[go: up one dir, main page]

JPH0749099B2 - Liquid mixture separation method - Google Patents

Liquid mixture separation method

Info

Publication number
JPH0749099B2
JPH0749099B2 JP62163990A JP16399087A JPH0749099B2 JP H0749099 B2 JPH0749099 B2 JP H0749099B2 JP 62163990 A JP62163990 A JP 62163990A JP 16399087 A JP16399087 A JP 16399087A JP H0749099 B2 JPH0749099 B2 JP H0749099B2
Authority
JP
Japan
Prior art keywords
group
liquid mixture
separating
substituted
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62163990A
Other languages
Japanese (ja)
Other versions
JPS6411606A (en
Inventor
良成 房岡
恵美 今津
紀雄 川辺
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62163990A priority Critical patent/JPH0749099B2/en
Publication of JPS6411606A publication Critical patent/JPS6411606A/en
Publication of JPH0749099B2 publication Critical patent/JPH0749099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は混合液体の新規な分離方法に関する。さらに詳
しくは高温で著しく高い分離性能を有する分離膜を用い
て、効率よく液体を分離する方法に関する。
The present invention relates to a novel method for separating mixed liquids. More specifically, it relates to a method for efficiently separating a liquid by using a separation membrane having extremely high separation performance at high temperature.

[従来の技術] 従来から、混合液体の分離に関しては、蒸溜が一般的に
用いられている。しかし、蒸溜は共沸混合物、沸点の近
いもの、熱に対して不安定な物質の分離などが困難であ
るという問題点があった。これに対して近年、膜による
分離法が研究、開発されており今後の発展が期待されて
いる。
[Prior Art] Conventionally, distillation is generally used for separation of a mixed liquid. However, distillation has a problem that it is difficult to separate an azeotropic mixture, a substance having a close boiling point, and a substance unstable to heat. On the other hand, in recent years, a separation method using a membrane has been studied and developed, and future development is expected.

膜による分離方法はその分離因子、分離操作によって浸
透気化法、逆浸透法、透析法などがあり、逆浸透法、透
析法は海水、かん水の淡水化、超純水の製造、廃液の処
理など水処理の分野や食品工業、医療などの分野ですで
に実用化されているものもある。膜による分離法の中で
浸透気化法は、膜を隔てて片側に被分離混合液を置き、
もう一方を減圧にするかあるいは混合液成分に対して不
活性なガスを流すことによって混合液のうち、一成分を
選択的に透過させる方法である。この分離法は逆浸透法
の問題点である浸透圧の影響を受けることがなく、広い
濃度範囲の混合液の分離が可能な方法としてその利用範
囲は広い。
Membrane separation methods include permeation evaporation method, reverse osmosis method, dialysis method, etc. depending on the separation factor and separation operation. Reverse osmosis method, dialysis method such as desalination of seawater and brackish water, production of ultrapure water, treatment of waste liquid, etc. Some have already been put to practical use in the fields of water treatment, food industry, medical care, and the like. Among the membrane separation methods, the pervaporation method is to place the liquid mixture to be separated on one side across the membrane,
In this method, one component of the mixed liquid is selectively permeated by reducing the pressure of the other or by flowing an inert gas to the mixed liquid component. This separation method is not affected by the osmotic pressure, which is a problem of the reverse osmosis method, and is widely used as a method capable of separating a mixed solution having a wide concentration range.

従って、液体混合物としては有機液体/有機液体の混合
物、有機液体/水の混合物の分離を行うことができる、
さらに共沸混合物をつくる混合液体の一段濃縮も可能で
ある。
Therefore, it is possible to separate an organic liquid / organic liquid mixture and an organic liquid / water mixture as the liquid mixture,
Furthermore, it is possible to concentrate the mixed liquid to form an azeotropic mixture.

かかる浸透気化膜として、特開昭59−203610号公報,同
59−203607号公報,同59−203602号公報、同59−4402号
公報にスルホン化したエチレン共重合体、同58−84005
号公報,同58−89901号公報などに酸型官能基を持つ含
フッ素重合体からなるものが提案されている。また、特
開昭60−99305号公報においては、側鎖の炭素数が2〜2
0の炭化水素基を有するビニルエーテルとテトラフルオ
ロエチレンとの共重合体を用いて50℃で分離する方法が
提案されている。
As such a pervaporation membrane, Japanese Patent Laid-Open No. 59-203610,
59-203607, 59-203602 and 59-4402, sulfonated ethylene copolymers, 58-84005
JP-A No. 58-89901 and JP-A No. 58-89901 have proposed a fluoropolymer having an acid type functional group. Further, in JP-A-60-99305, the number of carbon atoms in the side chain is 2 to 2
A method of separating at 50 ° C. using a copolymer of vinyl ether having a hydrocarbon group of 0 and tetrafluoroethylene has been proposed.

さらに特開昭60−75306号公報に特定の置換アセチレン
のポリマーをもちいた浸透気化法が公開されている。こ
れに対して特願昭60−72542号,同60−72543号、同60−
278001号、同60−278002号、同60−278003号、同60−27
8004号において種々の置換アセチレンのポリマーからな
る膜を出願した。
Further, JP-A-60-75306 discloses a pervaporation method using a polymer of a specific substituted acetylene. On the other hand, Japanese Patent Application Nos. 60-72542, 60-72543 and 60-
278001, 60-278002, 60-278003, 60-27
No. 8004 filed for membranes composed of various substituted acetylene polymers.

[発明が解決しようとする問題点] しかしながら、これらの分離膜のほとんどは例えば水/
有機液体混合物系で水を選択的に透過するものであり、
有機液体を選択的に透過するものは少なくまた、その分
離係数は小さい。
[Problems to be Solved by the Invention] However, most of these separation membranes are, for example, water /
An organic liquid mixture system that selectively permeates water,
There are few that selectively permeate the organic liquid, and the separation coefficient is small.

これらの分離膜の中で有機液体選択透過膜としては、シ
リコーンゴムおよびポリ(1−トリメチルシリル−1−
プロピン)などが代表的なものである。
Among these separation membranes, silicone rubber and poly (1-trimethylsilyl-1-) are used as the organic liquid selective permeable membrane.
Propin) is a typical example.

しかし、シリコーンゴムはエタノール/水混合液の が約7、透過速度が0.2kg/m2・hr程度の分離性能を示し
ているが、十分な透過速度が得られず、かつ機械的強度
が小さいため、薄膜形成性にも問題があるとされてい
る。またポリ(1−トリメチルシリル−1−プロピン)
は、エタノール/水混合液の が10前後、透過速度が0.5kg/m2・hr程度の分離性能が示
されているがポリマー自身の安定性が不良であるなどの
問題点を有していた。
However, silicone rubber is a mixture of ethanol / water Shows a separation performance with a permeation rate of about 7 and a permeation rate of about 0.2 kg / m 2 · hr, but a sufficient permeation rate is not obtained and mechanical strength is low, so there is a problem with thin film formation. Has been done. Also poly (1-trimethylsilyl-1-propyne)
Is an ethanol / water mixture Of about 10 and a permeation rate of about 0.5 kg / m 2 · hr was shown, but there were problems such as poor stability of the polymer itself.

さらに、浸透気化法においては使用する膜の素材につい
ては種々の検討がなされているが、その分離方法につい
ては、いまだ十分に検討されているとは言えない。
Further, in the pervaporation method, various investigations have been made on the material of the membrane used, but it cannot be said that the separation method thereof has been sufficiently studied.

また特開昭60−99305号公報の例においても、50℃に昇
温しても、20℃の分離係数に比べて僅かの上昇しか得ら
れないものであった。
Also, in the example of JP-A-60-99305, even when the temperature is raised to 50 ° C., only a slight increase compared to the separation factor of 20 ° C. is obtained.

一般的にみれば、浸透気化法がいまだ実用化に至ってい
ないのは、膜の分離係数、透過速度、製膜性に問題があ
ったためである。特に有機液体−水の液体混合物を分離
対象とする場合殆どの膜は分離性の点で水選択透過性を
示し、有機液体選択透過性の膜は非常に少なく、かつ膜
性能(分離係数、透過速度など)の点で満足すべき状態
になっていないのが現状である。
Generally, the reason why the pervaporation method has not yet been put to practical use is that there are problems with the membrane separation coefficient, the permeation rate, and the film-forming property. In particular, when a liquid mixture of organic liquid-water is targeted for separation, most of the membranes show water selective permeability in terms of separability, and there are very few organic liquid selectively permeable membranes, and the membrane performance (separation coefficient, permeability) In terms of speed, etc.), the current situation is that we are not satisfied.

上記問題を改善するため本発明は、液体混合物の分離に
おいて、側鎖に炭素数が6以上の炭化水素基を有するポ
リマーから少なくともなる分離膜を用いて40℃以上の高
温において行なうことにより、優れた液体分離性能、特
に水溶性有機物の選択透過性に優れた浸透気化方法を提
供する。
In order to improve the above problems, the present invention is excellent in separating a liquid mixture at a high temperature of 40 ° C. or higher by using a separation membrane made of at least a polymer having a hydrocarbon group having 6 or more carbon atoms in a side chain. Provided is a pervaporation method which is excellent in liquid separation performance, in particular, selective permeability of water-soluble organic substances.

[問題点を解決するための手段] 上記問題を解決するために本発明は下記の構成から成
る。
[Means for Solving Problems] In order to solve the above problems, the present invention has the following configurations.

「活性層が、側鎖の炭素数が6以上の炭化水素基を有す
る特許請求の範囲に記載の一般式(1)で示されるポリ
(置換アセチレン)および/または置換ポリフェニレン
オキシドを主成分として含むポリマーからなり、かつ主
鎖に直結するハロゲンを含まないポリマーからなる分離
膜を用いて、温度が40℃以上の条件で液体混合物の分離
を行うことを特徴とする液体混合物の分離方法。」 本発明において分離膜の活性層としては、側鎖の炭素数
が6以上の炭化水素基を有するポリマーからなり、かつ
主鎖に直結するハロゲン含まないポリマーからなること
が必要である。高温において分離係数を高く維持し、効
率のよい分離を行うためである。
"The active layer contains, as a main component, a poly (substituted acetylene) represented by the general formula (1) and / or a substituted polyphenylene oxide having a hydrocarbon group whose side chain has 6 or more carbon atoms. A method for separating a liquid mixture, which comprises separating the liquid mixture at a temperature of 40 ° C. or higher using a separation membrane made of a polymer and not containing a halogen that is directly linked to the main chain. ” In the invention, the active layer of the separation membrane is required to be composed of a polymer having a hydrocarbon group having 6 or more carbon atoms in the side chain and not containing a halogen directly linked to the main chain. This is to maintain a high separation coefficient at high temperature and perform efficient separation.

使用し得るポリマーとしては、ポリ(置換アセチレ
ン)、置換ポリフェニレンオキシド、アクリレート系ポ
リマー、メタクリレート系ポリマー、アクリルアミド系
ポリマー、ビニルエーテル系ポリマー、ビニルエステル
系ポリマー、置換ポリスチレン、置換ポスルホン、置換
ポリカーボネート、置換ポリアミノ酸、アルケンをグラ
フト重合したポリマーなどである。
Polymers that can be used include poly (substituted acetylene), substituted polyphenylene oxide, acrylate-based polymers, methacrylate-based polymers, acrylamide-based polymers, vinyl ether-based polymers, vinyl ester-based polymers, substituted polystyrenes, substituted posulfones, substituted polycarbonates, substituted polyamino acids. , Polymers obtained by graft-polymerizing alkenes.

このうち好ましいポリマーとしては、下記一般式(1)
〜(3)のポリマーである。まず一般式(1)のポリマ
ーから説明する。
Among them, preferable polymers include the following general formula (1)
Are polymers of (3) to (3). First, the polymer of the general formula (1) will be described.

(式中R1は水素、アルキル基、置換アルキル基、フェニ
ル基、置換フェニル基、R2はC6以上の長鎖アルキル基、
C6以上の長鎖アルキル基を少なくとも有するトリアルキ
ルシリル基、C6以上の長鎖アルキル基を置換基として有
するフェニル基であり、これらのアルキル基上の少なく
とも1つの水素が1種類以上のハロゲン原子、フェニル
基で置換されていてもよい。)で表される構成単位から
主としてなる置換アセチレンのポリマーにおいて、R1
アルキル基としてメチル基、エチル基、プロピル基、ブ
チル基、ペンチル基、ヘキシル基、ヘプチル基など、置
換アルキル基としてベンジル基、フェニルエチル基、フ
ェニルプロピル基、フェニルブチル基、フェニルペンチ
ル基、フェニルヘキシル基、ナフチルメチル基、ナフチ
ルエチル基、ナフチルプロピル基、ナフチルブチル基、
ナフチルペンチル基、ナフチルヘキシル基、ジフェニル
メチル基、ジフェニルプロピル基、ジフェニルエチル
基、ジフェニルブチル基、ジフェニルペンチル基、ジフ
ェニルヘキシル基、トリフェニルメチル基、トリフェニ
ルエチル基、トリフェニルプロピル基、トリフェニルブ
チル基、トリフェニルペンチル基、トリフェニルヘキシ
ル基など、芳香族としては、フェニル基、ナフチル基、
アントラセニル基、ピレニル基など、置換芳香族として
は、4−メチルフェニル基、3−メチルフェニル基、2
−メチルフェニル基、2、4−ジメチルフェニル基、
2、3−ジメチルフェニル基、2、5−ジメチルフェニ
ル基、2、6−ジメチルフェニル基、3、4−ジメチル
フェニル基、3、5−ジメチルフェニル基、2、3、4
−トリメチルフェニル基、2、3、5−トリメチルフェ
ニル基、2、3、6−トリメチルフェニル基、2、4、
6−トリメチルフェニル基、2−クロロフェニル基、3
−クロロフェニル基、4−クロロフェニル基、2、4−
ジクロロフェニル基、2、3−ジクロロフェニル基、
2、5−ジクロロフェニル基、2、6−ジクロロフェニ
ル基、3、4−ジクロロフェニル基、3、5−ジクロロ
フェニル基、2、3、4−トリクロロフェニル基、2、
3、5−トリクロロフェニル基、2、3、6−トリクロ
ロフェニル基、2、4、6−トリクロロフェニル基、2
−フロロフェニル基、3−フロロフェニル基、4−フロ
ロフェニル基、2、4−ジフロロフェニル基、2、3−
ジフロロフェニル基、2、5−ジフロロフェニル基、
2、6−ジフロロフェニル基、3、4−ジフロロフェニ
ル基、3、5−ジフロロフェニル基、2、3、4−トリ
フロロフェニル基、2、3、5−トリフロロフェニル
基、2、3、6−トリフロロフェニル基、2、4、6−
トリフロロフェニル基、パーフロロフェニル基、2−ブ
ロモフェニル基、3−ブロモフェニル基、4−ブロモフ
ェニル基、2、4−ジブロモフェニル基、2、3−ジブ
ロモフェニル基、2、5−ジブロモフェニル基、2、6
−ジブロモフェニル基、3、4−ジブロモフェニル基、
3、5−ジブロモフェニル基、2、3、4−トリブロモ
フェニル基、2、3、5−トリブロモフェニル基、2、
3、6−トリブロモフェニル基、2、4、6−トリブロ
モフェニル基、クロロナフチル基、ジクロロナフチル
基、トリクロロナフチル基、ブロモナフチル基、ジブロ
モナフチル基、トリブロモナフチル基、フロロナフチル
基、ジフロロナフチル基、トリフロロナフチル基、パー
フロロナフチル基などがあげられる。R2のC6以上の長鎖
アルキル基としてはヘキシル基、ヘプチル基、オクチル
基、ノニル基、デシル基、ウンデシル基、ドデシル基、
トリデシル基、テトラデシル基、ペンタデシル基、ヘキ
サデシル基、ヘプタデシル基、オクタデシル基、ノナデ
シル基、アイコシル基、ヘンアイコシル基など、C6以上
の長鎖アルキル基を少なくとも有するトリアルキルシリ
ル基として、ヘキシルジメチルシリル基、ヘプチルジメ
チルシリル基、オクチルジメチルシリル基、ノニルジメ
チルシリル基、デシルジメチルシリル基、ウンデシルジ
メチルシリル基、ドデシルジメチルシリル基、トリデシ
ルジメチルシリル基、テトラデシルジメチルシリル基、
ベンタデシルジメチルシリル基、ヘキサデシルジメチル
シリル基、ヘプタデシルジメチルシリル基、オクタデシ
ルジメチルシリル基、ノナデシルジメチルシリル基、ア
イコシルジメチルシリル基、ヘンアイコシルジメチルシ
リル基など、C6以上の長鎖アルキル基を置換基として有
するフェニル基としては、ヘキシルフェニル基、ヘプチ
ルフェニル基、オクチルフェニル基、ノニルフェニル
基、デシルフェニル基、ウンデシルフェニル基、ドデシ
ルフェニル基、トリデシルフェニル基、テトラデシルフ
ェニル基、ペンタデシルフェニル基、ヘキサデシルフェ
ニル基、ヘプタデシルフェニル基、オクタデシルフェニ
ル基、ノナデシルフェニル基、アイコシルフェニル基、
ヘンアイコシルフェニル基などがあげられる。
(Wherein R 1 is hydrogen, an alkyl group, a substituted alkyl group, a phenyl group, a substituted phenyl group, R 2 is a C 6 or more long-chain alkyl group,
At least a trialkylsilyl group of C 6 or longer chain alkyl group, a phenyl group having a C 6 or longer chain alkyl group as a substituent, at least one halogen hydrogen is 1 or more on the alkyl groups It may be substituted with an atom or a phenyl group. In a polymer of a substituted acetylene mainly composed of a structural unit represented by), a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, or the like as the alkyl group of R 1, and a benzyl group as the substituted alkyl group. , Phenylethyl group, phenylpropyl group, phenylbutyl group, phenylpentyl group, phenylhexyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group, naphthylbutyl group,
Naphthylpentyl group, naphthylhexyl group, diphenylmethyl group, diphenylpropyl group, diphenylethyl group, diphenylbutyl group, diphenylpentyl group, diphenylhexyl group, triphenylmethyl group, triphenylethyl group, triphenylpropyl group, triphenylbutyl group Group, triphenylpentyl group, triphenylhexyl group, etc., as aromatic, phenyl group, naphthyl group,
Substituted aromatic groups such as anthracenyl group and pyrenyl group include 4-methylphenyl group, 3-methylphenyl group and 2
-Methylphenyl group, 2,4-dimethylphenyl group,
2,3-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,3,4
-Trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,
6-trimethylphenyl group, 2-chlorophenyl group, 3
-Chlorophenyl group, 4-chlorophenyl group, 2,4-
Dichlorophenyl group, 2,3-dichlorophenyl group,
2,5-dichlorophenyl group, 2,6-dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2,3,4-trichlorophenyl group, 2,
3,5-trichlorophenyl group, 2,3,6-trichlorophenyl group, 2,4,6-trichlorophenyl group, 2
-Fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,3-
Difluorophenyl group, 2,5-difluorophenyl group,
2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 2,3,4-trifluorophenyl group, 2,3,5-trifluorophenyl group, 2 3,6-trifluorophenyl group, 2,4,6-
Trifluorophenyl group, perfluorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2,4-dibromophenyl group, 2,3-dibromophenyl group, 2,5-dibromophenyl group Base 2,6
-Dibromophenyl group, 3,4-dibromophenyl group,
3,5-dibromophenyl group, 2,3,4-tribromophenyl group, 2,3,5-tribromophenyl group, 2,
3,6-tribromophenyl group, 2,4,6-tribromophenyl group, chloronaphthyl group, dichloronaphthyl group, trichloronaphthyl group, bromonaphthyl group, dibromonaphthyl group, tribromonaphthyl group, fluoronaphthyl group, difluoronaphthyl group Examples thereof include a fluoronaphthyl group, a trifluoronaphthyl group and a perfluoronaphthyl group. As a long-chain alkyl group having 6 or more R 2 hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group,
Tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, aicosyl group, heneicosyl group, etc., as a trialkylsilyl group having at least a C 6 or more long-chain alkyl group, a hexyldimethylsilyl group, Heptyldimethylsilyl group, octyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, undecyldimethylsilyl group, dodecyldimethylsilyl group, tridecyldimethylsilyl group, tetradecyldimethylsilyl group,
Preventor decyldimethylsilyl group, hexadecyl dimethyl silyl group, heptadecyl dimethylsilyl group, octadecyl dimethyl silyl group, nonadecyl dimethylsilyl group, Aiko sill butyldimethylsilyl group, etc. hen icons sill butyldimethylsilyl group, C 6 or longer chain alkyl The phenyl group having a group as a substituent, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, an undecylphenyl group, a dodecylphenyl group, a tridecylphenyl group, a tetradecylphenyl group, Pentadecylphenyl group, hexadecylphenyl group, heptadecylphenyl group, octadecylphenyl group, nonadecylphenyl group, eicosylphenyl group,
Henicosylphenyl groups and the like.

本発明におけるポリ(置換アセチレン)を得る方法とし
ては、特公昭51−37312号公報、同52−20511号公報、同
54−43037号公報、同55−23565号公報、同55−30722号
公報、特開昭57−31911号公報、同57−36106号公報、同
58−32608号公報、同59−78218号公報、同59−197410号
公報などに示される方法があげられる。具体的には、そ
れぞれの置換アセチレンモノマーを、タングステン系、
モリブデン系、タンタル系、ニオブ系の触媒を用いて、
また必要に応じてスズ、ケイ素、ビスマス、アルミニウ
ムなどの有機金属化合物を共触媒として用いて、炭化水
素、ハロゲン化炭化水素を溶媒として重合して得られ
る。
As a method for obtaining poly (substituted acetylene) in the present invention, Japanese Patent Publication Nos. 51-37312, 52-20511, and
54-43037, 55-23565, 55-30722, 57-31911, 57-36106,
58-32608, 59-78218, 59-197410 and the like. Specifically, each substituted acetylene monomer is a tungsten-based,
Using molybdenum-based, tantalum-based, and niobium-based catalysts,
Further, it can be obtained by polymerizing using a hydrocarbon or a halogenated hydrocarbon as a solvent, if necessary, using an organometallic compound such as tin, silicon, bismuth, or aluminum as a cocatalyst.

また、本発明においては置換ポリフェニレンオキシドを
用いてもよい。かかる置換ポリフェニレンオキシドと
は、下記一般式(2)、(3)で示される。
Further, a substituted polyphenylene oxide may be used in the present invention. The substituted polyphenylene oxide is represented by the following general formulas (2) and (3).

および/または (式中RはC6以上の長鎖アルキル基、C6以上の長鎖アル
キル基を少なくとも有するトリアルキルシリル基であ
り、これらのアルキル基上の少なくともも1つの水素が
1種類以上のハロゲン原子、フェニル基で置換されてい
てもよい。)で表わされる構成単位を少なくとも有する
置換ポリフェニレンオキシドにおいて、RのC6以上の長
鎖アルキル基としてはヘキシル基、ヘプチル基、オクチ
ル基、ノニル基、デシル基、ウンデシル基、ドデシル
基、トリデシル基、テトラデシル基、ペンタデシル基、
ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノ
ナデシル基、アイコシル基、ヘンアイコシル基など、C6
以上の長鎖アルキル基を少なくとも有するトリアルキル
シリル基として、ヘキシルジメチルシリル基、ヘプチル
ジメチルシリル基、オクチルジメチルシリル基、ノニル
ジメチルシリル基、デシルジメチルシリル基、ウンデシ
ルジメチルシリル基、ドデシルジメチルシリル基、トリ
デシルジメチルシリル基、テトラデシルジメチルシリル
基、ペンタデシルジメチルシリル基、ヘキサデシルジメ
チルシリル基、ヘプタデシルジメチルシリル基、オクタ
デシルジメチルシリル基、ノナデシルジメチルシリル
基、アイコシルジメチルシリル基、ヘンアイコシルジメ
チルシリル基など、ハロゲン原子としては、塩素、臭
素、フッ素などがあげられる。
And / or (In the formula, R is a C 6 or more long-chain alkyl group, a trialkylsilyl group having at least a C 6 or more long-chain alkyl group, and at least one hydrogen atom on these alkyl groups is at least one kind of halogen atom. , Which may be substituted with a phenyl group), in the substituted polyphenylene oxide having at least a constitutional unit represented by the formula (I), the C 6 or more long-chain alkyl group of R is a hexyl group, a heptyl group, an octyl group, a nonyl group, or decyl Group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group,
C 6 such as hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, heneicosyl group, etc.
As a trialkylsilyl group having at least the above long-chain alkyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, undecyldimethylsilyl group, dodecyldimethylsilyl group , Tridecyldimethylsilyl group, tetradecyldimethylsilyl group, pentadecyldimethylsilyl group, hexadecyldimethylsilyl group, heptadecyldimethylsilyl group, octadecyldimethylsilyl group, nonadecyldimethylsilyl group, aicosyldimethylsilyl group, HenAico Examples of the halogen atom such as sildimethylsilyl group include chlorine, bromine, fluorine and the like.

本発明における置換ポリフェニレンオキシドは一般に、
リチウム、ナトリウムなどでメタル化したポリフェニレ
ンオキシドに一般式 R−Z (4) [Rは一般式(2)の置換基Rと同じ置換基を表わし、
Zはハロゲン、アシラート、スルホネートなどの脱離基
を表わす]で表わされる反応剤を反応させて得ることが
できるが、これに限定されるものではない。
Substituted polyphenylene oxides in the present invention generally include
The polyphenylene oxide metallized with lithium, sodium or the like has the general formula RZ (4) [wherein R represents the same substituent as the substituent R in the general formula (2),
Z represents a leaving group such as halogen, acylate, sulfonate, etc.], but is not limited thereto.

さらに、本発明におけるポリマーは上記一般式(1)〜
(3)で表される構造単位を少なくとも有するポリ(置
換アセチレン)および/または置換ポリフェニレンオキ
シドであり、これらのポリマーを単独であるいは互いに
ブレンドして用いることができる。あるいは、本発明を
そこなわない範囲において上記一般式(1)〜(3)で
表される構造単位を少なくとも有するポリ(置換アセチ
レン)および/または置換ポリフェニレンオキシドに他
のモノマーを共重合させたり、あるいは他のポリマーを
ブレンドしてもかまわない。
Further, the polymer according to the present invention has the above general formula (1) to
A poly (substituted acetylene) and / or a substituted polyphenylene oxide having at least the structural unit represented by (3), and these polymers can be used alone or in a blend with each other. Alternatively, in a range that does not impair the present invention, other monomers are copolymerized with poly (substituted acetylene) and / or substituted polyphenylene oxide having at least the structural units represented by the general formulas (1) to (3), Alternatively, other polymers may be blended.

本発明に用いる膜は次のようにして得ることができる
が、これらに限定されるものではない。本発明に係わる
ポリマーを溶媒に溶解し、例えばガラス板、テフロン板
などの適当な表面上に流延した後、溶媒を蒸発させるこ
とによりフィルム状態とし、任意の手段で剥離させて膜
を得ることができる。あるいは、一般に逆浸透膜などの
非対称膜を得る方法に従って、溶媒の蒸発を途中でやめ
て、適当な凝固媒体中で凝固させて非対称膜として得る
こともできる。あるいは、ポリマーの分解点以下で加熱
プレスして膜を得ることもできる。また、これらのポリ
マーの稀薄溶液を多孔性支持体上に直接塗布し溶媒を蒸
発して、多孔性支持体上に超薄膜を形成させ、複合膜と
して使用することもできる。また、これらのポリマーの
溶液を溶媒と相溶性のない適当な溶媒(例えば水など)
の上に延展せしめ、溶媒を蒸発して得られた超薄膜を多
孔性支持体上に積層し、複合膜として使用することもで
きる。さらに、これらのポリマーの溶液を多孔性フィル
ム、多孔性シート、多孔性膜などの多孔性支持体に含浸
し、場合によって多孔性フィルム、多孔性シート、多孔
性膜で表面を覆って使用することもできる。
The film used in the present invention can be obtained as follows, but is not limited thereto. The polymer according to the present invention is dissolved in a solvent, cast on a suitable surface such as a glass plate or a Teflon plate, and then the solvent is evaporated to form a film, which is peeled off by any means to obtain a film. You can Alternatively, in general, according to a method for obtaining an asymmetric membrane such as a reverse osmosis membrane, evaporation of the solvent is stopped midway, and the solvent is coagulated in an appropriate coagulating medium to obtain an asymmetric membrane. Alternatively, the film can be obtained by hot pressing below the decomposition point of the polymer. It is also possible to use a dilute solution of these polymers directly on a porous support and evaporate the solvent to form an ultrathin film on the porous support, which can be used as a composite membrane. In addition, a solution of these polymers is not compatible with a suitable solvent (eg water).
It is also possible to use it as a composite film by spreading it on the porous support and laminating an ultrathin film obtained by evaporating the solvent onto the porous support. Further, a solution of these polymers may be impregnated into a porous support such as a porous film, a porous sheet or a porous membrane, and the surface may be covered with a porous film, a porous sheet or a porous membrane as the case may be. You can also

このようにして得られた膜の膜厚は10Åから1mmの値で
あり、均質膜としては0.1μm〜500μm、非対称膜とし
ては0.1μm〜500μm、さらに複合膜の超薄膜として10
Å〜100μmで使用することができる。
The thickness of the film thus obtained is 10Å to 1 mm, 0.1 μm to 500 μm as a homogeneous film, 0.1 μm to 500 μm as an asymmetric film, and 10 μm as an ultra thin film of a composite film.
Å ~ 100μm can be used.

また、本発明に係わるポリマーの溶液を得るために使用
される有機溶媒は、これらのポリマーあるいはブレンド
物をよく溶解し、製膜時に蒸発しやすいものであればい
かなるものでもよく、例えばベンゼン、トルエン、シク
ロヘキサン、n−ヘキサンなどの炭化水素系溶剤、テト
ラヒドロフランなどの含酸素炭化水素系溶剤、クロロホ
ルム、ジクロロメタン、四塩化炭素などのハロゲン化炭
化水素系溶剤などが良好に用いられる。
The organic solvent used to obtain the solution of the polymer according to the present invention may be any organic solvent as long as it dissolves these polymers or blends well and easily evaporates during film formation, such as benzene and toluene. Hydrocarbon solvents such as cyclohexane and n-hexane, oxygen-containing hydrocarbon solvents such as tetrahydrofuran, halogenated hydrocarbon solvents such as chloroform, dichloromethane and carbon tetrachloride are preferably used.

このようにして得られた膜は、平膜としてスパライラル
型、プレートアンドフレーム型、チューブラー型などの
液体分離膜装置に組み込むことができる。また、膜を中
空糸状あるいは複合中空糸状にして使用することもでき
る。しかし、本発明はこれらの膜の形状に左右されるも
のではない。
The membrane thus obtained can be incorporated as a flat membrane into a liquid separation membrane device of a spiral type, plate and frame type, tubular type, or the like. The membrane can also be used in the form of hollow fibers or composite hollow fibers. However, the invention is not dependent on the shape of these membranes.

本発明における分離方法は、浸透気化法(Pervaporatio
n法)であり、浸透気化法とは膜の一次側に披分離混合
液体を接触させ、二次側を減圧にするか、あるいは不活
性ガスを流して膜を透過すた成分を蒸気として取出す方
法である。
The separation method in the present invention is a pervaporation method.
n method), which is a pervaporation method, in which the separated and mixed liquid is brought into contact with the primary side of the membrane and the secondary side is depressurized, or an inert gas is passed to take out the components permeated through the membrane as vapor. Is the way.

浸透気化法による分離において、膜の二次側を減圧にす
る場合その圧力は0から700torrであり、好ましくは0.0
01から500torr、さらに好ましくは0.1から300torrであ
る。圧力が低すぎると透過した蒸気をトラップしにく
く、圧力が高すぎると透過速度が小さい。
In the separation by the pervaporation method, when reducing the pressure on the secondary side of the membrane, the pressure is 0 to 700 torr, preferably 0.0
01 to 500 torr, more preferably 0.1 to 300 torr. If the pressure is too low, it will be difficult to trap the permeated vapor, and if the pressure is too high, the permeation rate will be low.

また、浸透気化法による分離の温度は高いほうが透過速
度が大きく、分離係数も大きい、特に本発明におけるポ
リマーにおいては40℃以上で、披分離混合液体の沸点以
下の温度が好ましい。40℃より低い温度では分離係数が
低く披分離混合液体の沸点より高いと蒸気透過になって
しまう。
Further, the higher the temperature of separation by the pervaporation method, the higher the permeation rate and the larger the separation coefficient. Particularly, in the polymer of the present invention, the temperature is preferably 40 ° C. or higher and lower than the boiling point of the separation / mixture liquid. When the temperature is lower than 40 ° C, the separation coefficient is low, and when the temperature is higher than the boiling point of the separated mixed liquid, vapor permeation occurs.

なお、本発明における分離の温度とは供給液、膜面の温
度であり、詳しくは供給液に接した膜面の温度である。
The separation temperature in the present invention is the temperature of the supply liquid and the film surface, and more specifically, the temperature of the film surface in contact with the supply liquid.

本発明における被分離液体混合物は水溶性有機物と水の
混合液体、有機液体と有機液体の混合液体であり、水溶
性有機物とは、メタノール、エタノール、n−プロパノ
ール、i−プロパノール、n−ブタノールなどの水溶性
アルコール、およびエチルエーテル、テトラヒドロフラ
ン、ジオキサンなどのエーテル類、およびアセトン、メ
チルエチルケトン、などの水溶性ケトン類、および酢酸
などであり、有機液体と有機液体の混合液体とはメタノ
ール/酢酸メチル、メタノール/酢酸エチル、エタノー
ル/酢酸エチルなどである。この中でも特に水溶性有機
物と水の混合液体の分離に対して効果がある。
The liquid mixture to be separated in the present invention is a mixed liquid of a water-soluble organic substance and water, a mixed liquid of an organic liquid and an organic liquid, and the water-soluble organic substance is methanol, ethanol, n-propanol, i-propanol, n-butanol, or the like. Water-soluble alcohols and ethers such as ethyl ether, tetrahydrofuran and dioxane, water-soluble ketones such as acetone and methyl ethyl ketone, and acetic acid, and the mixed liquid of the organic liquid and the organic liquid is methanol / methyl acetate, Examples include methanol / ethyl acetate and ethanol / ethyl acetate. Among them, it is particularly effective for separating a mixed liquid of a water-soluble organic substance and water.

[実施例] 以下に実施例によって本発明の詳細を説明するが、もち
ろん本発明はこれらの実施例に限定されるものではな
い。またこの中で分離係数αおよび透過速度Qは次の式
で計算されるものである。
[Examples] Hereinafter, details of the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. Further, among these, the separation coefficient α and the transmission speed Q are calculated by the following equations.

▲α1 2▼=(C1/C2)/(C′1/C′) C1:透過液中のA成分の濃度(%) C2:透過液中のB成分の濃度(%) C′1:供給液中のA成分の濃度(%) C′2:供給液中のB成分の濃度(%) Q=W/A W:1時間当りの透過量(kg/hr) A:膜面積(m2) 参考例1 1−オクタデシルジメチルシリル−1−プロピン1.7gを
10mlのトルエンに溶解し五塩化タンタル36mg、テトラフ
ェニルスズ73mgを加えて80℃で24時間反応させた。反応
後、メタノールを加えて反応の停止を行ないポリマーを
析出させた。さらに、ポリマーをトルエンに溶解してメ
タノールで再沈精製した。濾取、乾燥してポリマー1.3g
を得た。
▲ α 1 2 ▼ = (C 1 / C 2 ) / (C ′ 1 / C ′ 2 ) C 1 : Concentration of component A in the permeate (%) C 2 : Concentration of component B in the permeate (%) ) C '1: concentration of component a in the feed solution (%) C' 2: concentration of the B component in the feed (%) Q = W / AW : permeation amount per hour (kg / hr) a: Membrane area (m 2 ) Reference Example 1 1.7 g of 1-octadecyldimethylsilyl-1-propyne
It was dissolved in 10 ml of toluene, 36 mg of tantalum pentachloride and 73 mg of tetraphenyltin were added, and the mixture was reacted at 80 ° C for 24 hours. After the reaction, methanol was added to stop the reaction to precipitate a polymer. Further, the polymer was dissolved in toluene and purified by reprecipitation with methanol. 1.3 g of polymer after filtering and drying
Got

参考例2 2−ヘンアイコシン2.0gを10mlのトルエンに溶解し五塩
化モリブデン37mg、テトラフェニルスズ58mgを加えて80
℃で24時間反応させた。反応後、メタノールを加えて反
応の停止を行ないポリマーを析出させた。さらに、ポリ
マーをトルエンに溶解してメタノールで再沈精製した。
濾取、乾燥してポリマー1.4gを得た。
Reference Example 2 2.0 g of 2-henaicosin was dissolved in 10 ml of toluene, and 37 mg of molybdenum pentachloride and 58 mg of tetraphenyltin were added to give 80.
The reaction was carried out at ℃ for 24 hours. After the reaction, methanol was added to stop the reaction to precipitate a polymer. Further, the polymer was dissolved in toluene and purified by reprecipitation with methanol.
The polymer was collected by filtration and dried to obtain 1.4 g of a polymer.

参考例3 ポリ(2,6−ジメチル−1,4−フェニレンオキシド)1.2g
を100mlのテトラヒドロフランに溶解し、3.1mlのテトラ
メチルエチレンジアミンを加えて13.1mlのn−ブチルリ
チウム(1.53Mヘキサン溶液)を滴下した。2時間反応
したのち、塩化オクタデカン6.6gを15mlのテトラヒドロ
フランに溶解して反応液に添加した。反応液からメタノ
ールで再沈して3.5gのオクタデシル化ポリフェニレンオ
キシドを得た。
Reference Example 3 Poly (2,6-dimethyl-1,4-phenylene oxide) 1.2 g
Was dissolved in 100 ml of tetrahydrofuran, 3.1 ml of tetramethylethylenediamine was added, and 13.1 ml of n-butyllithium (1.53M hexane solution) was added dropwise. After reacting for 2 hours, 6.6 g of octadecane chloride was dissolved in 15 ml of tetrahydrofuran and added to the reaction solution. The reaction solution was reprecipitated with methanol to obtain 3.5 g of octadecylated polyphenylene oxide.

参考例4 ポリ(2,6−ジメチル−1,4−フェニレンオキシド)1.2g
を100mlのテトラヒドロフランに溶解し、3.1mlのテトラ
メチルエチレンジアミンを加えて13.1mlのn−ブチルリ
チウム(1.53Mヘキサン溶液)を滴下した。2時間反応
したのち、オクタデシルジメチルシリルクロライド8.0g
を15mlのテトラヒドロフランに溶解して反応液に添加し
た。反応液からメタノールで再沈して4.1gのオクタデシ
ルジメチルシリル化ポリフェニレンオキシドを得た。
Reference Example 4 Poly (2,6-dimethyl-1,4-phenylene oxide) 1.2 g
Was dissolved in 100 ml of tetrahydrofuran, 3.1 ml of tetramethylethylenediamine was added, and 13.1 ml of n-butyllithium (1.53M hexane solution) was added dropwise. After reacting for 2 hours, octadecyldimethylsilyl chloride 8.0g
Was dissolved in 15 ml of tetrahydrofuran and added to the reaction solution. The reaction solution was reprecipitated with methanol to obtain 4.1 g of octadecyldimethylsilylated polyphenylene oxide.

実施例1 参考例1で得られたポリ(1−オクタデシルジメチルシ
リル−1−プロピン)0.2gをシクロヘキサン5mlに溶解
してキャスト溶液を調製した。これを、室温下、テフロ
ン板上にキャストし、室温放置することによって溶媒を
蒸発させ、膜厚15μmのフィルムを形成させた。このフ
ィルムを用いて、次の浸透気化条件で評価した。供給液
は、10重量%エタノール水溶液、透過側圧力は0.08〜25
torr、供給液温度は60℃とした。評価結果は、 透過速度Q=0.0332(kg/m2hr)となった。
Example 1 0.2 g of poly (1-octadecyldimethylsilyl-1-propyne) obtained in Reference Example 1 was dissolved in 5 ml of cyclohexane to prepare a cast solution. This was cast on a Teflon plate at room temperature and left at room temperature to evaporate the solvent to form a film having a thickness of 15 μm. This film was used for evaluation under the following pervaporation conditions. The supply liquid is a 10 wt% aqueous ethanol solution, and the permeate pressure is 0.08-25
The torr and supply liquid temperature were set to 60 ° C. The evaluation result is The permeation rate Q was 0.0332 (kg / m 2 hr).

実施例2 参考例2で得られたポリ(2−ヘンアイコシン)0.2gを
シクロヘキサン5mlに溶解してキャスト溶液を調製し
た。これを、室温下、テフロン板上にキャストし、室温
放置することによって溶媒を蒸発させ、膜厚21μmのフ
ィルムを形成させた。このフィルムを用いて、次の浸透
気化条件で評価した。供給液は、10重量%エタノール水
溶液、透過側圧力を0.08〜25torr、供給液温度は60℃と
した。評価結果は、 透過速度Q=0.0157(kg/m2hr)となった。
Example 2 0.2 g of poly (2-henaicosin) obtained in Reference Example 2 was dissolved in 5 ml of cyclohexane to prepare a cast solution. This was cast on a Teflon plate at room temperature and left at room temperature to evaporate the solvent, thereby forming a film having a thickness of 21 μm. This film was used for evaluation under the following pervaporation conditions. The feed liquid was a 10 wt% ethanol aqueous solution, the permeation side pressure was 0.08 to 25 torr, and the feed liquid temperature was 60 ° C. The evaluation result is The permeation rate Q was 0.0157 (kg / m 2 hr).

実施例3 参考例3で得られたオクタデシル化ポリフェニレンオキ
シド0.2gをシクロヘキサン5mlに溶解してキャスト溶液
を調製した。これを、室温下、テフロン板上にキャスト
し、室温放置することによって溶媒を蒸発させ、膜厚19
μmのフィルムを形成させた。このフィルムを用いて、
次の浸透気化条件で評価した。供給液は、10重量%エタ
ノール水溶液、透過側圧力は0.08〜25torr、供給液温度
は60℃とした。評価結果は、 透過速度Q=0.011(kg/m2hr)となった。
Example 3 0.2 g of the octadecylated polyphenylene oxide obtained in Reference Example 3 was dissolved in 5 ml of cyclohexane to prepare a cast solution. This was cast on a Teflon plate at room temperature, and the solvent was evaporated by leaving it at room temperature to give a film thickness of 19
A μm film was formed. With this film,
Evaluation was carried out under the following pervaporation conditions. The feed liquid was a 10 wt% ethanol aqueous solution, the permeate pressure was 0.08 to 25 torr, and the feed liquid temperature was 60 ° C. The evaluation result is The permeation rate Q was 0.011 (kg / m 2 hr).

実施例4 参考例4で得られたオクタデシルジメチルシリル化ポリ
フェニレンオキシド0.2gをシクロヘキサン5mlに溶解し
てキャスト溶液を調製した。これを、室温下、テフロン
板上にキャストし、室温放置することによって溶媒を蒸
発させ、膜厚25μmのフィルムを形成させた。このフィ
ルムを用いて、次の浸透気化条件で評価した。供給液
は、10重量%エタノール水溶液、透過側圧力は0.08〜25
torr、供給液温度は60℃とした。評価結果は、 透過速度Q=0.025(kg/m2hr)となった。
Example 4 0.2 g of octadecyldimethylsilylated polyphenylene oxide obtained in Reference Example 4 was dissolved in 5 ml of cyclohexane to prepare a cast solution. This was cast on a Teflon plate at room temperature and left at room temperature to evaporate the solvent, thereby forming a film having a thickness of 25 μm. This film was used for evaluation under the following pervaporation conditions. The supply liquid is a 10 wt% aqueous ethanol solution, and the permeate pressure is 0.08-25
The torr and supply liquid temperature were set to 60 ° C. The evaluation result is The permeation rate Q was 0.025 (kg / m 2 hr).

比較例1 実施例1と同じフィルムを用いて、供給液温度を20℃と
した以外は実施例1と同様の方法で評価したところ、 透過速度Q=0.0013(kg/m2hr)であった。
Comparative Example 1 When the same film as in Example 1 was used and evaluated in the same manner as in Example 1 except that the supply liquid temperature was 20 ° C., The permeation rate Q was 0.0013 (kg / m 2 hr).

比較例2 実施例2と同じフィルムを用いて、供給液温度を20℃と
した以外は実施例1と同様の方法で評価したところ、 透過速度Q=0.0018(kg/m2hr)となった。
Comparative Example 2 When the same film as in Example 2 was used and evaluated in the same manner as in Example 1 except that the supply liquid temperature was 20 ° C., The permeation rate Q was 0.0018 (kg / m 2 hr).

比較例3 実施例3と同じフィルムを用いて、供給液温度を20℃と
した以外は実施例1と同様の方法で評価したところ、 透過速度Q=0.0045(kg/m2hr)となった。
Comparative Example 3 When the same film as in Example 3 was used and evaluated in the same manner as in Example 1 except that the supply liquid temperature was 20 ° C., The permeation rate Q was 0.0045 (kg / m 2 hr).

比較例4 実施例4と同じフィルムを用いて、供給液温度を20℃と
した以外は実施例1と同様の方法で評価したところ、 透過速度Q=0.013(kg/m2hr)となった。
Comparative Example 4 The same film as in Example 4 was used and evaluated in the same manner as in Example 1 except that the supply liquid temperature was 20 ° C., The permeation rate Q was 0.013 (kg / m 2 hr).

[発明の効果] 本発明によって、有機液体混合物、特に水/有機液体混
合物の浸透気化法による分離において有機液体の分離係
数および透過速度を増大させる方法を提供することがで
きた。
EFFECTS OF THE INVENTION The present invention has made it possible to provide a method for increasing the separation coefficient and permeation rate of an organic liquid in the separation of an organic liquid mixture, particularly a water / organic liquid mixture by pervaporation.

この理由は定かではないが、片末端を固定された炭化水
素系側鎖は温度が上昇するに従って運動性が大きくな
り、有機物の透過速度が大きくなるものと考えられる。
一方水は炭化水素系側鎖が疎水性であるために排除され
て透過しにくいものと考えられる。これらの相乗効果に
より有機液体の分離係数が大きくなったものと予想され
る。
The reason for this is not clear, but it is considered that the hydrocarbon-based side chain having one end fixed has increased mobility as the temperature rises, and the permeation rate of organic substances increases.
On the other hand, it is considered that water is excluded because the hydrocarbon-based side chain is hydrophobic and is difficult to permeate. It is expected that the synergistic effect of these increases the separation factor of the organic liquid.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−230705(JP,A) 特開 昭61−78402(JP,A) 特開 昭61−171501(JP,A) 特開 昭58−128107(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-230705 (JP, A) JP 61-78402 (JP, A) JP 61-171501 (JP, A) JP 58- 128107 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】活性層が、側鎖の炭素数が6以上の炭化水
素基を有する下記一般式(1)で示されるポリ(置換ア
セチレン)および/または置換ポリフェニレンオキシド
を主成分として含むポリマーからなり、かつ主鎖に直結
するハロゲンを含まないポリマーからなる分離膜を用い
て、温度が40℃以上の条件で液体混合物の分離を行うこ
とを特徴とする液体混合物の分離方法。 (式中R1は水素、アルキル基、置換アルキル基、フェニ
ル基、置換フェニル基、R2は C6以上の長鎖アルキル基、 デシルジメチルシリル基、ウンデシルジメチルシリル
基、ドデシルジメチルシリル基、トリデシルジメチルシ
リル基、テトラデシルジメチルシリル基、ペンタデシル
ジメチルシリル基、ヘキサデシルジメチルシリル基、ヘ
プタデシルジメチルシリル基、オクタデシルジメチルシ
リル基、ノナデシルジメチルシリル基、アイコシルジメ
チルシリル基、ヘンアイコシルジメチルシリル基、 C6以上の長鎖アルキル基を置換基として有するフェニル
基 であり、これらのアルキル基上の少なくとも1つの水素
が1種類以上のハロゲン原子、フェニル基で置換されて
いてもよい。)
1. An active layer comprising a polymer containing as a main component poly (substituted acetylene) and / or substituted polyphenylene oxide represented by the following general formula (1) having a hydrocarbon group having 6 or more carbon atoms in a side chain. The method for separating a liquid mixture is characterized in that the liquid mixture is separated under the condition of a temperature of 40 ° C. or higher by using a separation membrane composed of a polymer containing no halogen and directly connected to the main chain. (In the formula, R 1 is hydrogen, an alkyl group, a substituted alkyl group, a phenyl group, a substituted phenyl group, R 2 is a C 6 or more long-chain alkyl group, a decyldimethylsilyl group, an undecyldimethylsilyl group, a dodecyldimethylsilyl group, Tridecyldimethylsilyl group, tetradecyldimethylsilyl group, pentadecyldimethylsilyl group, hexadecyldimethylsilyl group, heptadecyldimethylsilyl group, octadecyldimethylsilyl group, nonadecyldimethylsilyl group, aicosyldimethylsilyl group, henaicosyl A dimethylsilyl group, a phenyl group having a C 6 or more long-chain alkyl group as a substituent, and at least one hydrogen on these alkyl groups may be substituted with one or more kinds of halogen atoms or phenyl groups. )
【請求項2】置換ポリフェニレンオキシドが下記一般式 および/または (式中RはC6以上の長鎖アルキル基、C6以上の長鎖アル
キル基を少なくとも1個有するトリアルキルシリル基で
あり、これらのアルキル基のうち少なくとも1つの水素
が1種類以上のハロゲン原子、フェニル基で置換されて
いてもよい。)で表わされる構成単位を少なくとも有す
る置換ポリフェニレンオキシドであることを特徴とする
特許請求の範囲第(1)項記載の液体混合物の分離方
法。
2. A substituted polyphenylene oxide has the following general formula: And / or (In the formula, R is a C 6 or more long-chain alkyl group, a trialkylsilyl group having at least one C 6 or more long-chain alkyl group, and at least one hydrogen in these alkyl groups is at least one halogen. A method for separating a liquid mixture according to claim (1), which is a substituted polyphenylene oxide having at least a structural unit represented by an atom or a phenyl group.
【請求項3】温度が、40℃以上液体混合物の沸点以下で
あることを特徴とする特許請求の範囲第(1)項記載の
液体混合物の分離方法。
3. The method for separating a liquid mixture according to claim 1, wherein the temperature is not lower than 40 ° C. and not higher than the boiling point of the liquid mixture.
【請求項4】分離方法が浸透気化法であることを特徴と
する特許請求の範囲第(1)項記載の液体混合物の分離
方法。
4. The method for separating a liquid mixture according to claim 1, wherein the separating method is a pervaporation method.
【請求項5】液体混合物が水と有機液体の混合物である
ことを特徴とする特許請求の範囲第(1)項記載の液体
混合物の分離方法。
5. The method for separating a liquid mixture according to claim 1, wherein the liquid mixture is a mixture of water and an organic liquid.
【請求項6】有機液体が水溶性有機液体であることを特
徴とする特許請求の範囲第(5)項記載の液体混合物の
分離方法。
6. The method for separating a liquid mixture according to claim 5, wherein the organic liquid is a water-soluble organic liquid.
【請求項7】水溶性有機液体がアルコールであることを
特徴とする特許請求の範囲第(6)項記載の液体混合物
の分離方法。
7. The method for separating a liquid mixture according to claim 6, wherein the water-soluble organic liquid is alcohol.
JP62163990A 1987-07-02 1987-07-02 Liquid mixture separation method Expired - Lifetime JPH0749099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62163990A JPH0749099B2 (en) 1987-07-02 1987-07-02 Liquid mixture separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62163990A JPH0749099B2 (en) 1987-07-02 1987-07-02 Liquid mixture separation method

Publications (2)

Publication Number Publication Date
JPS6411606A JPS6411606A (en) 1989-01-17
JPH0749099B2 true JPH0749099B2 (en) 1995-05-31

Family

ID=15784664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62163990A Expired - Lifetime JPH0749099B2 (en) 1987-07-02 1987-07-02 Liquid mixture separation method

Country Status (1)

Country Link
JP (1) JPH0749099B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128107A (en) * 1982-01-22 1983-07-30 Showa Denko Kk Separating or concentrating method for liquid mixture
JPS6178402A (en) * 1984-09-21 1986-04-22 Shin Etsu Chem Co Ltd Separation of organic liquid mixture
JPS61171501A (en) * 1985-01-25 1986-08-02 Takamasa Kokubo Separation of liquid component using polymer separation membrane
JPS61230705A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Separation membrane for liquid mixture

Also Published As

Publication number Publication date
JPS6411606A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
TWI569974B (en) Hydrophilically modified fluorinated membrane (iv)
TWI584959B (en) Hydrophilically modified fluorinated membrane (iii)
JP2008018363A (en) Oxygen-enrichment membrane and composition for forming the same
WO1993022040A1 (en) Separating membrane made from polyion complex
JPH0749099B2 (en) Liquid mixture separation method
TWI585132B (en) Hydrophilically modified fluorinated membrane (ii)
JP5406627B2 (en) Air battery
JPH0628707B2 (en) Membrane for separating liquid mixtures
JP2011038051A (en) Polymer, gas separation membrane and method of manufacturing polymer
JPS61230705A (en) Separation membrane for liquid mixture
JPH0262299B2 (en)
JPH0464729B2 (en)
JPH0515497B2 (en)
JPH0478327B2 (en)
JPH0592129A (en) Composite semipermeable membrane
JPS63264102A (en) Liquid mixture separation membrane and its use
JPS63197503A (en) Separation membrane of liquid mixture
JPH0523820B2 (en)
JP2001129373A (en) Separation membrane and separation method
JPH05184890A (en) Water permselective osmotic vaporation membrane
JPH0157612B2 (en)
JP2952685B2 (en) Separation membrane for liquid separation
JPS61230706A (en) Liquid separating membrane
JPS62140605A (en) Selective separation membrane for liquid
JPH0390B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term