[go: up one dir, main page]

JPH0746611B2 - Thin lithium battery manufacturing method - Google Patents

Thin lithium battery manufacturing method

Info

Publication number
JPH0746611B2
JPH0746611B2 JP60055188A JP5518885A JPH0746611B2 JP H0746611 B2 JPH0746611 B2 JP H0746611B2 JP 60055188 A JP60055188 A JP 60055188A JP 5518885 A JP5518885 A JP 5518885A JP H0746611 B2 JPH0746611 B2 JP H0746611B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte
current collector
battery
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055188A
Other languages
Japanese (ja)
Other versions
JPS61214365A (en
Inventor
龍 長井
和伸 松本
耕三 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP60055188A priority Critical patent/JPH0746611B2/en
Publication of JPS61214365A publication Critical patent/JPS61214365A/en
Publication of JPH0746611B2 publication Critical patent/JPH0746611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リチウムまたはリチウム合金を負極とし、
正負両極集電板の周辺部において熱融着性材料にて融着
封止された構造を有する薄型リチウム電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention uses lithium or a lithium alloy as a negative electrode,
The present invention relates to a thin lithium battery having a structure in which a peripheral portion of a positive / negative bipolar current collector plate is fusion-sealed with a heat-fusible material.

〔従来の技術〕[Conventional technology]

従来より汎用されるボタン型やコイン型などのリチウム
電池は、一般に、正極としてTiS2などの活物質とテフロ
ン粉末などの結合剤と必要に応じて炭素粉末などの電子
伝導助剤とを混合してシート状に成形したものを使用す
ると共に、負極としてリチウムまたはリチウム合金を使
用し、これら両極間にセパレータを介在させて正極集電
板と負極集電板との間に配置し、かつリチウム塩と非水
溶媒とからなる高流動性の液体である電解質をセパレー
タおよび正極に浸潤するように注入した上で、両極集電
板の周縁をパツキング材を挾んで屈曲して封止した構造
を有している(文献不詳)。
Conventionally used button-type or coin-type lithium batteries generally have a positive electrode in which an active material such as TiS 2 is mixed with a binder such as Teflon powder and, if necessary, an electron conduction aid such as carbon powder. And lithium or lithium alloy is used as the negative electrode, and a separator is interposed between the both electrodes to dispose between the positive electrode current collector plate and the negative electrode current collector plate, and a lithium salt is used. It has a structure in which an electrolyte, which is a highly fluid liquid composed of a non-aqueous solvent and a non-aqueous solvent, is injected so as to infiltrate into the separator and the positive electrode, and then the periphery of both electrode current collector plates is bent and sealed by sandwiching a packing material. (Reference is unknown).

しかしながら、近年における電子機器類の小型化、軽量
化、薄型化などに伴つて、リチウム電池としてもカード
型やフレキシブル型などのたとえば総厚が0.5mm程度と
いう非常に薄型で高性能なものが要望されている。この
ような薄型電池では、正負両極およびセパレータなどの
電池要素自体も薄くする必要があり、かつ加工技術上の
制約から封止部分には接着方式を採用せざるを得ない
(文献不詳)。
However, as electronic devices have become smaller, lighter, and thinner in recent years, very thin and high-performance lithium batteries such as card type and flexible type with a total thickness of about 0.5 mm are required. Has been done. In such a thin battery, the battery elements themselves such as the positive and negative electrodes and the separator also need to be thin, and the bonding method is obliged to be adopted for the sealing portion due to restrictions on the processing technology (literature unknown).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかるに、正極として前述した正極活物質と結合剤と必
要に応じて電子伝導助剤との混合物の成形体を用いる場
合、薄型電池に適合する一定した薄厚のものを成形する
こと自体が困難であり、しかも厚みが0.1mm程度になる
と組成や密度などの均一性ならびに強度が不充分になる
という問題点がある。また従来の高流動性の液体からな
る電解質を滴下によつて電池内に添加する際、薄型電池
用として両極集電板もほぼ平板状であることから電解質
が周辺側へ流れ出し易く、必要量をうまく添加すること
が非常に困難となる。
However, when using a molded body of a mixture of the above-mentioned positive electrode active material, a binder and, if necessary, an electron conduction aid as the positive electrode, it is difficult to mold a constant thin product suitable for a thin battery itself. Moreover, when the thickness is about 0.1 mm, there is a problem that the uniformity such as composition and density and the strength become insufficient. In addition, when adding an electrolyte consisting of a conventional high-fluidity liquid to the battery by dripping, the electrolyte is easy to flow out to the peripheral side because the bipolar current collector plate is also a flat plate for thin batteries, and the required amount is It is very difficult to add it well.

一方、前述のように正負両極集電板の周辺部で接着封止
する場合、塗料溶液型の接着剤を用いると、封止部幅が
非常に狭くかつ平坦状であるために周辺部全域に適量を
均等に塗布することが困難であり、硬化前の接着剤が電
池内部に流入して電解質と混じり合つて電池性能に悪影
響を及ぼす惧れがある。また封止をホツトメルト型接着
剤などの熱融着性材料による熱融着にて行う場合、該材
料として予め幅や厚みを適当に設定した環状シート形態
のものを使用できるので上記塗料溶液型における欠点は
解消されるが、融着時の加熱にて液体電解質の蒸気圧が
高まり、液が飛散して封止自体が困難になるという問題
点があつた。
On the other hand, as described above, when adhesive sealing is performed in the peripheral portion of the positive and negative electrode current collector plates, if a coating solution type adhesive is used, the sealing portion width is extremely narrow and flat, so the entire peripheral portion is covered. It is difficult to apply an appropriate amount evenly, and the adhesive before curing may flow into the battery and mix with the electrolyte to adversely affect the battery performance. Further, when the sealing is performed by heat fusion with a heat fusion material such as a hot melt adhesive, it is possible to use an annular sheet having a predetermined width and thickness as the material. Although the drawbacks are solved, there is a problem that the vapor pressure of the liquid electrolyte is increased by heating during fusion and the liquid is scattered to make the sealing itself difficult.

したがつてこの発明は、上述の如き問題点を解決するこ
とにより、組立製作が容易でかつ優れた性能を備えた薄
型リチウム電池を提供することを目的としている。
Therefore, an object of the present invention is to provide a thin lithium battery which is easy to assemble and manufacture and has excellent performance by solving the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的において鋭意検討を重ねた結
果、電解質として粘性化したものを使用し、かつこの電
解質と正極活物質を主体とする粘性混練物を正極材料と
することにより、電解質が塗り付け手段にて電池内に簡
単に添加可能となり、従来の液体電解質の如き周辺部へ
の流れ出しを防止できると共に、熱融着性材料の熱融着
による封止方式を採用しても加熱時に電解質が飛散せず
容易に確実な封止が行え、また正極がスクリーン印刷な
どの塗布手段で薄く均等厚みに形成でき、その厚みも任
意に調整することが可能であり、しかも均一な組成およ
び密度が得られることを見い出し、この発明をなすに至
つた。
As a result of extensive studies conducted by the present inventors for the above purpose, a viscous electrolyte is used as the electrolyte, and a viscous kneaded material mainly composed of this electrolyte and the positive electrode active material is used as the positive electrode material, whereby the electrolyte is It can be easily added to the battery by the coating means, and it is possible to prevent the liquid electrolyte from flowing out to the peripheral part, and even when the sealing method by heat fusion of the heat fusible material is adopted, it can be heated. Electrolyte does not scatter and can be surely sealed easily, and the positive electrode can be thinly and evenly formed by application means such as screen printing, and its thickness can be arbitrarily adjusted, and the composition and density are uniform. The inventors have found that the following can be obtained, and have reached the present invention.

すなわち、この発明は、正極集電板と負極集電板との間
に正極とリチウムまたはリチウム合金からなる負極と両
極間に介在するセパレータとを含む電池要素が配置さ
れ、上記両極集電板の周辺部で熱融着性材料にて融着封
止された構造の薄型リチウム電池において、電解質とし
てリチウム塩と非水系溶媒とゲル化剤とを含む粘性体を
使用するとともに、上記正極集電板上に上記電解質と正
極活物質を主体とする粘性混練物層からなる正極を塗布
形成することを特徴とする薄型リチウム電池の製造法に
係るものである。
That is, according to the present invention, a battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between both electrodes is disposed between the positive electrode current collector plate and the negative electrode current collector plate, and In a thin lithium battery having a structure in which a peripheral portion is fusion-sealed with a heat-fusible material, a viscous body containing a lithium salt, a non-aqueous solvent, and a gelling agent is used as an electrolyte, and the positive electrode current collector plate is used. The present invention relates to a method for manufacturing a thin lithium battery, characterized in that a positive electrode comprising a viscous kneaded material layer mainly composed of the electrolyte and the positive electrode active material is applied and formed thereon.

〔発明の構成・作用〕[Constitution / Operation of Invention]

この発明において使用する電解質は、既述のようにリチ
ウム塩と非水系溶媒とゲル化剤とからなるものであり、
ゲル化剤による増粘作用にて従来の液体電解質のような
高流動性を示さない粘性体となつていることから、セパ
レータなどの電池要素に塗り付けて電池内へ添加できる
と共に、熱融着による封止時の加熱によつても飛散しな
いという優れた特徴を持つている。
The electrolyte used in the present invention is composed of a lithium salt, a non-aqueous solvent, and a gelling agent as described above,
The thickening effect of the gelling agent makes it a viscous material that does not exhibit high fluidity like conventional liquid electrolytes, so it can be applied to battery elements such as separators and added to the battery, and heat fusion It has an excellent feature that it does not scatter even if it is heated at the time of sealing.

このような電解質に使用するリチウム塩および非水系溶
媒としては、従来よりリチウム電池用として知られる種
々のものをいずれも使用可能である。たとえば、好適な
リチウム塩の代表例としては、LiBφ4(φはフエニル基
を意味する)、LiPF6、LiCF3SO3、LiAsF6などが挙げら
れ、これらは2種以上を併用しても差し支えなく、また
予め非水系溶媒の付加物としたものであつてもよい。一
方、非水系溶媒の好適な代表例としてはプロピレンカー
ボネート、γ−ブチロラクトン、ジメトキシエタン、ジ
オキソランなどが挙げられ、これらは2種以上を併用し
ても差し支えない。なおリチウム塩の濃度は0.3〜3mol/
lが好ましい。
As the lithium salt and the non-aqueous solvent used for such an electrolyte, any of various ones conventionally known for lithium batteries can be used. For example, typical examples of suitable lithium salts include LiBφ 4 (φ means a phenyl group), LiPF 6 , LiCF 3 SO 3 , LiAsF 6, and the like. These may be used in combination of two or more. Alternatively, it may be an adduct of a non-aqueous solvent in advance. On the other hand, typical examples of the non-aqueous solvent include propylene carbonate, γ-butyrolactone, dimethoxyethane, dioxolane and the like, and these may be used in combination of two or more kinds. The concentration of lithium salt is 0.3-3 mol /
l is preferred.

ゲル化剤としては、リチウム塩と反応せずかつ非水系溶
媒と均一に混じり合つてゲル化する性質を備えるもので
あればよく、その好適な代表例としてポリメタクリル酸
アルキルエステル、とくに好ましくは構成単位であるメ
タクリル酸アルキルエステルの一般式CH2=C(CH3)COORで
示されるRがメチル基、エチル基、プロピル基などの低
級アルキル基からなり、平均分子量が5,000〜20,0000程
度のものが挙げられる。このゲル化剤の使用量は粘性体
の粘度が適度の範囲となるように適宜設定すればよく、
上記粘度が高くなりすぎると粘稠性が高過ぎて塗り付け
が困難となり、逆に低くなりすぎると流動性が大き過ぎ
て従来の液体電解質と同様の問題を生じる。因にゲル化
剤としてポリメタクリル酸アルキルエステルを使用する
場合は、その使用量は非水系溶媒100重量部に対して10
〜30重量部程度が使用量の目安である。
Any gelling agent may be used as long as it has a property of not reacting with a lithium salt and being uniformly mixed with a non-aqueous solvent to form a gel, and a preferable representative example thereof is polymethacrylic acid alkyl ester, and particularly preferable constitution. R represented by the general formula CH 2 = C (CH 3 ) COOR of methacrylic acid alkyl ester, which is a unit, is composed of a lower alkyl group such as methyl group, ethyl group and propyl group, and has an average molecular weight of about 5,000 to 20,0000. There are things. The amount of the gelling agent used may be appropriately set so that the viscosity of the viscous material falls within an appropriate range,
If the viscosity is too high, the viscosity will be too high, making it difficult to apply, and if it is too low, the fluidity will be too great and the same problems as in the conventional liquid electrolyte will occur. When using polymethacrylic acid alkyl ester as a gelling agent, the amount used is 10 parts with respect to 100 parts by weight of the non-aqueous solvent.
Approximately 30 parts by weight is a guideline for usage.

なお、この発明で使用する電解質の粘性体として、上述
したリチウム塩とポリメタクリル酸アルキルエステルと
非水系溶媒との好適な組合せは多数存在するが、電池特
性および電解質の均質性の面でLiBφ4のジメトキシエタ
ン付加物とポリメチルメタクリレートとプロピレンカー
ボネートとの組合せが最も良好な結果が得られている。
As the electrolyte viscous material used in the present invention, there are many suitable combinations of the above-mentioned lithium salt, polymethacrylic acid alkyl ester and non-aqueous solvent, but LiBφ 4 in terms of battery characteristics and homogeneity of the electrolyte. The best results have been obtained with a combination of the dimethoxyethane adduct of 1. with polymethylmethacrylate and propylene carbonate.

この発明の特徴点は、電解質として上記粘性体を使用す
ること、ならびに正極をこの粘性からなる電解質と正極
活物質とを主体とした粘性混練物層にて構成することに
ある。すなわち、このような粘性混練物はスクリーン印
刷を始めとする種々の塗布手段によつて正極集電体上に
塗布できるため、薄型電池用正極としてたとえば0.1mm
程度あるいはそれ以下の均一な層厚とすることが容易で
あり、厚みの調整も可能であり、また混練物であるため
に組成および成分密度の均一化が図れるという利点があ
る。
A feature of the present invention is that the viscous body is used as an electrolyte and that the positive electrode is composed of a viscous kneaded material layer mainly composed of an electrolyte having this viscosity and a positive electrode active material. That is, since such a viscous kneaded material can be applied on the positive electrode current collector by various application means including screen printing, it can be used as a positive electrode for a thin battery, for example, 0.1 mm.
It is easy to form a uniform layer thickness of a degree or less, and it is possible to adjust the thickness, and since it is a kneaded product, there are advantages that the composition and the component density can be made uniform.

ここで上記正極に使用される正極活物質としては、従来
よりリチウム電池に用いられているものを種々使用可能
であり、たとえば好適なものとしてTiS2、MoS2、MoS3
FeS2、ZrS2、NbS2、NiPS3、VSe2、V6O13、V2O5などが挙
げられ、これらは2種以上を併用しても差し支えない。
Here, as the positive electrode active material used for the positive electrode, it is possible to use various materials conventionally used in lithium batteries, for example, TiS 2 , MoS 2 , MoS 3 , as suitable ones.
FeS 2, ZrS 2, NbS 2 , NiPS 3, VSe 2, V 6 O 13, etc. V 2 O 5 and the like, which may be used in combination of two or more thereof.

このような正極活物質を前記電解質と混練することによ
り正極形成用の粘性混練物が得られるが、正極中におい
て活物質粒子が相互接触状態を維持してセパレータ側よ
り正極集電板表面に至る電気的経路を形成する必要があ
るため、活物質はある程度以上の比率で存在することが
望ましい。一方、正極中の活物質粒子の充填量が大き過
ぎると、これら粒子間の間隙にリチウム伝導性を維持す
るための電解質が少くなりリチウムイオンが拡散しにく
くなつて反応への寄与率が低下する。従つて、上記観点
から正極活物質/電解質の比率は体積比で1/0.3〜1/1程
度、とくに好ましくは1/0.4〜1/0.8とするのがよい。
A viscous kneaded material for forming a positive electrode can be obtained by kneading such a positive electrode active material with the electrolyte, but the active material particles in the positive electrode maintain the mutual contact state and reach the surface of the positive electrode current collector plate from the separator side. Since it is necessary to form an electric path, it is desirable that the active material is present in a certain ratio or more. On the other hand, when the filling amount of the active material particles in the positive electrode is too large, the electrolyte for maintaining lithium conductivity in the gaps between these particles becomes small, and the lithium ions are less likely to diffuse and the contribution rate to the reaction decreases. . Therefore, from the above viewpoint, the volume ratio of the positive electrode active material / electrolyte is preferably about 1 / 0.3 to 1/1, particularly preferably 1 / 0.4 to 1 / 0.8.

なお、この発明では粘性混練物からなる正極中に電子伝
導性を向上させる目的でカルボニルニツケル、アセチレ
ンブラツクなどの電子伝導助剤を含有させてもよい。こ
のような電子伝導助剤は、使用される正極活物質の種類
による電子伝導性の差異に応じて添加量を変化すればよ
いが、通常は粘性混練物中の5〜12容量%を占める添加
量とすることが望ましい。なお、このように電子伝導助
剤を添加した場合は、正極中において前記電気的経路が
形成され易くなるので正極活物質の使用比率を前記範囲
よりある程度低下させることができる。
In the present invention, an electron conduction aid such as carbonyl nickel or acetylene black may be contained in the positive electrode made of a viscous kneaded material for the purpose of improving electron conductivity. The addition amount of such an electron conduction aid may be changed according to the difference in electron conductivity depending on the type of the positive electrode active material used, but normally, it is added in an amount of 5 to 12% by volume in the viscous kneaded material. It is desirable to set the amount. When the electron conduction aid is added as described above, the electric path is easily formed in the positive electrode, so that the use ratio of the positive electrode active material can be lowered to some extent from the above range.

次にこの発明の電池構成を図面に基づいて説明する。Next, the battery configuration of the present invention will be described with reference to the drawings.

第1図はこの発明に係るリチウム電池の一例を示すもの
である。図において、1はステンレス鋼からなる方形平
板状の正極集電板、2は周辺部2aを一面側へ段状に曲折
したステンレス鋼からなる浅い方形皿状の負極集電板、
3は両極集電板1,2の対向する周辺部1a,2a間を熱融着封
止したホツトメルト接着剤やハーメチツクシール可能な
セラミツクなどからなる熱融着性材料、4は両極集電板
1,2間に構成される空間5内において正極集電板1側に
配された正極、6は空間5内において負極集電板2側に
装填されたリチウムまたはリチウム合金からなる負極、
7は両極4,6間に介在させた多孔性ポリプロピレンなど
の多孔性材料からなるセパレータである。
FIG. 1 shows an example of the lithium battery according to the present invention. In the figure, 1 is a square plate-shaped positive electrode current collector plate made of stainless steel, 2 is a shallow rectangular dish-shaped negative electrode current collector plate made of stainless steel in which the peripheral portion 2a is bent stepwise toward one surface side,
3 is a heat-fusible material such as a hot-melt adhesive in which the peripheral portions 1a and 2a of the bipolar current collector plates 1 and 2 facing each other are heat-sealed, and a hermetically-sealable ceramic material. 4 is a bipolar current collector. Board
A positive electrode arranged on the positive electrode collector plate 1 side in a space 5 formed between 1 and 2, 6 is a negative electrode made of lithium or a lithium alloy loaded on the negative electrode collector plate 2 side in the space 5,
Reference numeral 7 is a separator made of a porous material such as porous polypropylene interposed between the electrodes 4 and 6.

ここで、前述した粘性体からなる電解質は通常では組込
み前のセパレータ7に予め塗布して含浸させることによ
り、電池内に添加される。このとき、電解質が粘性体で
あるため、組立て基面に多少の傾斜があつたり、振動が
加わつても周辺へ流れ出ることがなく、塗り付け位置か
ら組込み位置へのセパレータ7の運搬時にも滴下する惧
れはなく、しかも添加量を広範囲で調整することが可能
である。また正極4は、既述のように正極活物質と電解
質と必要に応じて電子伝導助剤とを混練して得られる粘
性混練物を正極集電板1上にスクリーン印刷などで塗布
して形成されたものである。
Here, the electrolyte made of the viscous material is usually added to the battery by pre-coating and impregnating the separator 7 before being assembled. At this time, since the electrolyte is a viscous substance, it does not flow out to the surroundings even if the assembly base surface is slightly inclined or vibration is applied, and drops even when the separator 7 is transported from the application position to the installation position. There is no fear of it, and it is possible to adjust the addition amount in a wide range. The positive electrode 4 is formed by applying a viscous kneaded product obtained by kneading the positive electrode active material, the electrolyte and, if necessary, the electron conduction aid on the positive electrode current collector plate 1 by screen printing or the like as described above. It was done.

一方、熱融着性材料3としては、熱融着前の形態が両極
集電板1,2の周辺部1a,2aの幅に対応する幅に予め設定し
た環状などの成形シートであるものを使用できる。すな
わち、封止操作は上記両周辺部1a,2a間に上記成形シー
トを挾んで圧接し、この状態で両周辺部1a,2a部分を所
定温度まで加熱すればよい。そして、この加熱過程にお
いては電解質が粘性体であるために従来の液体のように
飛散することがなく、容易に確実な封止が達成される。
また上述のように熱融着前の形態が固形の成形物である
ことから、取扱い操作および組付け操作が非常に容易で
あると共に、塗料溶液型接着剤を用いる場合のように空
間5内へ流入して電解質と混じり合う惧れがない。
On the other hand, as the heat-fusible material 3, the shape before heat-sealing is a molded sheet such as a ring which is preset to a width corresponding to the width of the peripheral portions 1a, 2a of the bipolar current collector plates 1, 2. Can be used. That is, for the sealing operation, the molding sheet may be sandwiched between the both peripheral portions 1a and 2a and pressed against each other, and in this state, the both peripheral portions 1a and 2a may be heated to a predetermined temperature. In the heating process, since the electrolyte is a viscous substance, it does not scatter like a conventional liquid, and reliable sealing can be easily achieved.
Further, as described above, since the form before heat fusion is a solid molded product, the handling operation and the assembling operation are very easy, and, as in the case of using a coating solution type adhesive, There is no fear of flowing in and mixing with the electrolyte.

なお、このような熱融着性材料3にはホツトメルト型接
着剤、ハーメチツクシール可能なセラミツクを始め、種
々のものを使用できる。
As the heat-fusible material 3, various materials such as a hot-melt adhesive and a ceramic capable of hermetic sealing can be used.

また、負極6としてはリチウムおよびリチウム合金のい
ずれも使用可能であるが、リチウム単独では長期の間に
電解質と反応する可能性があるため、アルミニウムなど
との合金化を図ることが望ましい。
Further, both lithium and lithium alloy can be used as the negative electrode 6, but lithium alone may react with the electrolyte for a long period of time, so alloying with aluminum or the like is desirable.

なお、この発明の電池における両極集電板は、第1図で
示すようにその一方を皿形とする以外に、両方を皿形と
したり、周辺部間にセラミツク製などのスペーサを介挿
することにより両方共に平板状としてもよい。このスペ
ーサを用いる場合はその両面と両極集電板との間をそれ
ぞれ熱融着性材料にて熱融着封止することは言うまでも
ない。またここでいう薄型電池とは電池総厚が1.0mm以
下、とくに0.3〜0.7mm程度のものを指し、外形は方形以
外に円形など用途に応じた形状とできる。
The bipolar current collector plate in the battery of the present invention is not only one of which has a dish shape as shown in FIG. 1, but both of which have a dish shape, and a spacer made of ceramic or the like is inserted between the peripheral portions. As a result, both may be flat. Needless to say, when this spacer is used, both surfaces thereof and the bipolar current collector plate are heat-sealed and sealed with a heat-fusible material. The thin battery referred to herein means a battery having a total battery thickness of 1.0 mm or less, particularly about 0.3 to 0.7 mm, and the outer shape can be a shape other than a square, such as a circle, depending on the application.

以上の如く構成されるこの発明のリチウム電池は、既述
した正極の薄層化および電池組立て上の利点のほか、後
記実施例と比較例の電池特性の比較において明確に示さ
れるように正極利用率が向上し、一次電池としては放電
容量が大きく、二次電池としては多数回の充放電を繰り
返しても一回当たりの放電容量が大きいという重要な特
徴点を備えている。この理由については明確ではない
が、正極活物質は一般に充放電により体積変化を伴つて
粒子間の接触が弱くなり、従来の成形シートからなる正
極では正極中に浸透した非水系溶媒中に活物質粒子が分
散していき正極の劣化が大きくなるのに対し、この発明
のものでは正極中のゲル成分の粘性により活物質粒子の
移動が阻止され、正極の劣化が抑制されることによると
推測される。なお、このような効果は正極中に電子伝導
助剤を含有させて電子伝導性を高めることによつて一層
顕著に現われる。
The lithium battery of the present invention configured as described above has the advantages of reducing the thickness of the positive electrode and the battery assembling described above, as well as using the positive electrode as clearly shown in the comparison of the battery characteristics of the examples and the comparative examples. It has an important feature that the rate is improved, the discharge capacity is large as a primary battery, and the discharge capacity per discharge is large even if charging and discharging are repeated many times. Although the reason for this is not clear, in the positive electrode active material, contact between particles generally weakens due to volume change due to charge / discharge, and in the positive electrode composed of a conventional molded sheet, the active material is penetrated into the non-aqueous solvent. It is presumed that, while the particles are dispersed and the deterioration of the positive electrode is increased, the viscosity of the gel component in the positive electrode prevents movement of the active material particles and suppresses the deterioration of the positive electrode in the present invention. It It should be noted that such an effect is more remarkably exhibited by increasing the electron conductivity by including an electron conduction aid in the positive electrode.

〔発明の効果〕〔The invention's effect〕

この発明に係る薄型リチウム電池は、電解質としてゲル
化剤を含む粘性体が用いられ、かつ正極が上記電解質と
正極活物質とを主体とした粘性混練物を正極集電板上に
塗布して形成されるものであるから、正負両極集電板の
周辺部で熱融着封止する際に電解質が飛散せず確実な封
止が可能であり、かつ電解質を塗り付けなどの簡単な手
段にて周辺側へ流出することなく必要領域全体に均一に
添加でき、その添加量も広範囲で調整可能であり、しか
も均一な組成および密度でかつ薄く均等な厚みの正極が
容易に得られ、正極の強度上の問題もなく正極利用率が
高いという優れた効果を奏する。
The thin lithium battery according to the present invention is formed by using a viscous material containing a gelling agent as an electrolyte, and applying a viscous kneaded material mainly composed of the electrolyte and the positive electrode active material to the positive electrode on the positive electrode current collector plate. As a result, the electrolyte does not scatter when heat-sealing in the periphery of the positive and negative electrode current collector plates, and reliable sealing is possible, and by simple means such as applying the electrolyte. It can be added uniformly to the entire required area without flowing out to the peripheral side, the addition amount can be adjusted over a wide range, and it is possible to easily obtain a positive electrode with a uniform composition and density and a thin and uniform thickness. It has an excellent effect that the positive electrode utilization rate is high without the above problem.

〔実施例〕〔Example〕

以下、この発明の実施例を比較例と対比して具体的に説
明する。なお、以下において部とあるのは重量部を意味
する。
Hereinafter, examples of the present invention will be specifically described in comparison with comparative examples. In the following, "parts" means "parts by weight".

実施例1 LiBφ4のジメトキシエタン付加物(LiBφ4;ジメトキシ
エタンのモル比1:3)22.4部をプロピレンカーボネート4
7.6部に溶解し、これにポリメチルメタクリレート(平
均分子量12,000)10.5部を添加混合して密封し、120℃
で30分間放置して均一な粘性体からなる電解質を得た。
この電解質は25℃におけるイオン伝導度1.8×10-3S/cm
であつた。
Dimethoxyethane adduct of Example 1 LiBφ 4 (LiBφ 4; molar ratio of dimethoxyethane 1: 3) Propylene carbonate 4 22.4 parts
Dissolve in 7.6 parts, add 10.5 parts of polymethylmethacrylate (average molecular weight 12,000) to this, mix and seal, 120 ° C
It was left for 30 minutes to obtain an electrolyte composed of a uniform viscous material.
This electrolyte has an ionic conductivity of 1.8 × 10 -3 S / cm at 25 ° C.
It was.

次に、この電解質とCVD(化学気相蒸着)法で製造したT
iS2粉末とを乳鉢中で体積比30:70で充分に混練し得られ
た粘性混練物をスクリーン印刷法により一辺15mmの正方
形で厚さ0.05mmのステンレス製平板からなる正極集電板
上に塗布し、一辺10mmの正方形で厚さ0.1mmの正極を形
成した。この正極上に厚さ25μmの多孔性ポリプロピレ
ンからなるセパレータ(ポリプラスチツクス社製の商品
名ジユラガード2400)に凹凸形状を形成して、上記電解
質を予め塗り付けて全体に均一に含浸させた厚さ約0.1m
mのセパレータを積層し、さらにこのセパレータ上にリ
チウム−アルミニウム合金製の一辺4mm,厚み100μmの
方形板からなる負極を積層した。
Next, T produced by this electrolyte and CVD (Chemical Vapor Deposition) method
The viscous kneaded product obtained by sufficiently kneading the iS 2 powder with a mortar at a volume ratio of 30:70 was applied by a screen printing method to a positive electrode current collector plate made of a stainless steel flat plate with a side of 15 mm and a thickness of 0.05 mm. A positive electrode having a square shape of 10 mm on each side and a thickness of 0.1 mm was formed. A 25 μm thick separator made of porous polypropylene (polyplastics brand name JYURAGARD 2400 manufactured by Polyplastics Co., Ltd.) was formed on the positive electrode to have an uneven shape, and the electrolyte was pre-applied in advance to uniformly impregnate the entire thickness. About 0.1m
A m separator was stacked, and a negative electrode made of a lithium-aluminum alloy rectangular plate having a side length of 4 mm and a thickness of 100 μm was stacked on the separator.

次に、正極集電板の周辺部上に厚さ0.05mm、幅2mmの方
形環状シートからなる変性ポリオレフイン系ホツトメル
ト接着剤が載置された状態で、一辺15mmの正方形で厚さ
0.05mmの皿型ステンレス製板からなる負極集電板を被冠
し、両極集電板の周辺部を圧接下で180℃に加熱して熱
融着封止し、第1図で示す構造の薄型リチウム電池を作
製した。
Next, a modified polyolefin hot melt adhesive consisting of a square annular sheet with a thickness of 0.05 mm and a width of 2 mm was placed on the periphery of the positive electrode current collector plate, and a square with a side of 15 mm and a thickness of 15 mm.
A negative electrode current collector made of a 0.05 mm plate stainless steel plate was capped, and the peripheral portions of both electrodes were heated to 180 ° C under pressure and heat-sealed to obtain the structure shown in Fig. 1. A thin lithium battery was produced.

実施例2 正極を形成する粘性混練物として、実施例1と同様の電
解質とTiS2粉末とカルボニルニツケル粉末とを体積比3
0:65:5の割合で混練したものを用いた以外は、実施例1
と同様にして第1図で示す構造の薄型リチウム電池を作
製した。
Example 2 As a viscous kneaded material for forming a positive electrode, the same electrolyte as in Example 1 and TiS 2 powder and carbonyl nickel powder were used in a volume ratio of 3
Example 1 except that a kneaded mixture of 0: 65: 5 was used.
A thin lithium battery having the structure shown in FIG. 1 was prepared in the same manner as in.

比較例 CVD法で製造したTiS2粉末とテフロン粉末とを重量比10
0:5で混合したものを厚さ0.1mmのシート状に成形し、こ
れを一辺10mmの正方形に切り取つて正極とした。この正
極を実施例1と同様の正極集電板上に載置し、その上面
に実施例1と同様の粘性体からなる電解質を滴下したの
ち、電解液を塗布していないセパレータ(実施例1と同
じ)を載置し、この上面に上記電解質を塗布し、以下実
施例1と同様にして薄型リチウム電池を作製した。
Comparative Example TiS 2 powder and Teflon powder produced by the CVD method were mixed in a weight ratio of 10
The mixture of 0: 5 was molded into a sheet having a thickness of 0.1 mm, and this was cut into a square having a side of 10 mm to obtain a positive electrode. This positive electrode was placed on the same positive electrode current collector plate as in Example 1, and an electrolyte made of a viscous material similar to that in Example 1 was dropped on the upper surface of the positive electrode current collector plate, and then a separator not coated with the electrolytic solution (Example 1 The same as the above) was placed, the above electrolyte was applied to the upper surface thereof, and a thin lithium battery was manufactured in the same manner as in Example 1 below.

上記実施例および比較例にて得られた薄型リチウム電池
について25℃の温度下で放電終止電圧1.5V、充電終止電
圧2.7V、放電電流30μA、充電電流30μAとして充放電
サイクル特性を調べたところ、第2図で示す結果を得
た。図中の曲線は放電容量をサイクル数に対してプロツ
トしている。なお、図中の曲線A1は実施例1、A2は実施
例2、Bは比較例にそれぞれ対応している。
The thin lithium batteries obtained in the above Examples and Comparative Examples were examined for charge / discharge cycle characteristics under the conditions of a temperature of 25 ° C., a discharge end voltage of 1.5 V, a charge end voltage of 2.7 V, a discharge current of 30 μA, and a charge current of 30 μA. The results shown in FIG. 2 were obtained. The curve in the figure plots the discharge capacity against the number of cycles. The curve A1 in the figure corresponds to Example 1, A2 corresponds to Example 2, and B corresponds to the comparative example.

この第2図の結果から明らかなように、電解質として同
様の粘性体を用いた場合でも、正極が該電解質を含む粘
性混練物層からなる電池(実施例1,2)は、従来の成形
シートからなる正極を用いた電池に比較して、一次電池
(サイクル数1に対応)として放電容量が大きく、かつ
二次電池として多数回の充放電を繰り返しても一回当た
りの放電容量が格段に大きいことが判る。また粘性混練
物層からなる正極中に電子伝導助剤を含む電池(実施例
2)はこれを含まない電池(実施例1)よりも一次およ
び二次電池としてさらに高性能となることが判る。
As is clear from the results shown in FIG. 2, even when the same viscous material is used as the electrolyte, the battery in which the positive electrode is composed of the viscous kneaded material layer containing the electrolyte (Examples 1 and 2) has a conventional molded sheet. The discharge capacity of the primary battery (corresponding to a cycle number of 1) is larger than that of the battery using the positive electrode made of, and the discharge capacity per discharge is remarkably large even when the battery is repeatedly charged and discharged many times. It turns out to be big. Further, it is understood that the battery containing the electron conduction aid in the positive electrode composed of the viscous kneaded material layer (Example 2) has higher performance as a primary battery and a secondary battery than the battery not containing this (Example 1).

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係る薄型リチウム電池の一実施例に
おける要部縦断面図、第2図はこの発明の実施例および
比較例で得られた電池の充放電サイクル特性である。 1……正極集電板、1a……周辺部、2……負極集電板、
2a……周辺部、3……熱融着性材料、4……正極、6…
…負極、7……セパレータ
FIG. 1 is a longitudinal sectional view of a main part of an embodiment of a thin lithium battery according to the present invention, and FIG. 2 is charge / discharge cycle characteristics of the batteries obtained in the embodiment of the present invention and a comparative example. 1 ... Positive electrode current collector plate, 1a ... Peripheral part, 2 ... Negative electrode current collector plate,
2a ... peripheral part, 3 ... heat-fusible material, 4 ... positive electrode, 6 ...
… Negative electrode, 7 …… Separator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極集電板と負極集電板との間に正極とリ
チウムまたはリチウム合金からなる負極と両極間に介在
するセパレータとを含む電池要素が配置され、上記両極
集電板の周辺部で熱融着性材料にて融着封止された構造
の薄型リチウム電池において、電解質としてリチウム塩
と非水系溶媒とゲル化剤とを含む粘性体を使用するとと
もに、上記正極集電板上に上記電解質と正極活物質を主
体とする粘性混練物層からなる正極を塗布形成すること
を特徴とする薄型リチウム電池の製造法。
1. A battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between both electrodes is arranged between the positive electrode current collector plate and the negative electrode current collector plate, and the periphery of the bipolar electrode current collector plate. In a thin lithium battery having a structure fusion-sealed with a heat-fusible material, a viscous body containing a lithium salt, a non-aqueous solvent and a gelling agent is used as an electrolyte, and on the positive electrode current collector plate. A method for manufacturing a thin lithium battery, characterized in that a positive electrode comprising a viscous kneaded material layer mainly containing the above-mentioned electrolyte and a positive electrode active material is applied and formed.
【請求項2】正極の粘性混練物層が電子伝導助剤を含有
する特許請求の範囲第(1)項記載の薄型リチウム電池
の製造法。
2. The method for producing a thin lithium battery according to claim 1, wherein the viscous kneaded material layer of the positive electrode contains an electron conduction aid.
【請求項3】ゲル化剤がポリメタクリル酸アルキルエス
テルである特許請求の範囲第(1)項または第(2)項
記載の薄型リチウム電池の製造法。
3. The method for producing a thin lithium battery according to claim 1, wherein the gelling agent is a polymethacrylic acid alkyl ester.
【請求項4】電解質がLiBφ4(φはフエニル基を意味す
る)のジメトキシエタン付加物とプロピレンカーボネー
トとポリメチルメタクリレートとを含む粘性体からなる
特許請求の範囲第(3)項記載の薄型リチウム電池の製
造法。
4. The thin lithium according to claim 3, wherein the electrolyte is a viscous body containing a dimethoxyethane adduct of LiBφ 4 (φ means a phenyl group), propylene carbonate and polymethylmethacrylate. Battery manufacturing method.
JP60055188A 1985-03-19 1985-03-19 Thin lithium battery manufacturing method Expired - Lifetime JPH0746611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055188A JPH0746611B2 (en) 1985-03-19 1985-03-19 Thin lithium battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055188A JPH0746611B2 (en) 1985-03-19 1985-03-19 Thin lithium battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS61214365A JPS61214365A (en) 1986-09-24
JPH0746611B2 true JPH0746611B2 (en) 1995-05-17

Family

ID=12991727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055188A Expired - Lifetime JPH0746611B2 (en) 1985-03-19 1985-03-19 Thin lithium battery manufacturing method

Country Status (1)

Country Link
JP (1) JPH0746611B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP4779885B2 (en) * 1997-02-04 2011-09-28 三菱電機株式会社 Lithium ion secondary battery
JP4031405B2 (en) * 1998-09-17 2008-01-09 株式会社東芝 Non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856227B2 (en) * 1978-04-04 1983-12-14 松下電器産業株式会社 Organic electrolyte battery and its manufacturing method

Also Published As

Publication number Publication date
JPS61214365A (en) 1986-09-24

Similar Documents

Publication Publication Date Title
JPS633422B2 (en)
KR20160109604A (en) A manufacturing method of all-solid battery using wet-dry process
JP2023063336A (en) solid state battery
West et al. A rechargeable all-solid-state sodium cell with polymer electrolyte
US6127060A (en) Recharge catalyst with thin film low corrosion coating, metal-air electrode including said catalyst and methods for making said catalyst and electrode
JP4303330B2 (en) Electrode binder for lithium ion secondary battery and method for producing active material slurry thereof
US8313052B2 (en) Powder mixture for manufacture of a battery electrode, a respective battery electrode and a method for manufacturing same
JP2020136093A (en) Positive electrode mixture for nonaqueous electrolyte secondary battery, positive electrode, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JPH0746611B2 (en) Thin lithium battery manufacturing method
EP0563394B1 (en) Use of a macromolecular compound for making a depolarizing mixture
EP2426760B1 (en) A powder mixture for manufacture of a battery electrode, a respective battery elec-trode and a method for manufacturing same
JPS6220262A (en) Thin type lithium battery
JP2000311708A (en) Manufacturing method of all solid state lithium battery
JPS62219469A (en) Lithium battery
JPS61214374A (en) Thin lithium secondary battery
JPS61214364A (en) Thin lithium battery
JPS6222375A (en) Thin lithium battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS6220263A (en) Thin type lithium battery
JP2001093536A (en) Lithium battery
JPS6222376A (en) Thin lithium battery
JPH0732022B2 (en) Lithium ion conductive gel electrolyte
JPH02148654A (en) Nonaqueous electrolytic battery
JP4190133B2 (en) Gel electrolyte lithium secondary battery
JP2004178879A (en) Lithium secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term