLED 3.1.3.2及び3.3によって実 質的に45°の角度でパルス状に順次照射される。その際に、それぞれ後配置さ れた集光体2はLEDからの放射光を捕捉し、これを試験面1の狭く限定された 部分に集中させる。その場合に、この限定された部分の大きさは、LEDの異な る放射特性により左右されることなく、集光体2のパラメータ(円錐角度、高屈 折率を有する円錐台と低屈折率を有する外周被覆部との屈折率比)並びに面1に 対する集光体2の光出口面の離間距離によって決定される。屈折率比に対しては 、光導波路(LWL)に関し一般的に知られている半閉口角度についての関係が 有効である: sin u ” (nK” nM” )”、ここでnK及びnuは、円錐台本体 及び外周被覆部の屈折率である。従って、集光体2の屈折率比は、従来のLWL の屈折率比に類似であり、nKの値は約1.45、nMの値は約1.43である 。それによって、集光体2は材料としては実質的にエンサイン・ビックフォード オプティックス カンパニー社(Ensign−BickfordOptic s Company ) (米国)のLWLと適合する。集光体2の光出口で同 様に現れる、従来のLWLよりも若干大きな放射光発散開度に基づいて、面1に 対する離間距離は絶対的に小さく選択される。これと反対の条件では、すべての 放射源3の円錐光が集光体2の光出口から出発して可能な限り確実に受信機5に よって検出される面1を完全に照射するように離間距離は常に大きくなければな らないという事実がある。受信I15は外部入射光を避けるために金属套管7に 埋設されているLWL6を介して導かれた拡散反射光を受信するのが好都合であ るので、面1に対しては2工の離間距離を殆ど下回らないようにする。その際に この離間距離は金属套管7に関して実現される一方で、LWL6の入口面は、面 1以外で拡散反射される放射光の入射を避けるために少じ後退移動されている。Test surface 1 is activated by red, green and blue LEDs 3.1.3.2 and 3.3. The irradiation is performed sequentially in pulses at a qualitative angle of 45°. At that time, each The light concentrator 2 captures the emitted light from the LED and directs it to a narrow area on the test surface 1. Concentrate on the part. In that case, the size of this limited part is different for different LEDs. The parameters of the condenser 2 (cone angle, high refraction) The refractive index ratio of the truncated cone having a refractive index and the outer peripheral covering part having a low refractive index) and the surface 1 It is determined by the distance between the light exit surface of the light condenser 2 and the light exit surface of the light condenser 2. For the refractive index ratio , the relationship regarding the generally known semi-closed angle regarding light waveguides (LWL) is It is valid: sin u” (nK” nM”)”, where nK and nu are the truncated cone body and the refractive index of the outer peripheral coating. Therefore, the refractive index ratio of the condenser 2 is lower than that of the conventional LWL. is similar to the refractive index ratio of , the value of nK is about 1.45 and the value of nM is about 1.43. . Thereby, the material of the condenser 2 is essentially Ensign Bickford. Ensign-Bickford Optic Compatible with the LWL of s Company) (USA). Same at the light exit of condenser 2. Based on the slightly larger synchrotron radiation divergence than the conventional LWL, which appears as The separation distance therebetween is chosen to be absolutely small. In the opposite condition, all The light cone of the radiation source 3 leaves the light outlet of the condenser 2 and reaches the receiver 5 as reliably as possible. Therefore, the separation distance must always be large so that surface 1 to be detected is completely illuminated. The fact is that there is no. The receiver I15 is placed in a metal sleeve 7 to avoid external incident light. It is convenient to receive the diffusely reflected light guided through the buried LWL6. Therefore, for surface 1, the distance should be almost no less than the distance of 2 machinings. At that time This separation distance is achieved with respect to the metal sleeve 7, while the inlet face of LWL6 is It is moved slightly backward in order to avoid the incidence of emitted light that is diffusely reflected by sources other than 1.
直径3mmのLEDを1.4順の出口面に集中させる集光体2に関しては、半円 錐角度が約2.5’という条件では長さが2amより小さくなる。その際に半円 錐角度は、開口数の5分の1よりも10%増し以下とすべきであろう。集光体2 は長さが相対的に短く面1に対し面法線に関して好適な45@位置であるので、 光源3を直接に面1の近くに配置するのではなくその光をLWL (本構成には 図示されていない)を介して適切な位置に照射することは、本発明に従った構成 のコンパクトかつ細長の構造形態のためには長所といえる。この場合に、集光体 2の光出口面はLWLの端面に接着されることが望ましい。LWLとして、好ま しくはエンサイン・ビック7オード オプティックス カンパニー社(Ensi gn−Bickford OpticsCompany) (米国)製の型式H CG−MO365T−10のLWLが使用されている。Regarding the condenser 2 that concentrates the LEDs with a diameter of 3 mm on the exit surface of the 1.4 order, a semicircle Under the condition that the cone angle is about 2.5', the length will be less than 2 am. At that time, a semicircle The cone angle should be no more than 10% greater than one-fifth of the numerical aperture. Light collector 2 is relatively short in length and is at a suitable position of 45@ with respect to the surface normal to surface 1, so Rather than placing the light source 3 directly near the surface 1, the light is transmitted to the LWL (in this configuration, (not shown) to the appropriate location can be configured according to the present invention. This is an advantage due to its compact and elongated structural form. In this case, the concentrator Preferably, the light exit surface of No. 2 is bonded to the end surface of the LWL. As LWL, preferred For more information, please contact Ensign Big 7 Ord Optics Company, Inc. Model H manufactured by gn-Bickford Optics Company (USA) CG-MO365T-10 LWL is used.
前記した放射源3としては、実施例で用いたLEDに代えて特殊半導体構成又は 白熱電球フィルタ構成も使用することも可能である。この場合には、これら代替 品に応じて、集光体2はその光入口面及び長さに適合するように形成される必要 がある。As the radiation source 3 described above, instead of the LED used in the embodiment, a special semiconductor structure or Incandescent bulb filter configurations may also be used. In this case, these alternatives Depending on the product, the concentrator 2 needs to be shaped to match its light entrance surface and length. There is.
図3においては、第1実施例に比べて放射源3及び受信機5の位置が変更されて いる、原則的に異なって形成された本発明による構成である。ここでは、放射源 3が面1の面法線の方向に配置されている。これに好適な例としては、三色LE D8 (例えば、エルコス社(El、ωS CmbH) (ドイツ、ブコアフエ ンホーフエン市)の型式CMS124)の使用を挙げることができる。その場合 には、ここでも各色分割部がパルス状に順次制御される。三色LED8はここで も第1実施例と同じ方法で形成されている集光体2に接着層9を介して連結され るのが好適である。この連結は三色LED8の窓材料が接着層9を介し集光体2 の材料にその屈折率に関して適合されるような方法で行われる(屈折率整合)。In FIG. 3, the positions of the radiation source 3 and receiver 5 have been changed compared to the first embodiment. This is an arrangement according to the invention which is designed differently in principle. Here, the radiation source 3 is arranged in the direction of the surface normal of surface 1. A suitable example for this is three-color LE D8 (for example, Elcos (El, ωS CmbH) (Germany, Bucoahue) Mention may be made of the use of the type CMS 124) of the city of Nhoven. In that case Here again, each color division section is sequentially controlled in a pulsed manner. Three color LED8 is here is connected via an adhesive layer 9 to the condenser 2 formed in the same manner as in the first embodiment. It is preferable to In this connection, the window material of the three-color LED 8 is connected to the light condenser 2 through the adhesive layer 9. (refractive index matching).
集光体2の光出口面のあとでは光の発散が生ずるので、第1実施例におけるのと 同様に面1に対してはわずかな離間距離とされる。前記置された集光体2ととも に三色LED8が垂直位置にある結果、拡散反射光の受容が適切に行われている 場合には、面1に対して1〜1.6順の距離が実現され得る。図3が図4(上面 図)と関連して明らかに示しているように、本例では受信機5を用いて、複数の LWL6から成るファイバ束を介して拡散反射光が受容される。このファイバ束 は面法線に沿って配置された放射源・集光体ユニットの周囲に同心円状で均等に 分布されている。Since light divergence occurs after the light exit surface of the condenser 2, it is different from that in the first embodiment. Similarly, the distance from surface 1 is small. With the light condensing body 2 placed above, As a result of the vertical position of the three-color LED 8, the reception of diffusely reflected light is properly performed. In this case, distances in the order of 1 to 1.6 for plane 1 can be realized. Figure 3 is the same as Figure 4 (top view). As clearly shown in connection with Figure), in this example receiver 5 is used to Diffusely reflected light is received via a fiber bundle consisting of LWL6. This fiber bundle are arranged concentrically and evenly around the radiation source/concentrator unit arranged along the surface normal. distributed.
そのため好適には型式HCG−M 0200 T−10(開口数:0.22、メ ーカー:エンサイン・ビックフォード オプティックス カンパニー社(Ens ign−Bickford 0ptics Company) (米国))のス テップインデックス光ファイバが使用される。その際にLWL6は、拡散反射さ れる光を面法線に関して好適には456の角度でLWL6が受容するように配置 されているのが有利である。一方では、LWL6の端部が、選択された角度設定 (例えば、正確に45@)で調整され、しかも好適には一体で鋳込まれる。この 場合にLWL6の端面ばファイバ軸線に対して垂直であり、実際的には結合表面 から突出している。この変形形態は、図面には明確に示されていない。図3は他 の変形形態を示しており、石英ガラスの屈折率並びに測定センサの表面ができる 限り平滑である方が良いというしばしば好適な事情が考慮されている。ここでは LWL6は、面1の面法線に対して300の角度で調整されている(例えば、注 型用樹脂内に埋め込むことによって)。Therefore, model HCG-M 0200 T-10 (numerical aperture: 0.22, metal Carer: Ensign Bickford Optics Company, Inc. ign-Bickford Optics Company) (USA) A step index optical fiber is used. At that time, LWL6 is diffusely reflected. The LWL6 is arranged so that the light received by the LWL6 is preferably received at an angle of 456 with respect to the surface normal. It is advantageous that it is On the one hand, the end of LWL6 is connected to the selected angle setting. (e.g. exactly 45@) and preferably cast in one piece. this In this case, the end face of LWL6 is perpendicular to the fiber axis and is practically the coupling surface. stands out from This variant is not clearly shown in the drawing. Figure 3 is another This shows the deformation of the refractive index of quartz glass as well as the surface of the measurement sensor. The often preferred situation is that it is better to be as smooth as possible. here LWL6 is adjusted at an angle of 300 with respect to the surface normal of surface 1 (e.g. note (by embedding in mold resin).
LWL6の端面は同じ30°の角度で傾斜切断端面を有しているので、測定セン サは、面lに対して平行に平らで平滑な表面を備えている。30°の角度値は、 石英ガラスから成るLWL6と45°の拡散反射光に対する受容角度との選択の 結果として得られる。従って、固定角度値として本発明による技術範囲を限定す るものではない。重要なのは45°での拡散反射光が、屈折率移行に基づいてL WL6の傾斜した光入口面においてファイバ軸線に対しほぼ平行にLWL6内に 屈折されるのが好適であるということである。さらに有利には、面1に対する測 定センサの離間距離がほぼ1mmに至るまで低減され得るので、集光体2の光出 口面が1,4団の場合には約2關の直径を有する測定面1が得られる。そのほか に平滑な測定センサ表面は、これが特に容易に無菌で保持され得るという医療技 術の要求を満たす。The end face of LWL6 has an inclined cut end face at the same 30° angle, so the measuring sensor The server has a flat, smooth surface parallel to plane l. The angle value of 30° is Selection of LWL6 made of quartz glass and acceptance angle for diffusely reflected light of 45° The result is: Therefore, the technical scope of the present invention is limited to a fixed angle value. It's not something you can do. What is important is that the diffusely reflected light at 45° is L based on the refractive index shift. into LWL6 approximately parallel to the fiber axis at the inclined light entrance face of WL6. It is preferable that it be refracted. Further advantageously, the measurement for surface 1 Since the distance between the constant sensors can be reduced to approximately 1 mm, the light output of the condenser 2 is If there are 1 or 4 groups of mouth surfaces, a measuring surface 1 having a diameter of about 2 tubes is obtained. others The smooth measuring sensor surface makes it particularly easy for medical techniques to keep sterile. meet the requirements of the art.
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4314219.2 | 1993-04-30 | ||
DE19934314219 DE4314219A1 (en) | 1993-04-30 | 1993-04-30 | Arrangement for selective measurement of remission |
PCT/EP1994/001305 WO1994025849A1 (en) | 1993-04-30 | 1994-04-26 | Device for the measurement of the reflectance at a point on a surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07508590A true JPH07508590A (en) | 1995-09-21 |
Family
ID=6486793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6523869A Pending JPH07508590A (en) | 1993-04-30 | 1994-04-26 | Configuration for point-like measurement of diffuse reflection on surfaces |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0648327A1 (en) |
JP (1) | JPH07508590A (en) |
DE (1) | DE4314219A1 (en) |
WO (1) | WO1994025849A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005172814A (en) * | 2003-11-19 | 2005-06-30 | Kansai Paint Co Ltd | Reflected ultraviolet ray measuring apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19511534C2 (en) * | 1995-03-29 | 1998-01-22 | Fraunhofer Ges Forschung | Method and device for detecting 3D defects in the automatic inspection of surfaces with the aid of color-capable image evaluation systems |
DE19615971B4 (en) * | 1996-04-22 | 2008-04-24 | Byk Gardner Gmbh | Arrangement with a light guide, - and a measuring and lighting system constructed therewith and their manufacturing method |
DE19617009C2 (en) * | 1996-04-27 | 1999-05-20 | Roland Man Druckmasch | Photoelectric measuring device |
FI103074B (en) * | 1996-07-17 | 1999-04-15 | Valtion Teknillinen | spectrometer |
DE102004014541B3 (en) | 2004-03-23 | 2005-05-04 | Koenig & Bauer Ag | Optical system e.g. for banknote checking device, inspection system or flat bed scanner, providing uniform intensity illumination strip on surface of moving material web |
DE102004014532B3 (en) | 2004-03-23 | 2005-03-03 | Koenig & Bauer Ag | Optical system for generating illuminated shape on moving material has delay time, switch-on duration sum less than exposure duration; material speed-dependent off time follows exposure period until next exposure period |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3566119A (en) * | 1967-10-06 | 1971-02-23 | California Computer Products | Infrared scanning device using a spherical lens |
US3846027A (en) * | 1972-08-03 | 1974-11-05 | Align O Tron Corp | Reflection densitometer |
US3910701A (en) * | 1973-07-30 | 1975-10-07 | George R Henderson | Method and apparatus for measuring light reflectance absorption and or transmission |
JPH0685023B2 (en) * | 1984-03-29 | 1994-10-26 | オリンパス光学工業株式会社 | Illumination optical system for high magnification endoscope |
US4654532A (en) * | 1985-09-09 | 1987-03-31 | Ord, Inc. | Apparatus for improving the numerical aperture at the input of a fiber optics device |
US5003500A (en) * | 1988-09-05 | 1991-03-26 | Ciba-Geigy Corporation | Process and apparatus for the preparation of color formulations utilizing polarized light in spectrophotometry |
US4930865A (en) * | 1988-11-04 | 1990-06-05 | Miles Inc. | Optical transmission spectrometer |
DE4001954A1 (en) * | 1990-01-24 | 1991-07-25 | Giese Erhard | Distance sensor with light conductor, source and photodetector - has conductor with cross=section reducing towards end surfaces |
-
1993
- 1993-04-30 DE DE19934314219 patent/DE4314219A1/en not_active Withdrawn
-
1994
- 1994-04-26 EP EP94914419A patent/EP0648327A1/en not_active Withdrawn
- 1994-04-26 JP JP6523869A patent/JPH07508590A/en active Pending
- 1994-04-26 WO PCT/EP1994/001305 patent/WO1994025849A1/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005172814A (en) * | 2003-11-19 | 2005-06-30 | Kansai Paint Co Ltd | Reflected ultraviolet ray measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE4314219A1 (en) | 1994-11-03 |
EP0648327A1 (en) | 1995-04-19 |
WO1994025849A1 (en) | 1994-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7486394B2 (en) | Optical measuring head | |
JPS6399839A (en) | Optical fiber pressure converter using single optical fiber and its production | |
US4320291A (en) | Optical instrument | |
US8743368B2 (en) | Optical sensor system and method of sensing | |
US4029391A (en) | Light probe and interface therefor | |
CN100573546C (en) | The method and apparatus that is used for document of identify and article | |
US5337150A (en) | Apparatus and method for performing thin film layer thickness metrology using a correlation reflectometer | |
EP0335192A2 (en) | Combined gloss and color measuring instrument | |
US3947088A (en) | Interface for light probe | |
CN110260799A (en) | A kind of Spectral Confocal displacement sensor | |
US6631000B1 (en) | Device and procedure for the quality control of in particular finished surfaces | |
CN1180839A (en) | Measuring device for plant leaf composition | |
JP2002181698A (en) | Spectral reflectance measuring apparatus and spectral reflectance measuring method | |
JPH07508590A (en) | Configuration for point-like measurement of diffuse reflection on surfaces | |
US20080137061A1 (en) | Displacement Measurement Sensor Using the Confocal Principle | |
TWI231363B (en) | Multipoint measurement system and method | |
JP2002277348A (en) | Transmissivity measuring method and device | |
JP2013538375A (en) | Optical probe having a transparent monolithic structure with refractive and reflective surface portions | |
IT9020099A1 (en) | APPARATUS AND SCANNING METHOD FOR MEASUREMENT OF LAYER READERS OF THE THICKNESS OF OPAQUE OR TRANSPARENT COATINGS APPLIED TO SURFACES OF ANY KIND | |
CN206399566U (en) | Glass surface stress detection device and the detection prism for it | |
JP2001512821A (en) | Micro polarimeter | |
US7312874B2 (en) | Apparatus and a method for determining the color stimulus specification of translucent objects | |
US5742382A (en) | Refractometer | |
JP2002261059A (en) | Grinding state detector | |
TWI244718B (en) | Missing die detection |