[go: up one dir, main page]

JPH0748377B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH0748377B2
JPH0748377B2 JP62050993A JP5099387A JPH0748377B2 JP H0748377 B2 JPH0748377 B2 JP H0748377B2 JP 62050993 A JP62050993 A JP 62050993A JP 5099387 A JP5099387 A JP 5099387A JP H0748377 B2 JPH0748377 B2 JP H0748377B2
Authority
JP
Japan
Prior art keywords
type
battery
positive electrode
manganese dioxide
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62050993A
Other languages
Japanese (ja)
Other versions
JPS63218156A (en
Inventor
俊彦 齋藤
俊之 能間
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62050993A priority Critical patent/JPH0748377B2/en
Publication of JPS63218156A publication Critical patent/JPS63218156A/en
Publication of JPH0748377B2 publication Critical patent/JPH0748377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はリチウム又はリチウム合金を負極活物質とする
非水系二次電池に係り、特に正極の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly to improvement of a positive electrode.

(ロ) 従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化物な
どが提案されているが、未だ実用化に至っていない。
(B) Conventional Technology Although molybdenum trioxide, vanadium pentoxide, titanium, and niobium sulfides have been proposed as positive electrode active materials for secondary batteries of this type, they have not yet been put to practical use.

一方、非水系一次電池の正極活物質としては二酸化マン
ガン、フッ化炭素が代表的なものとして知られており、
且これらは既に実用化されている。
On the other hand, manganese dioxide and fluorocarbon are known as typical examples of the positive electrode active material of the non-aqueous primary battery.
Moreover, these have already been put to practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的に
豊富であり且安価であるという利点を有するものであ
る。
Here, manganese dioxide is particularly advantageous in that it has excellent storage stability, is abundant in resources, and is inexpensive.

そして非水系一次電池の正極活物質として用いる二酸化
マンガンの結晶構造としては、特公昭49−25571号公報
に開示されているように250〜350℃の温度で熱処理した
γ−β型或いは米国特許第4,133,856に開示されている
ように350〜430℃の温度で熱処理したβ型が知られてい
る。
And, as the crystal structure of manganese dioxide used as a positive electrode active material of a non-aqueous primary battery, γ-β type heat-treated at a temperature of 250 to 350 ° C. or U.S. Pat. As disclosed in 4,133,856, β-type heat-treated at a temperature of 350 to 430 ° C is known.

上記した背景に鑑みて、非水系二次電池の正極活物質と
して二酸化マンガンを用いることが有益であると考えら
れるが、ここで二次電池特有の問題があることがわかっ
た。即ち、二酸化マンガンの結晶構造に関して、γ−β
型或いはβ型の二酸化マンガンは放電後の結晶構造の崩
れが大きく可逆性に難があることである。
In view of the above background, it is considered useful to use manganese dioxide as the positive electrode active material of the non-aqueous secondary battery, but it has been found here that there are problems peculiar to the secondary battery. That is, regarding the crystal structure of manganese dioxide, γ-β
Type or β-type manganese dioxide has a large collapse of the crystal structure after discharge and is difficult to be reversible.

これに対して、層状構造を持つδ型二酸化マンガンや、
γ−β型或いはβ型の二酸化マンガンより大きくチャン
ネルが存在する構造を持つα型二酸化マンガンを用いる
事により可逆性の向上が得られると考えられる。
On the other hand, δ type manganese dioxide having a layered structure,
It is considered that the reversibility can be improved by using α-type manganese dioxide having a structure in which channels are larger than those of γ-β type or β type manganese dioxide.

然し乍ら、δ型或いはα型の二酸化マンガンは、その構
造中にカリウムイオンまたはアンモニウムイオンを有し
ており充放電中にこれらのイオンが電解液中に溶出する
ため充放電特性が著しく劣化する。
However, δ-type or α-type manganese dioxide has potassium ions or ammonium ions in its structure and these ions are eluted into the electrolytic solution during charging / discharging, so that the charging / discharging characteristics are significantly deteriorated.

(ハ) 発明が解決しようとする問題点 本発明は、マンガン酸化物を正極活物質とする非水系二
次電池の充放電サイクル特性の改善を目的とする。
(C) Problems to be Solved by the Invention The present invention aims to improve the charge / discharge cycle characteristics of a non-aqueous secondary battery using manganese oxide as a positive electrode active material.

(ニ) 問題点を解決するための手段 本発明は急冷処理を施したスピネル型LiMn2O4、λ型二
酸化マンガン或いはこれらの中間的な結晶構造を有する
マンガン酸化物を活物質とする正極を用いる事を特徴と
する非水系二次電池にある。
(D) Means for Solving Problems The present invention provides a positive electrode using a quenching-treated spinel type LiMn 2 O 4 , λ type manganese dioxide or a manganese oxide having an intermediate crystal structure thereof as an active material. A non-aqueous secondary battery characterized by being used.

(ホ) 作用 スピネル型LiMn2O4はLiMn2O4の化学式で表わされ、主な
製法としては炭酸リチウムにMn2O3或いは任意の二酸化
マンガンをMn:Li=2:1のモル比で混合し800〜900℃で加
熱することによって得られる。λ型二酸化マンガンはス
ピネル型LiMn2O4に酸処理を施す事によってリチウムを
脱ドープして作られる事が報告されている(特公昭58−
34414号公報)。
(E) Action Spinel-type LiMn 2 O 4 is represented by the chemical formula of LiMn 2 O 4 , and the main production method is lithium carbonate with Mn 2 O 3 or arbitrary manganese dioxide at a molar ratio of Mn: Li = 2: 1. It is obtained by mixing in and heating at 800 to 900 ° C. It has been reported that λ type manganese dioxide is produced by dedoping lithium by subjecting spinel type LiMn 2 O 4 to acid treatment (Japanese Patent Publication Sho 58-
34414).

λ型二酸化マンガンはスピネル型LiMn2O4とほぼ同様の
X線回析図を示し、その違いは格子間隔が収縮した事に
よるわずかなピークシフトが見られる点だけにある。こ
の事から、λ型二酸化マンガンにおいても元のスピネル
型LiMn2O4におけるMnとOの配位の状態は維持されたま
まであると考えることができる。
λ-type manganese dioxide shows almost the same X-ray diffraction diagram as spinel-type LiMn 2 O 4, and the only difference is that a slight peak shift due to contraction of the lattice spacing is observed. From this, it can be considered that even in λ-type manganese dioxide, the state of coordination of Mn and O in the original spinel-type LiMn 2 O 4 is maintained.

また、酸処理の条件を変える事によって種々の濃度のリ
チウムを含有するスピネル型LiMn2O4とλ型二酸化マン
ガンの中間的な結晶構造のマンガン酸化物を作製するこ
とが可能である。
In addition, manganese oxides having an intermediate crystal structure of spinel-type LiMn 2 O 4 and λ-type manganese dioxide containing various concentrations of lithium can be prepared by changing the conditions of acid treatment.

ところで上記のスピネル型LiMn2O4、λ型二酸化マンガ
ン或いはこれらの中間的な結晶構造を有するマンガン酸
化物を非水系一次電池に用いた場合には、従来のγ−β
型二酸化マンガンに比べて大巾な改良は見られない。逆
に含有リチウム量が増加するにつれて容量が減少しスピ
ネル型LiMn2O4では容量が1/2に減少する。
By the way, when the above spinel type LiMn 2 O 4 , λ type manganese dioxide or manganese oxide having an intermediate crystal structure thereof is used in a non-aqueous primary battery, the conventional γ-β
No significant improvement is seen compared to type manganese dioxide. On the contrary, as the content of lithium increases, the capacity decreases, and in spinel type LiMn 2 O 4 , the capacity decreases to 1/2.

しかし非水系二次電池の正極活物質に用いた場合には、
γ−β型或いはβ型二酸化マンガンにみられた充放電サ
イクル進行に伴う結晶構造の崩壊が全く見られず、充放
電サイクル特性が大きく改良される。この原因について
はγ−β型或いはβ型二酸化マンガンが一次元のチャン
ネル構造を持つのに対し、スピネル型LiMn2O4、λ型二
酸化マンガン或いはこれらの中間的な結晶構造を有する
マンガン酸化物は3次元のチャンネル構造を持つ事によ
り充放電によるリチウムイオンのドープ、脱ドープがス
ムーズに行なわれる事が考えられる。
However, when used as the positive electrode active material of a non-aqueous secondary battery,
The collapse of the crystal structure associated with the progress of the charge / discharge cycle, which is observed in γ-β type or β type manganese dioxide, is not observed at all, and the charge / discharge cycle characteristics are greatly improved. Regarding this cause, γ-β type or β type manganese dioxide has a one-dimensional channel structure, whereas spinel type LiMn 2 O 4 , λ type manganese dioxide or manganese oxide having an intermediate crystal structure thereof is By having a three-dimensional channel structure, it is considered that lithium ions are smoothly doped and dedoped by charging and discharging.

このように非水系二次電池の正極活物質としてスピネル
型LiMn2O4、λ型二酸化マンガン或いはこれらの中間的
な結晶構造を有するマンガン酸化物を用いれば有益であ
るが、これらが急冷処理されたものであれば結晶構造に
歪が生じ、又結晶粒子が微粉化して反応効率が更に向上
する。
Thus, it is useful to use spinel-type LiMn 2 O 4 , λ-type manganese dioxide or manganese oxide having an intermediate crystal structure of these as the positive electrode active material of the non-aqueous secondary battery, but these are subjected to rapid cooling treatment. If this is the case, the crystal structure will be distorted, and the crystal particles will be finely divided to further improve the reaction efficiency.

(ヘ) 実施例 以下本発明の実施例について詳述する。(F) Example Hereinafter, an example of the present invention will be described in detail.

実施例1 スピネル型LiMn2O4はMn2O3100gとLi2CO323.4g(Mn:Li=
2:1のモル比)を混合し、650℃で6時間、ついで850℃1
4時間空気中において熱処理して得た。このようにして
得たスピネル型LiMn2O4を冷水中に一気に投入し、ロ過
後80℃で一晩乾燥したものを正極活物質とする。
Example 1 Spinel-type LiMn 2 O 4 was Mn 2 O 3 100 g and Li 2 CO 3 23.4 g (Mn: Li =
2: 1 molar ratio) for 6 hours at 650 ° C, then 850 ° C 1
It was obtained by heat treatment in air for 4 hours. The spinel-type LiMn 2 O 4 thus obtained is put into cold water all at once, filtered, and dried overnight at 80 ° C. to obtain a positive electrode active material.

この急冷処理済のスピネル型LiMn2O490重量%に、導電
剤としてのアセチレンブラック6重量%及び結着剤とし
てのフッ素樹脂粉末4重量%を混合して正極合剤とし、
この合剤を成型圧5トン/cm2で直径20.0mmに加圧成型し
た後、更に200〜300℃の温度で真空熱処理して正極とす
る。この正極の理論容量は50mAHである。
90% by weight of the spinel type LiMn 2 O 4 which has been subjected to the quenching treatment is mixed with 6% by weight of acetylene black as a conductive agent and 4% by weight of fluororesin powder as a binder to form a positive electrode mixture,
This mixture is pressure-molded at a molding pressure of 5 ton / cm 2 to a diameter of 20.0 mm, and then vacuum heat-treated at a temperature of 200 to 300 ° C to obtain a positive electrode. The theoretical capacity of this positive electrode is 50 mAH.

負極は所定厚みのリチウム板を直径20.0mmに打ち抜いた
ものであり、この負極の理論容量は200mAHである。
The negative electrode is a lithium plate having a predetermined thickness punched out to a diameter of 20.0 mm, and the theoretical capacity of this negative electrode is 200 mAH.

セパレータはポリプロピレン製微孔性薄膜を用い、電解
液にはプロピレンカーボネートとジメトキシエタンとの
等体積混合溶媒に過塩素酸リチウムを1M溶解したものを
用いて直径24.0mm、高さ3.0mmの電池を作成した。この
本発明電池を(A1)とする。
The separator uses a polypropylene microporous thin film, the electrolyte is a mixture of propylene carbonate and dimethoxyethane 1M lithium perchlorate dissolved in 1M, using a diameter 24.0mm, height 3.0mm battery Created. This battery of the present invention is referred to as (A 1 ).

第1図は本発明電池の半断面図を示し、正極(1)は正
極集電体(2)を介して正極缶(3)に電気接続され、
又負極(4)は負極集電体(5)を介して負極缶(6)
に電気接続されている。そして正負極(1)(4)はセ
パレータ(7)により隔離され、又正負極缶(3)
(6)は絶縁パッキング(8)により電気的接触が阻止
されている。
FIG. 1 shows a half sectional view of a battery of the present invention, in which a positive electrode (1) is electrically connected to a positive electrode can (3) through a positive electrode current collector (2),
The negative electrode (4) is connected to the negative electrode current collector (5) and the negative electrode can (6).
Electrically connected to. The positive and negative electrodes (1) and (4) are separated by the separator (7), and the positive and negative electrode cans (3).
The electrical contact of (6) is blocked by the insulating packing (8).

尚、参考のために急冷処理を施さないスピネル型LiMn2O
4を正極活物質とすることを除いて他は実施例1と同様
の参考電池(B1)を作成した。
For reference, spinel type LiMn 2 O without quenching treatment
A reference battery (B 1 ) was prepared in the same manner as in Example 1 except that 4 was used as the positive electrode active material.

実施例2 実施例1の方法で作成した急冷処理済のスピネル型LiMn
2O430gを4Nの硫酸中に170時間浸漬した後、2の純水
で洗浄してλ型二酸化マンガンを作成した。この酸処理
によってスピネル型LiMn2O4に含まれていたリチウムが
完全に取除かれたことを原子吸光分析により確認した。
Example 2 Quenched spinel type LiMn prepared by the method of Example 1
30 g of 2 O 4 was immersed in 4 N sulfuric acid for 170 hours, and then washed with pure water of 2 to prepare λ-type manganese dioxide. It was confirmed by atomic absorption spectrometry that lithium contained in the spinel type LiMn 2 O 4 was completely removed by this acid treatment.

そしてこのλ型二酸化マンガンを正極活物質として用い
ることを除いて他は実施例1と同様の本発明電池(A2
を作成した。
Then, the battery of the present invention (A 2 ) similar to that of Example 1 except that this λ-type manganese dioxide was used as the positive electrode active material.
It was created.

尚、参考のために急冷処理を施さないスピネル型LiMn2O
4を出発物質とするλ型二酸化マンガンを正極活物質と
することを除いて他は実施例2と同様の参考電池(B2
を作成した。
For reference, spinel type LiMn 2 O without quenching treatment
Reference battery (B 2 ) similar to that of Example 2 except that λ-type manganese dioxide starting from 4 was used as the positive electrode active material.
It was created.

実施例3 実施例1の方法で作成した急冷処理済のスピネル型LiMn
2O4を、0.5Nの硫酸中に100時間浸漬して、スピネル型Li
Mn2O4とλ型二酸化マンガンの中間的な結晶構造を有す
るマンガン酸化物を作製した。この酸処理によってスピ
ネル型LiMn2O4に含まれていたリチウムのほぼ1/2が取除
かれたことが原子吸光分析により確認された。
Example 3 A spinel-type LiMn that has been subjected to the quenching treatment prepared by the method of Example 1
2 O 4 was immersed in 0.5 N sulfuric acid for 100 hours to form spinel type Li
A manganese oxide having an intermediate crystal structure between Mn 2 O 4 and λ-type manganese dioxide was prepared. It was confirmed by atomic absorption spectrometry that almost half of the lithium contained in the spinel type LiMn 2 O 4 was removed by this acid treatment.

そしてこの中間的な結晶構造を有するマンガン酸化物を
正極活物質として用いることを除いて他は実施例1と同
様の本発明電池(A3)を作成した。
Then, a battery (A 3 ) of the present invention was prepared in the same manner as in Example 1 except that this manganese oxide having an intermediate crystal structure was used as the positive electrode active material.

尚、参考のために急冷処理を施さないスピネル型LiMn2O
4を出発物質とする中間的な結晶構造を有するマンガン
酸化物を正極活物質とすることを除いて他は実施例3と
同様の参考電池(B3)を作成した。
For reference, spinel type LiMn 2 O without quenching treatment
A reference battery (B 3 ) was prepared in the same manner as in Example 3 except that manganese oxide having an intermediate crystal structure starting from 4 was used as the positive electrode active material.

又、本発明電池の優位性を確認するために次のような比
較電池を作成した。
Further, the following comparative battery was prepared in order to confirm the superiority of the battery of the present invention.

比較例1 I.C.No.12の化学二酸化マンガンを空気中で200〜400℃
の温度で熱処理して得たγ−β型二酸化マンガンを正極
活物質とし、他は実施例1と同様の電池を作成した。こ
の比較電池を(C1)とする。
Comparative Example 1 Chemical No. 12 manganese dioxide in air at 200-400 ℃
A battery similar to that of Example 1 was produced except that γ-β type manganese dioxide obtained by heat treatment at the temperature of was used as the positive electrode active material. Let this comparison battery be (C 1 ).

比較例2 リチウムをドープせず、空気中で200〜400℃の温度で20
時間熱処理したδ型二酸化マンガンを正極活物質とし、
他は実施例1と同様の電池を作成した。この比較電池を
(C2)とする。
Comparative Example 2 Without doping lithium, at a temperature of 200 to 400 ° C. in air
Δ-type manganese dioxide heat treated for a period of time as a positive electrode active material,
A battery similar to that in Example 1 was made otherwise. Let this comparison battery be (C 2 ).

比較例3 硫酸マンガン溶液に過マンガン酸カリウムと硝酸カリウ
ムを加えて得たα型二酸化マンガンに対し、リチウムを
ドープせず、空気中で200〜400℃の温度で熱処理したも
のを正極活物質とし、他は実施例1と同様の電池を作成
した。この比較電池を(C3)とする。
Comparative Example 3 α-type manganese dioxide obtained by adding potassium permanganate and potassium nitrate to a manganese sulfate solution was not doped with lithium and was heat-treated in air at a temperature of 200 to 400 ° C. as a positive electrode active material, A battery similar to that in Example 1 was made otherwise. The comparative battery and (C 3).

第2図はこれら電池のサイクル特性図を示し、サイクル
条件は電池3mAで4時間放電し、電流3mAで充電し充電終
止電圧4.0Vとした。
FIG. 2 shows the cycle characteristics of these batteries. The cycle condition was that the battery was discharged at 3 mA for 4 hours and charged at a current of 3 mA to a charge end voltage of 4.0V.

第2図により本発明電池(A1)(A2)(A3)は比較電池
(C1)(C2)(C3)に比してサイクル特性が飛躍的に向
上しているのがわかる。
It can be seen from FIG. 2 that the batteries (A 1 ) (A 2 ) (A 3 ) of the present invention have dramatically improved cycle characteristics as compared with the comparative batteries (C 1 ) (C 2 ) (C 3 ). Recognize.

又、本発明電池(A1)(A2)(A3)は参考電池(B1
(B2)(B3)に比してもサイクル特性が改善されている
のがわかる。この理由は前述したように本発明電池に用
いた正極活物質が急冷処理されているため結晶構造に歪
が生じ、又結晶粒子が微粉化し反応効率が高められたこ
とに起因するものである。下表に本発明電池(A1
(A2)(A3)及び参考電池(B1)(B2)(B3)に用いた
正極活物質の平均粒径を示す。
The batteries (A 1 ) (A 2 ) (A 3 ) of the present invention are reference batteries (B 1 ).
It can be seen that the cycle characteristics are improved even compared to (B 2 ) and (B 3 ). This is because, as described above, the positive electrode active material used in the battery of the present invention is rapidly cooled, so that the crystal structure is distorted, and the crystal particles are finely divided to enhance the reaction efficiency. Battery of the present invention (A 1 )
(A 2 ) (A 3 ) and reference batteries (B 1 ) (B 2 ) (B 3 ) The average particle size of the positive electrode active material used is shown.

(ト) 発明の効果 上述した如く、非水系二次電池の正極活物質として急冷
処理を施したスピネル型LiMn2O4、λ型二酸化マンガン
或いはこれらの中間的な結晶構造を有するマンガン酸化
物を用いることによりこの種電池のサイクル特性を向上
させることができるものであり、その工業的価値は極め
て大である。
(G) Effect of the Invention As described above, spinel-type LiMn 2 O 4 , λ-type manganese dioxide or manganese oxide having an intermediate crystal structure between them, which has been subjected to quenching treatment, is used as the positive electrode active material of a non-aqueous secondary battery. By using it, the cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.

尚、本発明は実施例で示した非水電解液を用いた二次電
池に限定されず、固定電解質を用いた非水系二次電池に
も適用しうることは明白である。
It is obvious that the present invention is not limited to the secondary battery using the non-aqueous electrolytic solution shown in the examples, but can be applied to the non-aqueous secondary battery using the fixed electrolyte.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明電池の半断面図、第2図は電池のサイク
ル特性図を夫々示す。 (1)……正極、(3)……正極缶、(4)……負極、
(6)……負極缶、(7)……セパレータ、(8)……
絶縁パッキング、 (A1)(A2)(A3)……本発明電池、 (B1)(B2)(B3)……参考電池、 (C1)(C2)(C3)……比較電池。
FIG. 1 is a half sectional view of the battery of the present invention, and FIG. 2 is a cycle characteristic diagram of the battery. (1) …… positive electrode, (3) …… positive electrode can, (4) …… negative electrode,
(6) …… Negative electrode can, (7) …… Separator, (8) ……
Insulating packing, (A 1 ) (A 2 ) (A 3 ) …… Invention battery, (B 1 ) (B 2 ) (B 3 ) …… Reference battery, (C 1 ) (C 2 ) (C 3 ) …… Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム又はリチウム合金を活物質とする
負極と、急冷処理を施したスピネル型LiMn2O4、λ型二
酸化マンガン或いはこれらの中間的な結晶構造を有する
マンガン酸化物を活物質とする正極とを備えた非水系二
次電池。
1. A negative electrode using lithium or a lithium alloy as an active material, and a rapidly cooled spinel type LiMn 2 O 4 , λ type manganese dioxide or a manganese oxide having an intermediate crystal structure thereof as an active material. Non-aqueous secondary battery having a positive electrode that
JP62050993A 1987-03-05 1987-03-05 Non-aqueous secondary battery Expired - Lifetime JPH0748377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050993A JPH0748377B2 (en) 1987-03-05 1987-03-05 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050993A JPH0748377B2 (en) 1987-03-05 1987-03-05 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63218156A JPS63218156A (en) 1988-09-12
JPH0748377B2 true JPH0748377B2 (en) 1995-05-24

Family

ID=12874312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050993A Expired - Lifetime JPH0748377B2 (en) 1987-03-05 1987-03-05 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0748377B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611265B2 (en) * 1987-10-17 1997-05-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
DE4025208A1 (en) * 1990-08-09 1992-02-13 Varta Batterie ELECTROCHEMICAL SECONDARY ELEMENT
JPH09134723A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPS63218156A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
JPH0746607B2 (en) Non-aqueous secondary battery
JP3244314B2 (en) Non-aqueous battery
JP2578646B2 (en) Non-aqueous secondary battery
JPH04267053A (en) Lithium secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0748377B2 (en) Non-aqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH04345759A (en) Non-aqueous solvent secondary battery
JPH11329424A (en) Nonaqueous secondary battery
JPS6138583B2 (en)
JP2692932B2 (en) Non-aqueous secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JPH0679485B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JPH04162356A (en) Positive electrode activated material and manufacture thereof for lithium secondary battery
JPH0212768A (en) Lithium secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP3021478B2 (en) Non-aqueous secondary battery
JP2627318B2 (en) Non-aqueous secondary battery
JPH0787098B2 (en) Non-aqueous secondary battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term