[go: up one dir, main page]

JPH07508367A - 動画像における変化の検出方法 - Google Patents

動画像における変化の検出方法

Info

Publication number
JPH07508367A
JPH07508367A JP6522610A JP52261094A JPH07508367A JP H07508367 A JPH07508367 A JP H07508367A JP 6522610 A JP6522610 A JP 6522610A JP 52261094 A JP52261094 A JP 52261094A JP H07508367 A JPH07508367 A JP H07508367A
Authority
JP
Japan
Prior art keywords
image
limit value
calculation unit
section
compared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6522610A
Other languages
English (en)
Other versions
JP3357058B2 (ja
Inventor
メスター, ルードルフ
アーハ, ティル
Original Assignee
ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング filed Critical ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Publication of JPH07508367A publication Critical patent/JPH07508367A/ja
Application granted granted Critical
Publication of JP3357058B2 publication Critical patent/JP3357058B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/54Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 動画像における変化の検出方法 本発明はメインクレームの上位概念による動画像における変化の検出方法を基礎 とする。
動画像における変化検出の適用領域は交通監視及び安全工学に存する。変化され た画線領域の検出により運動対象物の自動的検出例えば自動的交通監視の際の車 両の自動的検出及び対象物保安の際の不法(非許可)侵入の認識が可能になる。
動画像の変化検出手法によれば1つの画像を運動対象物と一定の背景とに分割す る。この方法では運動対象物はつながり (連続性)のある画像セクションとし て扱い処理され、該画像セクションの運動(動き)は動きベクトル又は動きベク トルセットを介して表現され(描かれ)得る。
既に公知の手法で画像信号の変化は限界値として比較され、画像信号は゛″変化 り”又は°′変化なし”の状態にあるものと判定される。、限界値は A、Ge rhard ”Bewegungsanal’/se bei der Cod ierung von B11dsequenzen 、” ミュンヘン工業大 学(下り)の通信工学の講座における卒業論文120.09゜1988第69頁 、により次のようにしてもめられ特表千7−508367 (3) る、即ち差値(絶対値)画像(これは実際値と時間的に先行する画像からめられ る)のLPFフィルタリングされ、正規化されたパージシンのローカル値を基本 値から差し引くようにするのである。或1つの画素が変化あり又は変化なしの状 態の判定の情報が2進マスク内にファイルされる。
つながり (連続性)のあるまとまった画像信号を当該手法に従って達成するに は2進マスクを更なるステップで事後処理することが必要である。このために例 えば直線的フィルタリング、エロージョン−およびディラテーション(拡張)手 法並びに面(積)増大手法が適用される。
更にり、J、Conet、”A Frams−t。
−Frame Picurephone CoderFor Signals  ContainingDifferential QuantizingNoi se”、ATT Be1l System Technical Journa l 、Vol、52゜No、]、1973.参照36 f f、において運動対 象物の識別手法が記載されている。上記手法は垂直方向に平均化された画像差信 号と、ノイズに関して補償され或面積に関して平均化された画像信号を使用する 垂直方向に平均化された画像差信号を用いては先ず、或1つの稜縁(エツジ)、 即ち、或1つの運動対象物は識別されたか否か、フリップフロップが1にセント されたか否かが判定される。上記フリップフロップは次のような際はじめて再び Oヘセントされる、換言すれば被考察(注目)画素は静止状態の対象物体(の状 態)であると識別される、即ち8X3の画素の1つのブロックにてアキュムレー タが所定数の画素(該画素の画倫差イδ号が限界値T2ないしT3を上回る)よ り少なく計数するとはじめて0へセットされ、ないし上述のように識別される。
発明の利点 本発明の特徴的構成要件により得られる利点とするところは、画像信号の変化が 比較さγしる限界値が、判定さるべき画像信号の周囲に依存して形成されること である。ここで判定さるべき画像セクションの時間的及び位置的の周囲の双方が 考慮される。それの限界値との比較の際既に変化ありと判定された隣接する画像 セクションが、多(ブれば多いほど限界値は益々小になる。画像セクションの周 囲が変化する場合、当該画像セクションの変化する確率が大でありそして、画像 セクションの周囲が変化しない場合当該画像セクションの変化する確率が小であ るという事項が考慮される。
要は複数のバイクセルの画素差から計算される量を用いて限界値との比較が行わ れることである。そのような量ははるかに一層わずかな統計的変動を伴い、従っ て信頼性のある判定が行われる。
更なる利点とするところは限界値をめるために先行の画像の画像セクションが使 用されることである。
画像セクションの変化あり、ないし変化なしの状態についての適正判定を行う確 率が増大する、それというのは画像セクションの変化は隣接する画像セクション に依存するのみならず、先行画像の画像セクションにも依存するからである。
更に有利であるのは成1つの画像セクションの変化あり、または変化なしの状態 の検出判定結果は或1つの画像セクションのすべての画素パイセクルに対してで 個別にめられずともよく、比較的大きな検出セルに割り当てられ得ることである 。それにより、当該プロセスは2進的判定マスクの品質にて大した損失なく加速 される。
サブクレームにて示された手段により、メインクレームにて規定された方法の有 利な発展形態及び改良が可能である。特に有利には限界値をめるため、観測窓( ウィンドウ)内に含まれている画像セクションの変化とそれの限界値との比較の 結果が、限界値をめる際、比較さるべき画像セクションに対しての距離及び配向 に従って異なって重み付けされて考慮されるようにしたのである。それにより、 比較的大きな周囲に依存して限界値をめることが可能であり、ここで判定さるべ き画像セクションに対する時間的且つ位置的間隔、ひいては判定さるべき画像セ クションの変化あリ、なしの確率についてのデータ(表現力)が相応に重み付け て考慮される。
画像セクションの変化の直接的検出手法によれば判定さるべき画像セクションの 画像信号を時間的に先行する画像の一様に配慮された画像セクションの画像信号 から相互間で差し引き、当該画像を評価する。
或1つの画像領域が変化ありとみなされるべきか否かの判定は個別の画素又はバ イクセルのつながりのあるブロックに対してなされ得る(高い局所分解能又は低 い計算コストいずれが、より重要であるかに応じて)有利には或1つの画像セク ション間の画像信号の2乗差の和(これは差分画像におけるカメラノイズの電力 (分散)に関連付けられる〉は相次いで順次連続する画像の画像信号の変化とし てみなされる。
選択的には画素差の絶対値の和にも使用され得る。
観測窓(ウィンドウ)はその有利な形成手法によれば比較さるべき画像セクショ ンと、隣接する画像セクンヨ/とから成る。それにより、限界値検出の際比較さ るべき画像セクションの最も近い周回(これは当該画像セクションの変化の有、 ないし無の状態の確率についての最大の情報力を有する)が考慮される。
限界値検出の際、判定さるべき画像セクションと同じ画イ象に属する判定された 画像セクションのみならず、先行画像の画像平面内に一様に配置された画像セク ション内7−508367 (4) ヨンな使用すると有利である。それにより、限界値検出の際の画像セクションの 時間的展開が考慮される。
本発明の有利な実施形態によれば、計算ユニットによっては限界値をめるため比 較さるべき画像セクションに対して画像平面内に等しく配置された画像セクショ ンと、少なくとも1つの先行する画像の限界値との比較の結果が考慮されるよう にしたのである。
ここにおいて考慮されるところは或画像信号(それの周囲が既に比較的長時間も はや変化していない)の確率、即ち、さらに画像信号は変化しないという確率が 比較的大であり、そして、画像信号(それの周囲が先行画像にて既に屡々変化し ている)の場合、当該画像信号が再び変化する確率がより大になる。
本発明の方法の重要な特徴点によれば計算ユニットによっては限界値が設定され た成分と、比較結果に依存してめられた成分とから形成され、上記の比較結果に 位ぞしてめられた成分は観測窓(ウィンドウ)内に含まれている画像セクション の比較の結果によりめられるものである。
本発明の方法の簡単化は次のようして達成される、即ち画像セクションの変化を める際、画像セクション内に含まれている画像信号の部分集合量のみが使用され るようにしたのである。それにより、計算時間の低減が行われ得、その際2進マ スクの品質は大して悪化されない。
図面 本発明の実施例が図示されており、以降詳述する。
図1は画像信号の入力受信及び評価用装置が示しである。図2は2つの順次連続 する画像を示し、図3はプロ七スジーケンス(過程)の説明のためのフローチャ ートを示す。
実施例の説明 図1に示す計算ユニット1はデータ線路8を介して撮像ユニット3、例えばビデ オカメラを制御し、ビデオカメラにより採取された画像データをメモリ2内に格 納する。計算ユニット1は撮像された画像をパイセクルごとにメモリ2内に格納 する。図1に更に示す入カニニット9はデータの入力のためデータ線路8を介し て計算ユニット1と接続されている。
図2は2つの時間的に順次連続する画像を示し、ここで、画像はそれぞれ16の 正方形の画像セクションに分割されている。画像n+1のラスタ(網目)内には 判定さるべき画像セクション5が黒っぽくハツチングで示しである。時間的に先 行する画像n中には判定さるべき画像セクション5に時間的に先行している画像 n間で一様に配置された画像セクション6が黒くハツチングで示されている。
本事例中では画像n十1の選定された観測窓(ウィンドウ)4はハツチングで示 されており、画像セクション11〜14から成り、該画像セクションは判定さる べき画像セクション5に隣接しており、既に限界値と比較されている。画像セク ションの比較の結果は°°変化あり”の状態に対してはYで示され、′変化なし ”の状態に対してはNで示されている。上記の遺定された手法では当該画像セク ションは順番に従い左方から右方へそして上方から下方へ限界値と比較される。
従って、比較さるべき画像セクション5に対して画像n + 1にてハツチング で示された枠付けされた観測窓(ウィンドウ)4が生じ、該観測窓(ウィンドウ )は判定さるべき画像セクション上方に位置する3つの画像セクション11,1 2.13と判定さるべき画像セクション5の左傍らに位置する画像セクション1 4とから成る。判定さるべき画像セクション5に右方で隣接する画像セクション 及び後続する行(ライン)にて隣接する画像セクションは限界値検出のために考 慮され得ない、それというのは限界値と比較されていないからである。当該の情 報の欠損を補償するために。
時間的に先行する画像nにてハンチングで示された画像セクション15〜18が 観測窓(ウィンドウ)4の一部として限界値検出のため考慮される。ここにおい て問題とされる先行画像nの画像セクションに対しては限界値による判定がなさ れており、当該の結果は各画像セクションにおいて゛′変化あり”の状態に対し てはYで示され、゛変化なし”の状態に対してはNで示されている。
図3は使用されるプロセスのプログラムシーケンスを略示する。プログラムポイ ント1oではプログラムがスタートする。プログラムポイント11ではプログラ ムのシーケンスに2・要な量が、入カニニット9により入力され、計算ユニット 1によりメモリ2内に格納される。画像セクションへの画像の分割のためのラス タ(網目)、量、即ち各画像セクションごとの画素パイセクルの数、観測窓(ウ ィンドウ)4の大きさ、処理手法(画像全体の画像セクションを限界値と比較す る手法)が読み込まれる。画像セクションの変化のための計算手法、観測窓(ウ ィンドウ)内に含まれている画像セクションの比較の結果からの限界値の計算が 同様に読み込まれ、メモリ内にファイルされる。プログラムポイント13にて撮 像ユニット3は画像を撮像し、計算ユニット〕は撮像された画像をバイセクル毎 にメモリ内に格納する。プログラムポイント15にて計算ユニット1は第1の画 像セクション及び相応の観測窓(ウィンドウ)を選択する。プログラムポイント 17にて計算ユニット1は観測窓(ウィンドウ)4内に存在する画像セクション 及び入カニニット9を介して入力される計算方法の比較の結果をめ(該限界値は 判定さるべき画像セクション5に対して使用される)、そして、当該結果をメモ リ2内に格納する。プログラムポイント19において計算ユニット1は比較さる べき画像セクションの画像信号と、先行画像の一様に配置された画像セクション 6の画像信号との間の変化をめる。次いで、計算ユニット1はめられた変化をメ モリ内2にファイルされた限界値と比較する。プログラムポイント21にて計算 ユニット1は当該変化がファイルされた限界値より大である場合比較される画像 セクション5の画素パイセクルのメモリアドレスに「1」を対応付け、そして当 該変化は当該限界値より小である場合はrQJを対応付ける。プログラムポイン ト23にて計算ユニット23はすべての画素パイセクルが限界値と比較されたか 否かをチェックする。
否定の場合にはプログラムポイント15へ戻り分岐され、計算ユニット1によっ ては判定さるべき更なる画像セクション5及び所属の観測窓(ウィンドウ)4が 、メモリ2内にファイルされた画像信号から選択され、プログラムポイント17 〜23は繰り返し実行される。
プログラムポイント15.1.7,19,21.23はすべての画素パイセクル が限界値と比較されるまで頻繁に処理される。プログラムポイント23における 問い合わせによりすべての画素バイセクルが限界値と比較されたことが明らかに なると、プログラムポイント25へ分岐する。
プログラムポイント25では計算ユニット1により、「1」の対応付けられた画 像n+1の画像セクションを選択する。このようにして計算ユニット1は運動対 象物ないし画像セクション(これは画像の更なる評価に使用され得る)をめる。
プログラムポイント25の後、プログラムポイント13へ戻り分岐され、プログ ラムシーケンスは前述の様に改めて退行する。
有利な実施例を図1〜図3を用いて詳述する。プログラムは図3のフローチャー トに従って処理される。
プログラムポイント10にてプログラムはスタートされ、プログラムポイント1 1にて入カニニット9を介してプログラムに対する初期条件が設定される。画像 は選ばれた本事例ではそれぞれ5X5の画素バイセクルから成る画像セクション に分割される。観測窓(ウィンドウ)4は判定さるべき画像セクション5に隣接 する画像セクションから形成される。
同じ画像の隣接する画像セクションに対して限界値による判定状態が生起しない 場合、時間的に先行する画像の相応の画像セクションを用いる。方法プロセスの 拡大手法によれば観測窓(ウィンドウ)4を、複数の時間的に順次連続する画像 の画像セクションから形成する。当該画像セクションは左方から右方へ、そして 上方から下方へ処理されるように設定される。上記画像セクションの処理の順序 は用途に応じて他の要領でも生ぜしめられ得る。
ある1つの画像セクションの画像信号の変化に対し確定される。ここで、和は判 定さるべき画像セクション5のすべての画素パイセクルに亘ってなされ、dlは 画像n+1の画素バイセクルの画像信号と、時間的に先行する画像nの一様に配 置された画素パイセクルの画像信号との差であり、S2は差分カメラのノイズプ ロセスの分散に対する経過値又は推測分散である。
更に、結果に欠除に基づきなお限界値が形成され得ない場合(第1の画像セクシ ョンに対して起こるように)変化との比較のため使用される限界@!SOが入力 される。
限界値Tに対する計算手法(メソッド)は入力キーボード9を介して入力され、 本例]こおいて次のように選定される。
T=T、+T、、但しT、は最も簡単な場合において定れた観測窓(ウィンドウ )4のすべての画像セクション1に亘って及んでいる。計数C1は次のように確 定される;C,=O(画素パイセクルのメモリアドレスがOを含む場合)、又は C,=B (画像セクションのメモリアドレスが1を含み画像セクションは判定 さるべき画像tクショ5の水平又は垂直隣接画像セクションである場合、又はC ,=C(画像セクションのメモリアドレスは1を含み判定さるべき画像セクショ ン5に対する対角線方向隣接画像セクションである場合。
限界値成分子、は次の式により確定される。
T、=T、。+2 (B−!−C) ・パラメータT、。、B。
C1(これは限界値T1の検出に用いられるとして)は本事例ではB=12.C =6.T、、=55.1が入力される。このことは(5”lO−’の有意性(な いし有効誤差)に相応する。定数B、C,Tsは適用例に応じて異なった値をと り得る。プログラムポイント13にて撮影ユニット3は撮像し、計算ユニット1 は画像をバイセクル毎にメモリ2内に格納する。プログラムポイント15にて計 算ユニット1はファイルされた画像を入力に応じて画像セクションに分割し、判 定さるべき第1の画像セクション5に対して入力される観測窓(ウィンドウ)4 を選定する。
図2には本事例が示しである。判定すべき画像セクション1は画像n+1にて黒 っぽくハンチングで示されている。観測窓(ウィンドウ)4は隣接する画像セク ション(これは図2中ハツチングで示され枠(=Jけて示されている)から生じ る。画像n+1のすべての隣接する画像セクションに対して限界値との比較結果 が存在する訳ではないので、画像nの相応の画像セクション(これは同様にハツ チングで示され枠付けて示されている)が限界値検出のため用いられる。選定さ れた観測窓(ウィンドウ)14 (画像n+1の画像セクショ711〜14と画 像nの画像セクション15〜18を含み、ここで画像セクション11〜14,1 7゜18は変化ありの状態にあり画像セクション15.16は変化なしの状態に あると判定されている)を考察する場合、次の限界値Tが得られる。
T=T、−T、=T、、、+2 (B+C)−Σc1画像n+1及びnの画像セ クションの同じ評価(重み付け)+2Cが生じ画像n向けにはB+Cが生じる。
従って限界値には下記が生じる T=T、、+2 (B+C)−3B−3C=T、、 −B−Cプログラムポイン ト19では計算ユニット1はプログラムユニット11にファイルされた統計的関 係性に従って画像信号間の差、即ち、比較さるべき画像セクション5の画像信号 と、先行画像nの一様配置の画像セクション6の画像信号との間の差を形成する 。
本事例では変化(分)は下記で確定された和の代わりに、絶対値1dlも前置係 数(プリファクタ)2°f2を以て使用し得、その際標準偏差Sへ正規化し得る 。当該変化は限界値T(これはプログラムポイント17にてめられている)と比 較される。プログラムポイント21にて計算ユニット1は比較さるべき画像セク ション5の画素パイ七クルのメモリアドレスに1を対応付け(変化が限界値Tよ り大の場合)、そして、そうでない場合には0を対応付ける。記憶された画像の 画素パイ七クルに対して、メモリ2中にメモリアドレスがファイルされているプ ログラムポイント23にて計算ユニット1により問い合わせ、即ち画像n+1の すべての画素パイ七クルないし画像セクションが限界値下と比較されたか否かの 問い合わせが待われる。否定の場合にはプログラムポイント15へ戻り分岐され 、更なる画像セクションがプログラムポイント15〜21に相応して限界値と比 較される。プログラムポイント23にて問い合わせにより画像のすべての画像セ クションが限界値と比較されたことが明らかになると、プログラムポイント25 へ分岐する。プログラムポイント25では計算ユニット】は動画像として識別さ れた画像セクションを選択する。
計算ユニット1は画像セクションのメモリアドレス内に格納された値から、つな がり(連続性)のある動画像を選択する。その様にして例えば動画像は自動的画 像監視によりめられる。
有利には大きさの111の画像セクションに対する変化との比較のための限界値 Tは画像(n)にて同じ(一様な)セクションの結果のみが当該限界値にて考慮 される場合次のように形成され得る。
T=T、+T、、ただし値、T、は一定値であり、T。
は可変値である。限界値Tは観測窓(ウィンドウ〉 1が変化していない場合に 刻してはT、より大であり、変化したした場合に対してはT、より小である。当 該値T、は有効確率(これは確率の評定に対する尺度を成す)のプリセットによ りめられる。
Pro’o (d’1>TsIHo)=a (画像セクションの変化に対する統 計的特性量として平方和が用いられる場合に対して)。有効確率aの検出及び意 義は Bronstein、Ta5chenbuch derMathemat ik、Teubner Verlag、5677’ ff、、に記載されている 。統計的特性量として絶対値和が使用される場合に対して下記の有効確率が生じ る。Prob (2°/2+dll>T、IHa)=a 平方和の場合における 確率の計算のため1つの自由度を有するX2分布が使用され、絶対和の場合2つ の自由度を有するX2分布(Bronstein、Ta5chenbuch d er Mathematik、Teubner Verlag、第686頁以降 にて記載されているように)が使用される。T、は次のようにめられるT、=2 ’″+n[p(]−NiO)/p (]、IHI)] 但し、p(1,1l−1 1)は“変化あり”換言すれば画素パイ七クルが変化した画像n + 1におけ る判定すべき画像セクションに対して適正な判定に先行画像における適正判定1 kが先行する確率に対する経験値を表す。
p (1h(Ho)は画像n+lにおける“変化なし”に対する適正な判定に先 行画像nにおける適正判定1kが先行する確率に対する経験値を表す。但し、p (1、=変化あり−r t IHl) >>P (]、=変化なしjHo>>p (li=変化あり1Ho)が成立つ。要するにTはC,に依存する、換言すれば T (+、)=T、+T、(1,) 画像セクションが161の画素パイセクルより大の場合、限界値(L、)は次の ようにして変換される、ち2つの有効確率a(1,)が P r o b (d ’k>T(li)l Ho)=a (1−)ないし Prob 2°F21 d kl >T (1,)l Ho)=a (1−)により形成されるのである。そ れにより、 Prob (Δ、T (]、) l Ho) =a (1,)を用いて、判定限 界値T(1,−“変化せず”)及びT(1,=“変化あり”)を比較的大の画像 セクションに対してめ得る。
当該方法プロセスの実際上、著しく重要な更なる構成法によれば、プログラムの 処理に必要な定数、統計的特性量、計算手法くメソフド)がメモリ2内に格納さ れており、その結果計算プログラムをユーザからの入力なしで実行し得る。

Claims (9)

    【特許請求の範囲】
  1. 1.計算ユニットを用いて電子的に撮像された動画像における変化の検出を行う 方法であって、画像信号はパイセクル毎に生起し、メモリ中に格納されそして、 計算ユニットを用いて、ある1つの画像セクションの変化を、少なくとも1つの 画素パイクセルについて、少なくとも1つの先行する画像の画像セクションに対 比して求め、前記の少なくとも1つの先行画像の画像セクションは当該画像平面 内に等しく(一様に)配置された画像セクションであり、更に上記の画像セクシ ョンの変化を所定の限界値と比較し、そして、当該の画像セクションの各画素に 対してメモリ内に格納されたメモリアドレスに、当該変化が限界値より大又は小 であるかに応じて異なった値を対応付けるようにした方法において、計算ユニッ ト(1)により、記憶された画像信号から観測窓(ウインドウ)(4)が画像− /時間−空間(スペース)において選択され、上記窓は比較さるべき画像セクシ ョン(5)と、限界値と比較される少なくとも1つの更なる画像セクションとを 含み、更に計算ユニット(1)により、上記限界値は既に比較された画像セクシ ョンの変化がそれの限界値より大又は小であるかに依存して変化され、そして計 算ユニット(1)により、比較さるべき画像セクション(5)の変化と、求めら れた限界値との比較の結果が、画像セクション(5)の1つの画素(画像パイク セル)の、メモリ(2)内にファイルされているアドレスの少なくとも1つに割 り当てられるようにしたことを特徴とする動画像における変化の検出方法。
  2. 2.計算ユニット(1)により、観測窓(ウインドウ)(4)内に含まれている 画像セクションの変化とそれの限界値との比較の結果が、限界値を求める際、比 較さるべき画像セクション(5)に対しての距離及び配向に従って異なって重み 付けされて考慮されるようにした請求の範囲1記載の方法。
  3. 3.計算ユニット(1)により少なくとも1つの先行画像の画像平面内に一様に 配された画像セクション(6)に比しての、被比較画像セクション(5)の変化 を画像信号の差により求め、ここで、計算ユニット(1)によっては例えば画像 信号の差の2乗の和(平方和)が、差分画像におけるカメラノイズの電力(分散 )へ正規化されるか、又は限界値は差分画像におけるカメラノイズの電力に乗算 される請求の範囲1又は2記載の方法。
  4. 4.計算ユニット(1)により少なくとも1つの先行画像の画像平面内に一様に 配された画像セクション(6)に比しての、被比較画像セクション(5)の変化 を面像信号の差により求め、ここで、計算ユニット(1)によっては例えば画像 信号の差の2乗の和(平方和)が、差分画像におけるカメラノイズの電力(分散 )へ正規化されるか、又は限界値は差分画像におけるカメラノイズの電力に乗算 される請求の範囲1又は2記載の方法。
  5. 5.計算ユニット(1)により観測窓(ウインドウ)(4)は比較さるべき画像 セクション(5)と隣接する画像セクションとから形成される請求の範囲1又は 2記載の方法。
  6. 6.計算ユニット(1)によっては未だ限界値により判定されていない同一画像 に属する画像セクションの代わりに、先行画像の、画像平面内に一様に配置され た画像セクションが使用され、上記先行画像の画像セクションは限界値と比較さ れたものであるようにした請求の範囲5記載の方法。
  7. 7.計算ユニット(1)によっては限界値を求めるため比較さるべき画像セクシ ョンに対して画像平面内に等しく配置された画像セクション(6)と、少なくと も1つの先行する画像の限界値との比較の結果が考慮されるようにした請求の範 囲1から6までのうちいずれか1項記載の方法。
  8. 8.計算ユニット(1)によっては限界値は設定された成分と、比較結果に依存 して求められた成分とから形成され、上記の比較結果に依存して求められた成分 は観測窓(ウインドウ)(4)内に含まれている画像セクションの比較の結果に より求められるものである請求の範囲1から7までのうちいずれか1項記載の方 法。
  9. 9.計算ユニット(1)によっては画像セクションとの変化を求めるため画像セ クション内に含まれている画像信号の部分集合量のみが使用されるようにした請 求の範囲1から8までのうちいずれか1項記載の方法。
JP52261094A 1993-04-10 1994-04-07 動画像における変化の検出方法 Expired - Lifetime JP3357058B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4311972.7 1993-04-10
DE4311972A DE4311972A1 (de) 1993-04-10 1993-04-10 Verfahren zur Detektion von Änderungen in Bewegtbildern
PCT/DE1994/000385 WO1994024634A1 (de) 1993-04-10 1994-04-07 Verfahren zur detektion von änderungen in bewegtbildern

Publications (2)

Publication Number Publication Date
JPH07508367A true JPH07508367A (ja) 1995-09-14
JP3357058B2 JP3357058B2 (ja) 2002-12-16

Family

ID=6485326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52261094A Expired - Lifetime JP3357058B2 (ja) 1993-04-10 1994-04-07 動画像における変化の検出方法

Country Status (5)

Country Link
US (1) US5654772A (ja)
EP (1) EP0645037B1 (ja)
JP (1) JP3357058B2 (ja)
DE (2) DE4311972A1 (ja)
WO (1) WO1994024634A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332753C2 (de) * 1993-09-25 1997-01-30 Bosch Gmbh Robert Verfahren zur Erkennung bewegter Objekte
DE4440671A1 (de) 1994-11-04 1996-05-09 Bosch Gmbh Robert Verfahren zur objektorientierten Erkennung bewegter Objekte
GB9502748D0 (en) * 1995-02-13 1995-03-29 Snell & Wilcox Ltd Video signal processing
GB2299233A (en) * 1995-03-21 1996-09-25 Ibm Video compression method involving conditional replenishment
US6661838B2 (en) * 1995-05-26 2003-12-09 Canon Kabushiki Kaisha Image processing apparatus for detecting changes of an image signal and image processing method therefor
JPH09130732A (ja) * 1995-11-01 1997-05-16 Matsushita Electric Ind Co Ltd シーンチェンジ検出方法および動画像編集装置
DE19601005A1 (de) * 1996-01-15 1997-07-17 Bosch Gmbh Robert Verfahren zur Erkennung bewegter Objekte in zeitlich aufeinanderfolgenden Bildern
US6061471A (en) * 1996-06-07 2000-05-09 Electronic Data Systems Corporation Method and system for detecting uniform images in video signal
US5767923A (en) * 1996-06-07 1998-06-16 Electronic Data Systems Corporation Method and system for detecting cuts in a video signal
US5959697A (en) * 1996-06-07 1999-09-28 Electronic Data Systems Corporation Method and system for detecting dissolve transitions in a video signal
US5920360A (en) * 1996-06-07 1999-07-06 Electronic Data Systems Corporation Method and system for detecting fade transitions in a video signal
US5778108A (en) * 1996-06-07 1998-07-07 Electronic Data Systems Corporation Method and system for detecting transitional markers such as uniform fields in a video signal
DE19630194B4 (de) * 1996-07-26 2006-06-01 Robert Bosch Gmbh Verfahren zur Detektion von Objekten
DE19827835B4 (de) * 1998-06-23 2012-01-19 Robert Bosch Gmbh Bildübertragungsverfahren und -vorrichtung
DE19848490B4 (de) * 1998-10-21 2012-02-02 Robert Bosch Gmbh Bildinformationsübertragungsverfahren und -vorrichtung
US6801246B2 (en) 2001-02-27 2004-10-05 Thomson Licensing, S.A. Method and apparatus for detecting change in video source material
WO2003028376A1 (en) * 2001-09-14 2003-04-03 Vislog Technology Pte Ltd Customer service counter/checkpoint registration system with video/image capturing, indexing, retrieving and black list matching function
AU2003245832A1 (en) * 2002-05-14 2003-11-11 Siemens Aktiengesellschaft Method for producing a transmission signal
GB2408877A (en) * 2003-12-03 2005-06-08 Safehouse Internat Inc Environment monitoring wherein parts of images may be masked
US7664292B2 (en) * 2003-12-03 2010-02-16 Safehouse International, Inc. Monitoring an output from a camera
AU2004233453B2 (en) * 2003-12-03 2011-02-17 Envysion, Inc. Recording a sequence of images
NZ536913A (en) * 2003-12-03 2006-09-29 Safehouse Internat Inc Displaying graphical output representing the topographical relationship of detectors and their alert status
US20050163345A1 (en) * 2003-12-03 2005-07-28 Safehouse International Limited Analysing image data
WO2005107240A1 (ja) * 2004-04-28 2005-11-10 Chuo Electronics Co., Ltd. 自動撮影方法および装置
US20060164658A1 (en) * 2005-01-26 2006-07-27 Eastman Kodak Company Light tone reproduction of binary rip output at high screen frequencies using post rip image processing
JP5061444B2 (ja) * 2005-09-20 2012-10-31 ソニー株式会社 撮像装置及び撮像方法
US20070252895A1 (en) * 2006-04-26 2007-11-01 International Business Machines Corporation Apparatus for monitor, storage and back editing, retrieving of digitally stored surveillance images
DE102009017772A1 (de) * 2009-04-16 2010-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und System zum Erkennen eines Objektes, und Verfahren und System zum Erzeugen einer Markierung in einer Bildschirmdarstellung mittels eines berührungslos gestikgesteuerten Bildschirmzeigers
CN108038851B (zh) * 2017-12-11 2020-02-07 中国科学技术大学 一种基于反馈和迭代的雷达图像差异检测方法
JP7636917B2 (ja) * 2021-03-16 2025-02-27 本田技研工業株式会社 移動体の移動量を推定する情報処理装置、情報処理方法、及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318039B1 (en) * 1987-11-26 1995-02-01 Fujitsu Limited An emergency watching system using an infrared image processing
JPH0293320A (ja) * 1988-09-30 1990-04-04 Nippon Petrochem Co Ltd 動的物体の追跡法
US5134472A (en) * 1989-02-08 1992-07-28 Kabushiki Kaisha Toshiba Moving object detection apparatus and method
GB2231750B (en) * 1989-04-27 1993-09-29 Sony Corp Motion dependent video signal processing
GB2231745B (en) * 1989-04-27 1993-07-07 Sony Corp Motion dependent video signal processing
JP2953712B2 (ja) * 1989-09-27 1999-09-27 株式会社東芝 移動物体検知装置
US5091925A (en) * 1990-01-18 1992-02-25 Siemens Aktiengesellschaft X-ray diagnostics installation with spatial frequency filtering
DE69229705T2 (de) * 1991-05-23 1999-12-23 Nippon Hoso Kyokai, Tokio/Tokyo Verfahren zur erkennung eines bewegungsvektors und vorrichtung dafür und system zur verarbeitung eines bildsignals mit dieser vorrichtung
DE4117774A1 (de) * 1991-05-31 1992-12-03 Telefunken Systemtechnik Verfahren zur ueberwachung von gelaende
KR100255528B1 (ko) * 1991-10-31 2000-05-01 요트.게.아. 롤페즈 디지탈 텔레비젼 영상을 송신기에서 수신기로 송신하기 위한 텔레비젼 시스템
US5420638A (en) * 1992-04-14 1995-05-30 U.S. Philips Corporation Subassembly for coding images with refresh correction of the data to be coded, and subassembly for decording signals representing these images and previously coded by means of a subassembly of the former kind
JP2611607B2 (ja) * 1992-06-29 1997-05-21 日本ビクター株式会社 シーンチェンジ検出装置

Also Published As

Publication number Publication date
DE4311972A1 (de) 1994-10-13
JP3357058B2 (ja) 2002-12-16
EP0645037A1 (de) 1995-03-29
DE59408465D1 (de) 1999-08-12
EP0645037B1 (de) 1999-07-07
US5654772A (en) 1997-08-05
WO1994024634A1 (de) 1994-10-27

Similar Documents

Publication Publication Date Title
JPH07508367A (ja) 動画像における変化の検出方法
CN101827204B (zh) 一种运动目标侦测方法及系统
KR100792283B1 (ko) 이동물체 자동 추적장치 및 방법
JP4616702B2 (ja) 画像処理
US20030123726A1 (en) Scene change detection apparatus
EP1542155A1 (en) Object detection
JP2005504457A (ja) 画像整列による動き検出
EP1542153A1 (en) Object detection
Wang et al. Real-time camera anomaly detection for real-world video surveillance
CN111553259A (zh) 一种图像去重方法及系统
EP1542152A1 (en) Object detection
US5963272A (en) Method and apparatus for generating a reference image from an image sequence
EP1542154A2 (en) Object detection
US7982774B2 (en) Image processing apparatus and image processing method
DE4332753C2 (de) Verfahren zur Erkennung bewegter Objekte
KR20090043416A (ko) 카메라 이동 영향을 검출하고 억제하는 감시 카메라 장치및 그 제어 방법
CN111242128A (zh) 目标检测方法、装置、计算机可读存储介质和计算机设备
CN113674232B (zh) 图像噪声预估方法、装置、电子设备和存储介质
JP2013214143A (ja) 車両異常管理装置、車両異常管理システム、車両異常管理方法、及びプログラム
WO2003001467A1 (en) Method and device for monitoring movement
JP3377659B2 (ja) 物体検出装置及び物体検出方法
CN111767881A (zh) 一种基于ai技术的自适应人群密度估计装置
Chung et al. Progressive background images generation
Shammi et al. An automated way of vehicle theft detection in parking facilities by identifying moving vehicles in CCTV video stream
DE112013001869T5 (de) Bilderzeugungsvorrichtung, Kameravorrichtung, Bilddarstellungsvorrichtung und Bilderzeugungsverfahren

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term