JPH0747265A - Mechanochemical element using polymer gel and method for controlling the element - Google Patents
Mechanochemical element using polymer gel and method for controlling the elementInfo
- Publication number
- JPH0747265A JPH0747265A JP23104593A JP23104593A JPH0747265A JP H0747265 A JPH0747265 A JP H0747265A JP 23104593 A JP23104593 A JP 23104593A JP 23104593 A JP23104593 A JP 23104593A JP H0747265 A JPH0747265 A JP H0747265A
- Authority
- JP
- Japan
- Prior art keywords
- polymer gel
- layer
- polymer
- mechanochemical
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Manipulator (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
(57)【要約】
【目的】 イオン拡散手段とシールド電場手段から敏速
な応動をする高分子ゲル素子により、電子・機械工学分
野の小型メカノケミカル素子を可能とする。
【構成】 繊維状またはフィルム状の高分子ゲルと内部
側電極の部材を混入あるいは組み込み構成した高分子ゲ
ル層のイオン拡散手段と、該高分子ゲル層は分極層を介
して外部側電極層で取り囲むシールド電場手段と、前記
高分子ゲル層と分極層と外部側電極層と、を電解質溶液
とともに柔軟性高分子膜で密閉封止するカプセル手段
と、各部センサー値及び各制御指令具の値と予め設定さ
れた値により制御信号を出力し、且つ制御出力信号によ
り印加電圧を変化させて高分子ゲル素子の膨潤度を制御
する電子制御手段と、を備えることを特徴としている。
(57) [Abstract] [Purpose] A polymer gel element that responds promptly from ion diffusion means and shield electric field means enables a small mechanochemical element in the field of electronic and mechanical engineering. [Structure] An ion diffusion means of a polymer gel layer in which a fibrous or film-like polymer gel and a member of an inner electrode are mixed or incorporated, and the polymer gel layer is an outer electrode layer through a polarization layer. Enclosing shield electric field means, capsule means for hermetically sealing the polymer gel layer, the polarization layer, and the external electrode layer together with an electrolyte solution with a flexible polymer film, and sensor values of each part and values of each control command tool. An electronic control means for controlling the swelling degree of the polymer gel element by outputting a control signal according to a preset value and changing the applied voltage according to the control output signal.
Description
【0001】[0001]
【産業上の利用分野】本発明は、化学エネルギーを直接
機械的エネルギーに変換する高分子ゲル応用のメカノケ
ミカル素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer gel application mechanochemical element for directly converting chemical energy into mechanical energy.
【0002】[0002]
【従来の技術】高分子ゲルは、液体を吸収し保持する利
点があるので、食品分野、工業製品分野、医学・薬学分
野、土木・建築分野、農業分野、ライフサイエンス分野
など様々な分野で実用に供されている。実用で代表され
る高分子ゲル製品は、食品分野では人工イクラなど、工
業製品分野ではサニタリー用品や写真フィルムなど、医
学・薬学分野ではコンタクトレンズや創傷被覆剤など、
土木・建築分野ではシーリング材や漏水防止剤など、農
業分野では土壌保水剤など、ライフサイエンス分野では
バイオ工学品など、膨潤収縮機能材料としての高分子ゲ
ルは実用上十分であった。2. Description of the Related Art Polymer gels have the advantage of absorbing and retaining liquids, so they are used in various fields such as food, industrial products, medicine / pharmaceuticals, civil engineering / construction, agriculture, and life sciences. Have been used for. Polymer gel products represented by practical use include artificial salmon roe in the food field, sanitary products and photographic films in the industrial product field, contact lenses and wound dressing in the medical and pharmaceutical fields, etc.
Polymer gels as swelling / shrinking functional materials were practically sufficient, such as sealing materials and water leakage preventives in the civil engineering and construction fields, soil water retention agents in the agricultural field, biotechnology products in the life science field.
【0003】しかし、化学エネルギーを直接機械的エネ
ルギーに変換する効率のよいメカノケミカル素子として
実用に供する場合では、素子の駆動原理が液体の組成を
変化させる方法、例えばフィルム状の高分子ゲル膜を用
い液体組成を変化させる(文献:第3回高分子学会高分
子ゲル研究会要旨集・鈴木誠1988)時では、水とア
セトンの交互流動に要する時間が必要となり、PAN系
ゲル繊維を用いpHを変化させる(文献:高分子加工・
奥居徳昌ら1988)時においても、応答速度が生体筋
肉に比べて遅くpHの変化に要する時間も必要となる。
また、駆動原理が電気刺激による方法、例えば高分子電
解質ゲルを用い直流電圧を印加する(文献:機能材料・
長田義仁1987など)の応用による、医療用チューブ
(特開昭64−320068参照)や、アクチュエータ
ー(特開昭64−164804参照)などに代表される
実施例では、応答速度が生体筋肉に比べて遅いなどの欠
点があった。However, in practical use as a highly efficient mechanochemical element that directly converts chemical energy into mechanical energy, a driving principle of the element is to change the composition of liquid, for example, a film-like polymer gel film is used. At the time of changing the composition of the liquid used (reference: The 3rd Polymer Society of Japan Polymer Gel Workshop, Makoto Suzuki 1988), the time required for alternating flow of water and acetone is required, and PAN-based gel fiber is used for pH. (Reference: Polymer processing
Okui, Norimasa et al., 1988), the response speed is slower than that of living muscle and the time required for pH change is also required.
In addition, a driving principle is a method based on electrical stimulation, for example, a direct current voltage is applied using a polymer electrolyte gel (reference: functional material
In an embodiment represented by a medical tube (see JP-A-64-320068), an actuator (see JP-A-64-164804), etc., the response speed is higher than that of a living muscle by the application of Yoshida Nagata 1987). There were drawbacks such as being slow.
【0004】メカノケミカル変換素子は、従来の電力変
換や熱変換などと比較して、エネルギー変換効率は60
%以上と格段によいが、この応答速度が遅いことや駆動
液の組成を変化させるための時間と装置を要するなどの
欠点は、電子・機械工学分野のメカノケミカル素子に応
用する場合、小型で敏速な応動作業を要望する点におい
て問題があった。The mechanochemical conversion element has an energy conversion efficiency of 60 as compared with conventional power conversion and heat conversion.
% Is extremely good, but the drawbacks such as slow response speed and time and equipment for changing the composition of the driving liquid are small when applied to mechanochemical elements in the fields of electronic and mechanical engineering. There was a problem in requesting prompt response work.
【0005】この改善策として、高分子のゲルフィルム
膜はより薄くゲル繊維はより微細にすることで、高分子
ゲル内へのイオン拡散時間を短縮する方法がある。しか
し、この方法でも極細繊維に加工できる高分子ゲル繊維
などを例にしても、繊維の直径が主体筋肉繊維の繊細さ
に近付くことは現時点では技術的に限界があり、ゲル内
でのイオン拡散時間の短縮や駆動液の組成を変化させる
ポンプ装置のスペースなどを考慮すると、小型実装が要
求される分野への応用は困難となる。As a countermeasure for this, there is a method of shortening the ion diffusion time into the polymer gel by making the polymer gel film membrane thinner and making the gel fibers finer. However, even if a polymer gel fiber that can be processed into ultrafine fibers by this method is used as an example, it is technically limited at the present time that the diameter of the fiber approaches the delicacy of the main muscle fiber. Considering the shortening of the time and the space of the pump device that changes the composition of the driving liquid, it is difficult to apply it to the field where miniaturization is required.
【0006】[0006]
【発明が解決しようとする課題】解決しようとする問題
点は、電子・機械工学分野のメカノケミカル素子として
高分子ゲルを応用する場合において、敏速な応答速度を
備える小型素子ができない点である。The problem to be solved is that when a polymer gel is applied as a mechanochemical element in the field of electronic and mechanical engineering, a small element having a quick response speed cannot be obtained.
【0007】[0007]
【課題を解決するための手段】本発明は、機能性のよい
電子・機械工学分野のメカノケミカル素子を可能とする
ために、繊維状またはフィルム状の高分子ゲルと内部側
電極の部材を混入あるいは組み込み構成した高分子ゲル
層のイオン拡散手段と、該高分子ゲル層は分極層を介し
て外部側電極層で取り囲むシールド電場手段と、前記高
分子ゲル層と分極層と外部側電極層と、を電解質溶液と
ともに柔軟性高分子膜で密閉封止するカプセル手段と、
各部センサー値及び各制御指令具の値と予め設定された
値により制御信号を出力し、且つ制御出力信号により印
加電圧を変化させて高分子ゲル素子の膨潤度を制御する
電子制御手段と、を備えることを最も主要な特徴とす
る。小型で敏速な応答速度を備えるという目的を最小な
部品構成でメカノケミカル素子を実現した。According to the present invention, a fibrous or film-like polymer gel and an inner electrode member are mixed in order to enable a mechanochemical element in the field of electronic and mechanical engineering having good functionality. Alternatively, the ion diffusion means of the built-in polymer gel layer, the shield electric field means surrounding the polymer gel layer with the outer electrode layer through the polarization layer, the polymer gel layer, the polarization layer, and the outer electrode layer , A capsule means for hermetically sealing the flexible polymer membrane together with the electrolyte solution,
An electronic control unit that outputs a control signal according to the value of each part sensor value and each control command tool and a preset value, and changes the applied voltage according to the control output signal to control the swelling degree of the polymer gel element, Preparing is the most important feature. We have realized a mechanochemical element with a minimum component structure for the purpose of being small and having a quick response speed.
【0008】[0008]
【実施例】図1は、本発明のメカノケミカル素子に高分
子ゲル繊維を適用した例の1実施例の断面図で、図2
は、素子の制御方法の該略図である。EXAMPLE FIG. 1 is a sectional view of an example of application of polymer gel fiber to the mechanochemical element of the present invention.
FIG. 4 is a schematic view of a method for controlling a device.
【0009】繊維状の高分子ゲル1の周囲に極細繊維化
の内部側電極2を巻付けた複数本を束ねて高分子ゲル層
が構成され、該高分子ゲル1の両端は通常繊維化して両
端部の径を細くしながら素子の両突端部内側に集束して
各々接着剤で接着固定され、複数の内部側電極2の一端
は、作動部A側で電極引出し部7に接続する高分子ゲル
層を取り巻く集極線へ接続されて高分子ゲル層を成し、
直流電圧を高分子ゲルに印加する際、電極繊維は常にゲ
ル繊維に直接接触していることでゲル繊維内にイオンを
速やかに拡散できるため、機能よくイオン拡散手段が実
行されている。A polymer gel layer is constructed by bundling a plurality of finely-fiberized inner electrodes 2 around a fibrous polymer gel 1, and both ends of the polymer gel 1 are usually made into fibers. While reducing the diameter of both ends, they are focused on the inside of both projecting ends of the element and are fixedly adhered by an adhesive respectively, and one end of each of the plurality of internal electrodes 2 is a polymer which is connected to the electrode lead-out part 7 on the operating part A side. It is connected to the collector wire surrounding the gel layer to form a polymer gel layer,
When a direct current voltage is applied to the polymer gel, the electrode fibers are always in direct contact with the gel fibers so that ions can be quickly diffused into the gel fibers, so that the ion diffusing means is functioning well.
【0010】また、上記のように構成する高分子ゲル層
は、印加電圧による膨潤と収縮時において、ゲル繊維が
軸方向の伸縮率が大で常時中心方向へ集束するので、コ
イル状の内部側電極2は、ゲルの表面に密着しながら容
易に軸方向の伸縮ができ、曲げなどによる電極の切断が
あっても複数繊維の多接触から電導効果も得られる。Further, in the polymer gel layer having the above-mentioned structure, the gel fibers have a large axial expansion / contraction rate and are always focused toward the center during swelling and contraction due to an applied voltage. The electrode 2 can easily expand and contract in the axial direction while being in close contact with the surface of the gel, and even if the electrode is cut by bending or the like, the conductive effect can be obtained from the multiple contact of a plurality of fibers.
【0011】また、高分子ゲル層の高分子ゲル1材料に
は、ポリアクリルアミドを紡糸してブタジェンエポキシ
ドで架橋したPAAM系、通常のポリアクリロニトルを
やく200℃で熱処理し架橋を生じさせたのち、未反応
のCN基をカルボキシル基に変性したPAN系、リン酸
化ポリビニルアルコールを架橋したPVA系のほか、ポ
リビニルアルコール(PVA)−ポリアクリル酸(PA
A)−ポリアクリルアミン(PAlAm)を架橋した複
合繊維、などのゲル繊維が効果的である。Further, the polymer gel 1 material of the polymer gel layer was a PAAM system prepared by spinning polyacrylamide and crosslinking it with butadiene epoxide, and ordinary polyacrylonitrile was heat-treated at 200 ° C. to cause crosslinking. After that, in addition to PAN type in which unreacted CN group is modified to carboxyl group, PVA type in which phosphorylated polyvinyl alcohol is crosslinked, polyvinyl alcohol (PVA) -polyacrylic acid (PA
Gel fibers such as A) -polyacrylic amine (PAAlAm) cross-linked composite fibers are effective.
【0012】分極層4は、高分子ゲル層の側面周囲を取
り囲むように微細繊維化した不導電性の高分子繊維でメ
ッシュ状に組み備えられていることで、高分子ゲル層の
膨潤と収縮の変化に伴い、素子の軸方向への伸縮を容易
にさせると同時に、中央胴部の径を変化させるため、高
分子ゲル層部の電解質溶液の総量を一定化し、絶縁膜と
イオン通過膜、高分子ゲル層の保護、などの機能性を向
上させている。The polarization layer 4 is provided in a mesh-like structure with non-conductive polymer fibers that are finely divided into fibers so as to surround the side surface of the polymer gel layer, so that the polymer gel layer swells and contracts. With the change of, to facilitate the expansion and contraction of the element in the axial direction, and at the same time, to change the diameter of the central body part, the total amount of the electrolyte solution in the polymer gel layer part is made constant, and the insulating film and the ion passage film, Functionality such as protection of polymer gel layer is improved.
【0013】外部側電極層3は、上記の分極層4の側面
周囲を取り囲むように微細繊維化した金属でメッシュ状
に組み、素子の作動部A側に繊維電極の端を一連に接続
して電極引出し部8に接続し設置されたことで、素子の
軸方向へ分極層4と同様に伸縮を容易にし、繊維電極に
よる広面積電極から電場のイオンの交換性がよい。The external electrode layer 3 is assembled in a mesh shape with a finely fibrillated metal so as to surround the side surface of the above-mentioned polarization layer 4, and the ends of the fiber electrodes are connected in series to the operating portion A side of the element. By being installed in connection with the electrode lead-out portion 8, expansion and contraction are facilitated in the axial direction of the element similarly to the polarization layer 4, and the ion exchange of the electric field from the wide area electrode by the fiber electrode is good.
【0014】高分子膜5は、脂肪族ポリアミド系の柔軟
高分子膜で、だ円ボール形で複数本の縦筋部が成形さ
れ、両突端部は固化して高分子ゲル1の繊維両端部と各
々接続され、さらに外部の作動部A、Bに各々接続して
設けられ、該高分子膜5の内部には高分子ゲル層、分極
層4、外部側電極層3を収納するとともに電解質溶液を
注入して密封封止され、外周部に内部側電極2と外部側
電極3に各々接続した電極引出し部7、8を設け、素子
の膨潤と収縮にともない側面に縦しわを有す円筒形とだ
円ボール形が反復できるようにして、カプセル手段を実
行している。The polymer film 5 is a flexible polymer film of an aliphatic polyamide and has a plurality of vertical stripes formed in an elliptical ball shape, and both projecting end portions are solidified and both fiber end portions of the polymer gel 1 are solidified. The polymer gel layer, the polarization layer 4, and the external electrode layer 3 are housed inside the polymer membrane 5 and are also connected to the external actuation units A and B, respectively, and the electrolyte solution Is sealed and sealed, and the outer peripheral portions are provided with electrode lead-out portions 7 and 8 respectively connected to the inner side electrode 2 and the outer side electrode 3, and a cylindrical shape having vertical wrinkles on the side faces as the element swells and contracts. The encapsulation means is implemented so that the elliptical ball shape can be repeated.
【0015】また、上記カプセル手段の素子内部に封入
するアセトンなど有機溶質による電解質溶液の場合の印
加電圧は、±2V前後で、KClなどの溶質を用いる場
合においては、印加電圧を±1V前後にして電極繊維に
導電性ポリマー(ポリピロールなど)を被覆して、高分
子鎖の酸化還元反応によるアニオンやカチオンを可逆的
に放出・吸収させ(イオンのドーピング、脱ドーピング
による)電解質溶液の水素イオン濃度を変化させて高分
子ゲルの膨潤と収縮を制御するとよい。The applied voltage in the case of an electrolyte solution of an organic solute such as acetone sealed inside the element of the encapsulation means is about ± 2V, and when a solute such as KCl is used, the applied voltage is about ± 1V. The electrode fiber is coated with a conductive polymer (polypyrrole, etc.) to reversibly release and absorb anions and cations due to the oxidation-reduction reaction of polymer chains (by ion doping and undoping), and the hydrogen ion concentration of the electrolyte solution To control the swelling and shrinking of the polymer gel.
【0016】そして、図2の該略図において、素子のp
H値や温度などの素子情報24と、末端の作業状況を把
握するための、カメラ・マイクなどの視聴覚センサーか
らの視聴覚情報26と、人工皮膚、タッチシートなどの
圧力感知センサーからの出力情報27、作業環境を把握
するための温度、物質、形状などの識別器からの環境情
報28、等の値と、操作をする制御指令具25の任意値
と、を電子制御部20へ入力させ、予め設定された値に
より制御信号を電源供給部21へ出力し、且つ電源供給
部21は制御信号により印加電圧を変化させ高分子ゲル
素子の膨潤度を制御する電子制御手段を実行している。Then, in the schematic diagram of FIG.
Element information 24 such as H value and temperature, audiovisual information 26 from an audiovisual sensor such as a camera / microphone for grasping the work status at the end, and output information 27 from a pressure sensitive sensor such as artificial skin or a touch sheet. , A value of environment information 28 from a discriminator such as a temperature, a substance, and a shape for grasping a work environment, and an arbitrary value of a control command tool 25 to be operated are input to the electronic control unit 20 in advance, The control signal is output to the power supply unit 21 according to the set value, and the power supply unit 21 executes electronic control means for controlling the swelling degree of the polymer gel element by changing the applied voltage according to the control signal.
【0017】また、高分子ゲル素子は、負荷開始の制御
出力信号により直流電流が電極へ流れる時、内部側電極
2がアノード陽極の場合、電極はイオンの受渡しによる
酸化反応から電極周囲の電解質溶液のpH値を酸性化さ
せ、ゲル繊維内へイオンが拡散しゲルの解離度により高
分子ゲルの網目間が収縮することでメカノケミカル素子
として機能し、一方外部側電極3はカソード陰極から還
元反応で、電極周囲の電解質溶液のpH値をアルカリ性
としているが、負荷終了の制御出力信号は電源供給部2
1からの供給電位を逆転して供給する設定信号から、負
荷終了の制御出力信号により、両電極の反応はそれまで
とは反転して高分子ゲルの膨潤行程を促しながら、同時
にアノード陽極時の電極表面の不働体化を防止してい
る。Further, in the polymer gel element, when a DC current flows to the electrode due to a load start control output signal, when the inner electrode 2 is an anode / anode, the electrode is an electrolyte solution around the electrode due to an oxidation reaction due to ion transfer. The pH value of is acidified, the ions diffuse into the gel fiber, and the mesh of the polymer gel contracts due to the dissociation degree of the gel to function as a mechanochemical element, while the external electrode 3 is reduced from the cathode to the cathode. The pH value of the electrolyte solution around the electrodes is alkaline, but the load end control output signal is the power supply unit 2.
From the setting signal supplied by reversing the supply potential from 1, the reaction output of both electrodes is reversed by the control output signal of the end of load and the swelling process of the polymer gel is promoted, and at the same time at the time of anode anode The passivation of the electrode surface is prevented.
【0018】[0018]
【発明の効果】以上説明したように本発明の高分子ゲル
によるメカノケミカル素子及び制御方法は、生体筋肉の
性質に近い値が得られ、電気ノイズや障害音の発生がな
いことから機能性がよく、特に電子関連機器のアクチュ
エーターやマニピュレーターなどの応用に適していると
いう利点がある。また、従来の電磁形のサブミリサイズ
のモータでは小型化とともに負荷特性から無能化となる
が、メカノケミカル素子では、小型化でもエネルギーの
変換は高効率で安定しているのでマイクロマシーンなど
の精密機械にも適用できる。As described above, the mechanochemical element and control method using the polymer gel of the present invention has a value close to the properties of living muscles, and does not generate electrical noise or disturbing sound, so that the functionality is high. Well, there is an advantage that it is particularly suitable for applications such as actuators and manipulators of electronic devices. In addition, conventional electromagnetic sub-millimeter size motors become smaller and inoperable due to load characteristics, but with mechanochemical elements, energy conversion is highly efficient and stable even with miniaturization, so precision machines such as micromachines Can also be applied to.
【図1】本発明のメカノケミカル素子の1実施方法を示
した説明図である。FIG. 1 is an explanatory diagram showing one implementation method of the mechanochemical element of the present invention.
【図2】本発明のメカノケミカル素子の制御方法を示し
た概略説明図である。FIG. 2 is a schematic explanatory view showing a control method of the mechanochemical element of the present invention.
1 高分子ゲル 2 内部側電極 3 外部側電極 4 分極層 5 高分子膜 6 電解質溶液 7、8 電極引出し部 1 polymer gel 2 inner side electrode 3 outer side electrode 4 polarization layer 5 polymer membrane 6 electrolyte solution 7, 8 electrode extraction part
Claims (3)
電解質溶液の種類、電圧の印加等によって生ずる膨潤度
変化を一次元の寸法変化として取り出すメカノケミカル
素子において、繊維状またはフィルム状の高分子ゲルと
内部側電極の部材を混入あるいは組み込み構成した高分
子ゲル層のイオン拡散手段と、該高分子ゲル層は分極層
を介して外部側電極層で取り囲むシールド電場手段と、
前記高分子ゲル層と分極層と外部側電極層と、を電解質
溶液とともに柔軟性高分子膜で密閉封止するカプセル手
段と、各部センサー値及び各制御指令具の値と予め設定
された値により制御信号を出力し、且つ制御出力信号に
より印加電圧を変化させて高分子ゲル素子の膨潤度を制
御する電子制御手段と、を備えたことを特徴とする高分
子ゲルによるメカノケミカル素子1. A mechanochemical element in which a fibrous or film-like polymer gel takes out a change in swelling degree caused by the type of electrolyte solution, application of voltage, etc. as a one-dimensional dimensional change, and a fibrous or film-like polymer An ion diffusing means of a polymer gel layer in which a gel and a member of an inner electrode are mixed or incorporated, and the polymer gel layer is surrounded by an outer electrode layer through a polarization layer, and a shield electric field means,
Capsule means for hermetically sealing the polymer gel layer, the polarization layer, and the external electrode layer with the electrolyte solution together with the flexible polymer film, and the sensor value of each part and the value of each control command device and the preset value A mechanochemical element using a polymer gel, comprising: an electronic control unit that outputs a control signal and changes the applied voltage according to the control output signal to control the swelling degree of the polymer gel element.
層は、それぞれ繊維化部材を網目状に組み、素子の軸方
向に伸縮することを特徴とする請求項1記載の高分子ゲ
ルによるメカノケミカル素子2. The polymer gel mechano according to claim 1, wherein the polarization layer and the outer electrode layer of the shield electric field means are composed of fibrous members in a mesh shape and expand and contract in the axial direction of the element. Chemical element
それまでの電極の電位を逆電位にさせ電圧を印加するこ
とを特徴とする請求項1記載の高分子ゲルによるメカノ
ケミカル素子の制御方法3. The voltage application end signal of the electronic control means is
2. The method for controlling a mechanochemical element using a polymer gel according to claim 1, wherein the potential of the electrodes so far is reversed to apply a voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23104593A JPH0747265A (en) | 1993-08-09 | 1993-08-09 | Mechanochemical element using polymer gel and method for controlling the element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23104593A JPH0747265A (en) | 1993-08-09 | 1993-08-09 | Mechanochemical element using polymer gel and method for controlling the element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0747265A true JPH0747265A (en) | 1995-02-21 |
Family
ID=16917422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23104593A Pending JPH0747265A (en) | 1993-08-09 | 1993-08-09 | Mechanochemical element using polymer gel and method for controlling the element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0747265A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092257A (en) * | 2012-11-06 | 2014-05-19 | Institute Of National Colleges Of Technology Japan | Control method and control device of er fluid |
US10060851B2 (en) | 2013-03-05 | 2018-08-28 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
US10359362B2 (en) | 2013-04-15 | 2019-07-23 | Plexense, Inc. | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
-
1993
- 1993-08-09 JP JP23104593A patent/JPH0747265A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092257A (en) * | 2012-11-06 | 2014-05-19 | Institute Of National Colleges Of Technology Japan | Control method and control device of er fluid |
US10060851B2 (en) | 2013-03-05 | 2018-08-28 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
US10359362B2 (en) | 2013-04-15 | 2019-07-23 | Plexense, Inc. | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250167A (en) | Electrically controlled polymeric gel actuators | |
WO2004054082A1 (en) | Polymer actuator | |
Moschou et al. | Artificial muscle material with fast electroactuation under neutral pH conditions | |
JP5733964B2 (en) | Polymer actuator | |
US20070190150A1 (en) | Polymer actuator | |
Chen et al. | Giant thermopower of hydrogen ion enhanced by a strong hydrogen bond system | |
JPWO2009150697A1 (en) | Conductive polymer actuator and manufacturing method thereof | |
Lewis et al. | Development of an all-polymer, axial force electrochemical actuator | |
JPH0747265A (en) | Mechanochemical element using polymer gel and method for controlling the element | |
Diao et al. | Rapid Photothermal-Responsive Soft Hydrogel Actuator Contained Ti3C2T x MXene and Laponite Clay with Enhanced Mechanical Properties | |
US7935743B1 (en) | Electrically driven mechanochemical actuators that can act as artificial muscle | |
JP2005304212A (en) | Hydro-gel actuator | |
Di Pasquale et al. | The evolution of ionic polymer metal composites towards greener transducers | |
EP1859526A1 (en) | Biomimetic electro-active paper actuators | |
Salehpoor et al. | Linear and platform-type robotic actuators made from ion-exchange membrane-metal composites | |
JPH0775356A (en) | Mechanochemical actuator | |
JP4691703B2 (en) | Actuator element and manufacturing method thereof | |
Rashid et al. | Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method | |
CN116295960A (en) | Super-capacitance type off-electricity flexible pressure sensor and preparation method thereof | |
WO2020140501A1 (en) | Flexible element and method for controlling deformation thereof | |
de Alvarenga et al. | Overview of Electroactive Polymers: Types and Their Applications | |
Carpi et al. | Electroactive polymer artificial muscles: an overview | |
Peng et al. | Preparation and Characterization of Electro-responsive Graphene Oxide/Hydrolyzed Polyacrylamide/Sodium Alginate Hydrogel Fiber | |
CN114944782B (en) | Driving mechanism based on dielectric elastomer material and preparation method of driver | |
CN205620053U (en) | Piezoelectric sensor |