JPH074640A - Burner - Google Patents
BurnerInfo
- Publication number
- JPH074640A JPH074640A JP17226693A JP17226693A JPH074640A JP H074640 A JPH074640 A JP H074640A JP 17226693 A JP17226693 A JP 17226693A JP 17226693 A JP17226693 A JP 17226693A JP H074640 A JPH074640 A JP H074640A
- Authority
- JP
- Japan
- Prior art keywords
- flame
- air
- burner
- combustion
- rich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Combustion (AREA)
- Gas Burners (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は燃焼装置に関し、詳しく
はガス燃焼機器によるバーナ燃焼の空気比検出技術に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion device, and more particularly to a burner combustion air ratio detection technique by a gas combustion device.
【0002】[0002]
【従来の技術】従来より、いわゆるブンゼン式バーナ
は、燃焼良好域の広さ、低騒音、燃焼制御が容易等の理
由により各種の燃焼機器に用いられてきた。また、燃料
ガスと燃焼用空気との濃混合気と淡混合気とを交互に噴
出する炎口を備えて両者を同時に燃焼させるいわゆる濃
淡燃焼バーナも、前者に比べて窒素酸化物の生成量が少
ない(以下低NOX という)ので、燃焼良好域が狭いに
もかかわらず用いられる。近年になって、特に低NOX
化及び低騒音化等の性能向上が要求されるようになった
ので、実質的な燃焼良好域が狭くなり、それに伴って空
気比(実際に使用した空気量の理論空気量に対する比)
を制御して燃焼させる必要が生じてきた。尚、空気比を
制御するとは、設定の空気比に対して種々の理由により
空気比がずれるために、それを最適値に補正する事であ
る。空気比を検出する技術としては、バーナの火炎内に
熱電対等の炎温度検出素子を設け、その炎温度検出素子
の出力から空気比を検出する方法が、実開昭54−85
435で知られている。この技術は、空気比の変化に対
する炎の温度変化の特性を利用するものである。2. Description of the Related Art Conventionally, so-called Bunsen type burners have been used in various combustion equipments because of their wide combustion range, low noise, easy combustion control, and the like. Further, a so-called rich-burn combustion burner, which has a flame port that alternately ejects a rich mixture and a lean mixture of a fuel gas and combustion air and burns both at the same time, produces a larger amount of nitrogen oxides than the former. Since it is small (hereinafter referred to as low NOx), it is used even though the good combustion range is narrow. In recent years, especially low NOx
Since it has become necessary to improve performance such as noise reduction and noise reduction, the effective combustion range becomes narrower, and the air ratio (the ratio of the actually used air amount to the theoretical air amount) is accordingly reduced.
It has become necessary to control and burn. Note that controlling the air ratio means correcting the air ratio to an optimum value because the air ratio deviates from the set air ratio for various reasons. As a technique for detecting the air ratio, a method of providing a flame temperature detecting element such as a thermocouple in the flame of the burner and detecting the air ratio from the output of the flame temperature detecting element is a practical method.
Known at 435. This technique utilizes the characteristic of the temperature change of the flame with respect to the change of the air ratio.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記技
術ではインプット(燃料ガス量)の増減等の理由により
炎の大きさが変化する場合には、熱電対で捉える温度変
化が大きく、その特性は空気比の変化に対応していると
は言えない。以下、その理由をブンゼン式バーナを例に
とり説明する。ブンゼン式バーナは、例えば図10
(ア)に示す様に、燃料ガスの通路となるバーナ本体8
0にノズル86を臨ませ、そこから噴出する燃料ガスを
吸入すると共に、その噴出するときの運動エネルギーに
よって一次空気を取り入れ、炎口82より混合気を噴出
するものである。炎口82上部に生じた火炎83は、こ
のとき同時に、その周囲から拡散によって二次空気を取
り入れ燃焼する。従って、その火炎83は、二次空気が
充分供給されて完全燃焼する高温の外炎HOと、その内
部にあって一次空気のみで不完全燃焼する低温の内炎H
Iとから構成される。However, in the above technique, when the size of the flame changes due to the increase or decrease of the input (fuel gas amount), the temperature change captured by the thermocouple is large, and its characteristic is that of the air. It cannot be said that it corresponds to the change in the ratio. Hereinafter, the reason will be described by taking a Bunsen type burner as an example. The Bunsen type burner is shown in FIG.
As shown in (a), the burner main body 8 serves as a passage for the fuel gas.
The nozzle 86 is faced to 0, the fuel gas ejected from the nozzle 86 is sucked, the primary air is taken in by the kinetic energy at the time of the ejection, and the air-fuel mixture is ejected from the flame port 82. At the same time, the flame 83 generated in the upper portion of the flame port 82 simultaneously takes in and combusts secondary air from its surroundings by diffusion. Therefore, the flame 83 is composed of a high-temperature outer flame HO that is fully supplied with secondary air and is completely burned, and a low-temperature inner flame H that is in the interior of the flame 83 and that is incompletely burned only by the primary air.
I and.
【0004】従来技術では、空気比を検出する為に、こ
の外炎HOの中に火炎温度検出素子84(例えば熱電
対、サーミスタ等を使用し、以下単に検出素子84とい
う)を設置する。検出素子84が外炎HOの領域にある
場合は、前述した様に空気比が増加するにしたがって、
検出素子84の出力はなだらかに減少する。(図11
(ア)参照) ところがブンゼン式バーナでのインプット(燃料ガス
量)や一次空気割合(一次空気量と二次空気量の合計量
に対する一次空気量の割合)等が変化すると、図10
(イ)に示す様に火炎88の形状が変化して、内炎GI
が検出素子84にかかったりして出力特性が影響を受け
る。そのため、この様な場合には、空気比を増加させた
時の検出素子84の出力は、最初は内炎GIの温度を検
出しているので小さく、空気比の増加に伴い内炎GIが
縮小して外炎GOの温度を検出する様になる。つまり検
出素子84の出力特性は、図11(イ)に示す様に一旦
増加を示した後減少する。従って、この様な条件により
特性が変化してしまうと、検出素子84の出力にて空気
比を検出するのは正確さを欠くという問題があった。ま
た、プロパンガスや天然ガス等の燃焼においては、火炎
の温度は、摂氏1300〜1600度と高温であり、検
出素子84の耐熱性に問題が生じ、使用可能な検出素子
が限定されるという問題もあった。本発明の燃焼装置は
上記課題を解決し、バーナ燃焼における空気比を正確で
しかも容易に検出することを目的とする。In the prior art, in order to detect the air ratio, a flame temperature detecting element 84 (for example, a thermocouple, a thermistor or the like, which will be simply referred to as a detecting element 84 hereinafter) is installed in the outer flame HO. When the detection element 84 is in the region of the external flame HO, as the air ratio increases as described above,
The output of the detection element 84 gradually decreases. (Fig. 11
However, if the input (fuel gas amount) and the primary air ratio (ratio of the primary air amount to the total amount of the primary air amount and the secondary air amount) in the Bunsen type burner change, FIG.
As shown in (a), the shape of the flame 88 changes and the internal flame GI
Is applied to the detection element 84 and the output characteristics are affected. Therefore, in such a case, the output of the detection element 84 when the air ratio is increased is small because the temperature of the internal flame GI is initially detected, and the internal flame GI is reduced as the air ratio increases. Then, the temperature of the external flame GO is detected. That is, the output characteristic of the detection element 84 once increases and then decreases as shown in FIG. Therefore, if the characteristics change under such conditions, there is a problem in that it is not accurate to detect the air ratio from the output of the detection element 84. Further, in the combustion of propane gas, natural gas, etc., the temperature of the flame is as high as 1300 to 1600 degrees Celsius, which causes a problem in the heat resistance of the detection element 84 and limits the usable detection elements. There was also. An object of the combustion apparatus of the present invention is to solve the above problems and detect the air ratio in burner combustion accurately and easily.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
本発明の第一の燃焼装置は、燃料ガスと一次空気とを吸
入し、その混合気を噴出する炎口を備えたバーナを間隔
をおいて並設し、そのバーナ間に二次空気を流す燃焼装
置において、上記バーナの火炎発生領域外の火炎と火炎
との間の2次空気通路に、空気比を検出する為の温度検
出素子を設けた事を要旨とする。第二の燃焼装置は、燃
料ガスと燃焼用空気との濃混合気が導かれる複数の濃側
炎口と、上記濃側炎口に隣接して設けられ上記濃混合気
より空気比の高い淡混合気が導かれる複数の淡側炎口と
を交互に備え、上記濃側炎口および上記淡側炎口からそ
れぞれの混合気を噴出して燃焼する燃焼装置において、
濃側炎口の火炎と火炎との間の淡混合気噴出通路に、空
気比を検出する為の温度検出素子を設けた事を要旨とす
る。In order to solve the above-mentioned problems, a first combustion apparatus of the present invention has a burner provided with a flame port for inhaling a fuel gas and primary air and ejecting a mixture of the fuel gas and the primary air. In a combustion device that is installed side by side in such a manner that secondary air flows between the burners, a temperature detecting element for detecting an air ratio in the secondary air passage between the flame outside the flame generation region of the burner and the flame. The main point is to set up. The second combustion device is provided with a plurality of rich-side flame ports to which a rich air-fuel mixture of fuel gas and combustion air is introduced, and a light-air mixture having a higher air ratio than the rich-air mixture provided adjacent to the rich-side flame ports. A plurality of light-side flame ports to which the air-fuel mixture is guided are alternately provided, and in a combustion device that injects and burns each air-fuel mixture from the rich-side flame port and the light-side flame port,
The gist is that a temperature detecting element for detecting the air ratio is provided in the light air-fuel mixture ejection passage between the flame of the dark side flame port and the flame.
【0006】[0006]
【作用】上記構成を有する本発明の燃焼装置は、第一の
発明においては火炎と火炎間の二次空気通路途中に温度
検出素子を設置し、第二の発明においては濃火炎と濃火
炎間の淡混合気通路途中に温度検出素子を設置している
ため、火炎の大きさ等により温度検出素子の出力が影響
を受ける事が少ない。そのため燃焼の空気比が変化する
と、それに対応した温度検出素子の出力が得られる。そ
の特性を利用して、温度検出素子の出力により燃焼用空
気の空気比を正確でしかも容易に検出することができ
る。In the combustion apparatus of the present invention having the above structure, a temperature detecting element is installed in the middle of the secondary air passage between the flame in the first invention, and in the second invention between the rich flame and the rich flame. Since the temperature detecting element is installed in the middle of the light air-fuel mixture passage, the output of the temperature detecting element is unlikely to be affected by the size of the flame or the like. Therefore, when the combustion air ratio changes, the output of the temperature detection element corresponding to it changes. By utilizing the characteristic, the air ratio of the combustion air can be accurately and easily detected by the output of the temperature detecting element.
【0007】[0007]
【実施例】以上説明した本発明の構成・作用を一層明確
にするために、以下本発明の燃焼装置の好適な実施例に
ついて説明する。図1は第一実施例としての燃焼装置の
概略構成図であり、図2は、いわゆるJ型ブンゼン式バ
ーナを使用して、それらを給湯器に組み込んだ例であ
る。この燃焼装置は、ノズル24より供給される燃料ガ
スと同時に吸入される一次空気とからなる混合気を噴出
する炎口11を備えた複数個のブンゼン式バーナ15を
間隔をおいて併設し、その間を上部に向かって二次空気
が流れる。これは本実施例が、熱交換器21をブンゼン
式バーナ15の上部に備え、その下部にあるファン22
によって燃焼用空気を供給される構造となっており、給
湯器外部より流れ込んだ空気は、一部はバーナ本体10
の内部へ一次空気として吸入され、残りはバーナ本体1
0の間を二次空気として流れて、最後には燃焼済排気ガ
スといっしょに排気筒23より給湯器外部へ排出される
からである。隣り合うバーナ本体10は、その火炎13
の大きさが変化しても火炎13どうしが接触せずなおか
つ二次空気通路が確保される様に充分の間隔をもって配
置されるため、火炎13と火炎13との間には隙間が生
じ、その隙間には熱電対14が、火炎13に接触しない
ようにして設置される。従って熱電対14は火炎13か
らの輻射熱と二次空気の流れによる冷却とのバランスに
よって温度決定され熱起電力を発生する。尚、熱電対1
4は、火炎13と接触せず、なおかつ二次空気の流れに
より冷却されるので、従来技術の場合と違って高温にな
ることはなく、検出素子は色々な種類のものが使用可能
である。EXAMPLES In order to further clarify the constitution and operation of the present invention described above, preferred examples of the combustion apparatus of the present invention will be described below. FIG. 1 is a schematic configuration diagram of a combustion apparatus as a first embodiment, and FIG. 2 is an example in which so-called J-type Bunsen burners are used and incorporated into a water heater. This combustion apparatus is provided with a plurality of Bunsen burners 15 provided at intervals with a flame port 11 for ejecting a mixture of primary air sucked at the same time as fuel gas supplied from a nozzle 24, and between them. The secondary air flows toward the top. In this embodiment, the heat exchanger 21 is provided at the upper part of the Bunsen burner 15 and the fan 22 at the lower part thereof is provided.
The structure is such that combustion air is supplied by the burner, and part of the air flowing from the outside of the water heater is the burner body 10.
Is sucked as primary air into the interior of the burner, and the rest is burner body 1
This is because it flows as secondary air between 0 and is finally discharged from the exhaust pipe 23 to the outside of the water heater together with the burned exhaust gas. The adjacent burner bodies 10 have flames 13
Even if the size of the flame changes, the flames 13 do not come into contact with each other and are arranged with a sufficient distance so that the secondary air passage is secured, so a gap is generated between the flames 13 and The thermocouple 14 is installed in the gap so as not to contact the flame 13. Therefore, the thermocouple 14 generates a thermoelectromotive force whose temperature is determined by the balance between the radiant heat from the flame 13 and the cooling by the flow of secondary air. In addition, thermocouple 1
Since 4 does not come into contact with the flame 13 and is cooled by the flow of secondary air, it does not become hot unlike the case of the prior art, and various types of detection elements can be used.
【0008】ここで空気比に対して火炎13の温度変化
をみてみると、例えば図3(ア)に示す様に空気比が増
加するに従ってなだらかに低下する。(ここでは、通常
燃焼状態を想定し、空気比は1.0以上の場合について
述べている。)これは必要空気量以上の空気が火炎13
に取り入れられると、その空気は燃焼の発熱増加には寄
与せず、逆に火炎13は、その空気により冷却されると
ともに温度密度が小さくなるからである。従って、空気
比に対して火炎13の輻射熱量の変化をみてみると、輻
射熱量は火炎13の温度に正比例する様に対応するた
め、例えば図3(イ)に示す様に空気比が増加するに従
って前記と同様になだらかに減少する。また空気比に対
する二次空気量の変化は、例えば図4(ア)に示す様に
空気比の増加に正比例し、二次空気の流れによる熱電対
14の冷却作用も、空気比にほぼ正比例する様に対応す
る。これらの結果、空気比に対する熱電対14の温度
は、輻射熱量と二次空気の冷却の両者の効果(図3
(イ)と図4(ア))により、例えば図4(イ)に示す
様に、空気比が増加するにつれてなめらかに低下する特
性を示すこととなる。上記理由により、熱電対14の温
度を測定すれば、空気比を正確でしかも容易に検出する
ことができる。Looking at the temperature change of the flame 13 with respect to the air ratio, for example, as shown in FIG. 3A, the temperature gradually decreases as the air ratio increases. (Here, the normal combustion state is assumed, and the case where the air ratio is 1.0 or more is described.) This is because the flame 13 is equal to or more than the required air amount.
This is because the air does not contribute to the increase in the heat generation of combustion when the air is taken in, and conversely, the flame 13 is cooled by the air and the temperature density decreases. Therefore, looking at the change in the radiant heat amount of the flame 13 with respect to the air ratio, the radiant heat amount corresponds to the temperature of the flame 13 so that the air ratio increases, for example, as shown in FIG. In the same manner as above, it gradually decreases. Further, the change of the secondary air amount with respect to the air ratio is directly proportional to the increase of the air ratio as shown in FIG. 4A, and the cooling action of the thermocouple 14 due to the flow of the secondary air is almost directly proportional to the air ratio. To respond. As a result, the temperature of the thermocouple 14 with respect to the air ratio has an effect of both the amount of radiant heat and the cooling of the secondary air (see FIG. 3).
From (a) and FIG. 4 (a), for example, as shown in FIG. 4 (a), a characteristic is shown that the air ratio smoothly decreases as the air ratio increases. For the above reason, if the temperature of the thermocouple 14 is measured, the air ratio can be detected accurately and easily.
【0009】次に第二実施例としての燃焼装置を図5,
6を用いて説明する。第二実施例は、いわゆる濃淡燃焼
の空気比検出に使用した例である。本実施例の濃淡燃焼
バーナは、二枚の薄板を重ね合わせて燃料ガスの通路を
作り、その通路途中に一次空気取り入れ口61を設け、
燃料ガスの出口部分には炎口62を備えて一つのユニッ
トを形成するのであるが、タイプの違うユニットを交互
に並べて全体を形成する。濃混合気で燃焼させる濃バー
ナ60の間に淡混合気で燃焼させる淡バーナ66を挟む
ことにより、濃バーナ60の炎口62には濃火炎63
を、淡バーナ66の炎口67上部には淡火炎68を形成
して、両者の火炎をバランスよく接触させて良好燃焼を
実現する。尚、炎口67の上部は淡混合気が噴出してお
り、淡火炎68の間まで火炎は形成されていない。もち
ろん、濃火炎63との間であって濃火炎63の形成も無
い。Next, a combustion apparatus as a second embodiment is shown in FIG.
This will be described using 6. The second embodiment is an example used for so-called rich / lean combustion air ratio detection. In the rich / lean combustion burner of the present embodiment, two thin plates are superposed to form a fuel gas passage, and a primary air intake port 61 is provided in the middle of the passage.
The flame gas outlet 62 is provided at the fuel gas outlet to form one unit, and units of different types are alternately arranged to form the entire unit. By sandwiching the light burner 66, which burns with a light air-fuel mixture, between the rich burners 60, which burn with a rich air-fuel mixture, the rich flame 63 is provided at the flame port 62 of the rich burner 60.
A light flame 68 is formed above the flame outlet 67 of the light burner 66, and the two flames are brought into contact with each other in a well-balanced manner to achieve good combustion. In addition, the light air-fuel mixture is ejected from the upper portion of the flame outlet 67, and no flame is formed between the light flames 68. Of course, there is no formation of the rich flame 63 between the rich flame 63.
【0010】本実施例はこの淡バーナ66の炎口67の
上部すなわち濃火炎63と濃火炎63との間に、熱電対
64を設置する。熱電対64の温度は第一実施例の場合
と比較して淡火炎68の影響が追加となる。尚、熱電対
64は淡混合気の噴出により冷却されるが、その空気比
に対する効果は第一実施例の二次空気量の影響(図4
(ア))とほぼ同じと考えてよい。従って前例との違い
は、淡火炎68からの輻射熱のみとなる。ここで空気比
に対する淡火炎68の熱電対64に与える輻射熱の変化
をみてみると、空気比が増加するにつれ淡火炎68の位
置は炎口67より上部へと遠ざかるので、例えば図7に
示す様に、その輻射熱は減少する。従って前例の空気比
に対する熱電対14の温度変化(図4(イ))に、この
輻射熱の影響を追加すると、熱電対64の温度は、第一
実施例より大きな割合で、同じ様になだらかに低下する
特性を示す。(図4(イ)に合わせて示す)尚、熱電対
64は、濃火炎13、淡火炎68とは接触せず、なおか
つ淡混合気の流れにより冷却されるので、従来技術の場
合と違って高温になることはなく、検出素子は色々な種
類のものが使用可能である。上記理由により、本実施例
の場合にも、熱電対64の温度を測定すれば、正確でし
かも容易に空気比を検出することができる。In this embodiment, a thermocouple 64 is installed above the flame outlet 67 of the light burner 66, that is, between the rich flame 63 and the rich flame 63. The temperature of the thermocouple 64 is additionally influenced by the lean flame 68 as compared with the case of the first embodiment. Although the thermocouple 64 is cooled by the jet of the light air-fuel mixture, its effect on the air ratio is affected by the amount of secondary air in the first embodiment (see FIG. 4).
It can be considered almost the same as (a)). Therefore, the difference from the previous example is only the radiant heat from the lean flame 68. Looking at the change in the radiant heat applied to the thermocouple 64 of the lean flame 68 with respect to the air ratio, the position of the lean flame 68 moves away from the flame outlet 67 to the upper part as the air ratio increases. Moreover, the radiant heat is reduced. Therefore, if the effect of this radiant heat is added to the temperature change of the thermocouple 14 with respect to the air ratio of the previous example (FIG. 4 (a)), the temperature of the thermocouple 64 will be larger and smoother in the same manner as in the first embodiment. Shows a declining property. The thermocouple 64 does not come into contact with the rich flame 13 and the lean flame 68 and is cooled by the flow of the lean mixture, unlike the case of the prior art. It does not reach a high temperature, and various types of detection elements can be used. For the above reason, also in the case of the present embodiment, if the temperature of the thermocouple 64 is measured, the air ratio can be detected accurately and easily.
【0011】続いて第三実施例としての燃焼装置を図8
を用いて説明する。第三実施例の燃焼装置は、第一また
は第二実施例の燃焼装置(図1または図5)の熱電対
(14または64)側面に、それを挟むように2枚の仕
切板88を平行に設けたものである。以下、第一実施例
の構成を用いて説明するが、第二実施例の場合において
も全く同様である。この仕切板88は、熱電対14の左
右に隣接する火炎13が、直接熱電対14に接触するこ
とを防止し、あわせて二次空気の流れを整える。従っ
て、この燃焼装置によれば、バーナ本体10のピッチ
(間隔)が狭くなった場合においても前述の実施例と同
様の理由により、正確でしかも容易に空気比を検出する
ことができる。Next, a combustion apparatus as a third embodiment is shown in FIG.
Will be explained. The combustion apparatus of the third embodiment has two partition plates 88 parallel to the side surface of the thermocouple (14 or 64) of the combustion apparatus of the first or second embodiment (FIG. 1 or 5) so as to sandwich it. It was installed in. Hereinafter, the configuration of the first embodiment will be described, but the same applies to the case of the second embodiment. The partition plate 88 prevents the flames 13 adjacent to the left and right of the thermocouple 14 from directly contacting the thermocouple 14, and also regulates the flow of secondary air. Therefore, according to this combustion device, even if the pitch (interval) of the burner main body 10 becomes narrow, the air ratio can be accurately and easily detected for the same reason as in the above-described embodiment.
【0012】さらに第四実施例としての燃焼装置を図9
を用いて説明する。第四実施例の燃焼装置は、第一また
は第二実施例の燃焼装置(図1または図5)の熱電対
(14または64)下部すなわち二次空気または淡混合
気上流に、中央部に開口部を設けた流量制御板99を設
置したものである。以下、第一実施例の構成を用いて説
明するが、第二実施例の場合においても全く同様であ
る。この流量制御板99は、中央部の開口部の大きさを
変更することにより、熱電対14に向かって流れる二次
空気の流量を簡単に変えることができる。従って、二次
空気による熱電対14の冷却効果を簡単に調整すること
が可能である。すなわち、熱電対14の熱起電力を任意
に設定でき、この燃焼装置を使用するうえで非常に使い
勝手がよいものである。Further, a combustion apparatus as a fourth embodiment is shown in FIG.
Will be explained. The combustor of the fourth embodiment has an opening in the central portion of the lower part of the thermocouple (14 or 64) of the combustor of the first or second embodiment (FIG. 1 or 5), that is, upstream of the secondary air or the lean mixture. A flow rate control plate 99 having a section is installed. Hereinafter, the configuration of the first embodiment will be described, but the same applies to the case of the second embodiment. The flow rate control plate 99 can easily change the flow rate of the secondary air flowing toward the thermocouple 14 by changing the size of the central opening. Therefore, the cooling effect of the thermocouple 14 by the secondary air can be easily adjusted. That is, the thermoelectromotive force of the thermocouple 14 can be arbitrarily set, and it is very convenient in using this combustion device.
【0013】以上説明したように、本実施例の燃焼装置
によれば、バーナ火炎の間に設置された熱電対の温度出
力により燃焼用空気の空気比を検出する事ができる。ま
た、熱電対自身の温度は高温とならないので、熱電対の
耐久性能が向上するとともに色々な検出素子を使用でき
る。以上本発明の実施例について説明したが、本発明は
こうした実施例に何等限定されるものでなく、様々な態
様で実施し得ることは勿論である。例えば検出素子とし
て熱電対の他にサーミスタ等も使用可能である。As described above, according to the combustion apparatus of this embodiment, the air ratio of the combustion air can be detected by the temperature output of the thermocouple installed between the burner flames. Moreover, since the temperature of the thermocouple itself does not become high, the durability performance of the thermocouple is improved and various detecting elements can be used. Although the embodiments of the present invention have been described above, it is needless to say that the present invention is not limited to these embodiments and can be implemented in various modes. For example, a thermistor or the like can be used as the detection element in addition to the thermocouple.
【0014】[0014]
【発明の効果】以上説明したように本発明の燃焼装置
は、火炎の間に設置した温度検出素子の出力により、空
気比を正確でしかも容易に検出することが可能なので、
燃焼に使用する空気の空気比を制御して最適な燃焼をさ
せることができるという優れた効果を奏する。As described above, in the combustion apparatus of the present invention, the air ratio can be accurately and easily detected by the output of the temperature detecting element installed between flames.
This has an excellent effect that the air ratio of the air used for combustion can be controlled to perform optimum combustion.
【図1】第一実施例としての燃焼装置の概略構成図であ
る。FIG. 1 is a schematic configuration diagram of a combustion apparatus as a first embodiment.
【図2】第一実施例を給湯器に組み込んだ構造図であ
る。FIG. 2 is a structural diagram in which the first embodiment is incorporated in a water heater.
【図3】第一実施例の空気比と火炎温度、輻射熱量の関
係のグラフである。FIG. 3 is a graph showing the relationship between the air ratio, flame temperature, and radiant heat in the first embodiment.
【図4】第一実施例の空気比と二次空気量ならびに第
一、第二実施例の空気比と熱電対温度の関係のグラフで
ある。FIG. 4 is a graph showing the relationship between the air ratio and the secondary air amount in the first embodiment, and the air ratio and the thermocouple temperature in the first and second embodiments.
【図5】第二実施例としての燃焼装置の概略構成図であ
る。FIG. 5 is a schematic configuration diagram of a combustion device as a second embodiment.
【図6】濃淡燃焼バーナの概略構成図である。FIG. 6 is a schematic configuration diagram of a rich / lean combustion burner.
【図7】第二実施例の空気比と輻射熱量の関係のグラフ
である。FIG. 7 is a graph showing the relationship between the air ratio and the amount of radiant heat in the second embodiment.
【図8】第三実施例としての燃焼装置の概略構成図であ
る。FIG. 8 is a schematic configuration diagram of a combustion device as a third embodiment.
【図9】第四実施例としての燃焼装置の概略構成図であ
る。FIG. 9 is a schematic configuration diagram of a combustion device as a fourth embodiment.
【図10】従来例としての燃焼装置の概略構成図であ
る。FIG. 10 is a schematic configuration diagram of a combustion device as a conventional example.
【図11】従来例の空気比と検出素子出力の関係のグラ
フである。FIG. 11 is a graph showing a relationship between an air ratio and a detection element output in a conventional example.
10,60,66,80 バーナ本体 13,63,83 火炎 11,62,67,82 炎口 14,64,84 熱電対 88 仕切板 99 流量制御板 10, 60, 66, 80 Burner body 13, 63, 83 Flame 11, 62, 67, 82 Flame port 14, 64, 84 Thermocouple 88 Partition plate 99 Flow control plate
Claims (2)
合気を噴出する炎口を備えたバーナを間隔をおいて並設
し、そのバーナ間に二次空気を流す燃焼装置において、
上記バーナの火炎発生領域外の火炎と火炎との間の2次
空気通路に、空気比を検出する為の温度検出素子を設け
た事を特徴とする燃焼装置。1. A combustor in which fuel gas and primary air are sucked in, burners provided with flame ports for ejecting a mixture thereof are arranged in parallel at intervals, and secondary air is caused to flow between the burners,
A combustion device characterized in that a temperature detection element for detecting an air ratio is provided in a secondary air passage between the flame outside the flame generation region of the burner.
かれる複数の濃側炎口と、上記濃側炎口に隣接して設け
られ上記濃混合気より空気比の高い淡混合気が導かれる
複数の淡側炎口とを交互に備え、上記濃側炎口および上
記淡側炎口からそれぞれの混合気を噴出して燃焼する燃
焼装置において、濃側炎口の火炎と火炎との間の淡混合
気噴出通路に、空気比を検出する為の温度検出素子を設
けた事を特徴とする燃焼装置。2. A plurality of rich-side flame ports to which a rich air-fuel mixture of fuel gas and combustion air is introduced, and a light-air mixture provided adjacent to the rich-side flame ports and having a higher air ratio than the rich air-fuel mixture. Is alternately provided with a plurality of light side flame outlets, and in the combustion device that ejects and burns the respective air-fuel mixture from the rich side flame outlet and the light side flame outlet, the flame and flame of the rich side flame outlet A combustion device characterized in that a temperature detection element for detecting an air ratio is provided in the light air-fuel mixture ejection passage between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05172266A JP3143270B2 (en) | 1993-06-17 | 1993-06-17 | Combustion equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05172266A JP3143270B2 (en) | 1993-06-17 | 1993-06-17 | Combustion equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH074640A true JPH074640A (en) | 1995-01-10 |
JP3143270B2 JP3143270B2 (en) | 2001-03-07 |
Family
ID=15938717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05172266A Expired - Fee Related JP3143270B2 (en) | 1993-06-17 | 1993-06-17 | Combustion equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3143270B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278621A (en) * | 2006-04-07 | 2007-10-25 | Rinnai Corp | Rich-lean burner |
JP2013036738A (en) * | 2012-10-18 | 2013-02-21 | Paloma Co Ltd | Combustion device |
JP2013231524A (en) * | 2012-04-27 | 2013-11-14 | Noritz Corp | Combustion device |
CN113551224A (en) * | 2021-07-31 | 2021-10-26 | 台州乐达卫厨有限公司 | Gas water heater and its burner |
-
1993
- 1993-06-17 JP JP05172266A patent/JP3143270B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278621A (en) * | 2006-04-07 | 2007-10-25 | Rinnai Corp | Rich-lean burner |
JP2013231524A (en) * | 2012-04-27 | 2013-11-14 | Noritz Corp | Combustion device |
JP2013036738A (en) * | 2012-10-18 | 2013-02-21 | Paloma Co Ltd | Combustion device |
CN113551224A (en) * | 2021-07-31 | 2021-10-26 | 台州乐达卫厨有限公司 | Gas water heater and its burner |
Also Published As
Publication number | Publication date |
---|---|
JP3143270B2 (en) | 2001-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9605871B2 (en) | Furnace burner radiation shield | |
US20130213378A1 (en) | Burner system for a furnace | |
KR100937787B1 (en) | Multiple plate combustor | |
JP3143270B2 (en) | Combustion equipment | |
JP3946574B2 (en) | Air heat burner | |
JP2004053144A (en) | In-cylinder swirl combustor | |
KR20030021915A (en) | Bunsen gas burner of gas heater | |
JPH06265142A (en) | Combustion apparatus | |
JP3862432B2 (en) | Combustion device abnormality detection device | |
JP2669953B2 (en) | Gas burner | |
JP2000274667A (en) | Combustion device | |
JPS62297615A (en) | Burning device | |
JP3468940B2 (en) | Gas combustion equipment | |
JP3509945B2 (en) | Combined combustor | |
JP2853090B2 (en) | Catalytic combustor | |
JP2003302012A (en) | Premixed gas combustion device | |
EP4367442A1 (en) | Premix gas burner system and method | |
JPH0627568B2 (en) | Low nitrogen oxide burner | |
JPH06300227A (en) | Burner | |
JPH04313608A (en) | Low-nox burner | |
JPH09112842A (en) | Burner device | |
JPH0151728B2 (en) | ||
JPS5840408A (en) | Combustor | |
JPH0791601A (en) | Water-tube boiler | |
JPS63254308A (en) | Burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091222 |
|
LAPS | Cancellation because of no payment of annual fees |