JPH0742503B2 - Method for forming high quality primary insulating film on unidirectional electrical steel sheet - Google Patents
Method for forming high quality primary insulating film on unidirectional electrical steel sheetInfo
- Publication number
- JPH0742503B2 JPH0742503B2 JP1059778A JP5977889A JPH0742503B2 JP H0742503 B2 JPH0742503 B2 JP H0742503B2 JP 1059778 A JP1059778 A JP 1059778A JP 5977889 A JP5977889 A JP 5977889A JP H0742503 B2 JPH0742503 B2 JP H0742503B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- air ratio
- decarburization
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 変圧器の鉄心用材料として主に用いられる一方向性電磁
鋼板の最も重要な特性は磁気特性である。すなわち鉄損
(W17 / 50値で代表される)が低く、磁束密度(B8値で
代表される)が高いことが必須である。一方、一方向性
電磁鋼板は適当な形状に打抜き、積層して使用するた
め、層間の絶縁が不良の場合、渦電流損の増加によって
鉄損が劣化する。従って一次絶縁皮膜の均一性や鋼板と
の密着性が不良である場合、打抜き部の絶縁皮膜剥離を
生じ、その部分の導通が原因となって鉄損が劣化するた
め、一次絶縁皮膜の性状は極めて重要である。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The most important characteristic of the grain-oriented electrical steel sheet mainly used as a core material of a transformer is magnetic characteristics. That iron loss is low (W 17/50 is being represented by values), it is essential magnetic flux density (represented by 8 value B) is high. On the other hand, since the unidirectional electrical steel sheet is punched into an appropriate shape and used by laminating it, if the insulation between layers is poor, the eddy current loss increases and the iron loss deteriorates. Therefore, if the uniformity of the primary insulation film and the adhesion with the steel sheet are poor, the insulation film peels off at the punched part, and the iron loss deteriorates due to conduction in that part, so the properties of the primary insulation film are Extremely important.
本発明は、一方向性電磁鋼板の一次絶縁皮膜の形成方法
に関するものであり、極めて均一性に富みかつ、鋼板と
の密着性に優れた良質一次絶縁皮膜形成方法に関するも
のである。The present invention relates to a method for forming a primary insulating coating on a unidirectional electrical steel sheet, and more particularly to a method for forming a high-quality primary insulating coating having extremely high uniformity and excellent adhesion to a steel sheet.
(従来の技術) 従来の一方向性電磁鋼板の一次絶縁皮膜は仕上焼鈍前の
脱炭焼鈍工程において、脱炭焼鈍時に鋼板表面に形成さ
れるSiO2を主成分とする内部酸化層と焼鈍分離剤として
塗布されるMgOが引き続く高温仕上焼鈍中に反応して形
成される。これまで良好な一次絶縁皮膜を形成するため
にMgOへの添加物等に関する技術が数多く提示され、か
つ、内部酸化層形成に関する方法として、特公昭58−46
547号公報に示される脱炭焼鈍前にSi,Oを鋼板に付着さ
せる方法、特公昭55−65367号公報に示される脱炭焼鈍
前に金属硫酸塩を塗布する方法、特公昭62−54085号公
報に示される脱炭焼鈍中の昇温速度と均熱時間および雰
囲気制御方法などがある。(Prior Art) In the conventional decarburization annealing process before finish annealing, the primary insulation film of conventional unidirectional electrical steel sheet is annealed and separated from the internal oxide layer mainly composed of SiO 2 formed on the steel sheet surface during decarburization annealing. The MgO applied as agent reacts and forms during subsequent high temperature finish annealing. To date, many techniques regarding additives to MgO, etc. for forming a good primary insulating film have been presented, and as a method for forming an internal oxide layer, JP-B-58-46
Method for adhering Si, O to a steel sheet before decarburization annealing shown in Japanese Patent No. 547, method for applying metal sulfate before decarburization annealing shown in Japanese Patent Publication No. 55-65367, Japanese Patent Publication No. 62-54085 There is a temperature rising rate, a soaking time, an atmosphere control method and the like during decarburization annealing shown in the publication.
(発明が解決しようとする課題) ところが、上記いずれの方法でも、予備処理を行う方法
は、増工程による経済性の不利、また、脱炭焼鈍中の条
件制御は、内部酸化層量のコントロールに限界があり、
良質の一次絶縁皮膜の形成には不十分であった。本発明
者等は、脱炭焼鈍工程前の熱延板焼鈍工程において、焼
鈍条件を適切に制御することにより熱延板焼鈍後の表層
部に緻密なSi,Oを主体とした層を形成させ、その後の脱
炭焼鈍条件と組み合わせ一次絶縁皮膜の性状を大幅に改
善し、一方向性電磁鋼板の重要な商品価値である鋼板と
の密着性に優れた鋼板を得ることに成功したものであ
る。(Problems to be Solved by the Invention) However, in any of the above methods, the method of performing the pretreatment is disadvantageous in economical efficiency due to the additional process, and the condition control during the decarburization annealing is for controlling the internal oxide layer amount. There are limits,
It was insufficient for forming a good quality primary insulating film. The present inventors, in the hot-rolled sheet annealing step before the decarburization annealing step, to form a layer mainly composed of dense Si, O in the surface layer portion after the hot-rolled sheet annealing by appropriately controlling the annealing conditions. , And succeeded in obtaining a steel sheet excellent in adhesion with the steel sheet, which is an important commercial value of the grain-oriented electrical steel sheet, by significantly improving the properties of the primary insulating film in combination with the subsequent decarburization annealing conditions. .
(課題を解決するための手段) 本発明は、優れた一次絶縁皮膜形成に必要な適性内部酸
化層を、従来の脱炭焼鈍工程のみによる内部酸化層形成
とは異なり、まず、熱延板焼鈍工程において下地に緻密
なSiO2のrichな内部酸化層を形成させ、その後の脱炭焼
鈍工程でさらに適正な内部酸化層を形成することによ
り、極めてSiO2richで良好な内部酸化層を形成させる方
法である。すなわち、熱延板焼鈍工程において、鋼板温
度が500℃以上となる温度領域でガス焼鈍条件を空気比
1.0〜1.5の範囲に制御した燃焼ガス雰囲気中で熱延板焼
鈍を行い、かつ、引続き仕上焼鈍前の脱炭焼鈍工程にお
いて脱炭焼鈍の雰囲気をPH2O/PH2で0.30〜0.45とするこ
とを特徴とする一方向性電磁鋼板の優れた一次絶縁皮膜
形成方法を提供するものである。(Means for Solving the Problems) In the present invention, first, an appropriate internal oxide layer necessary for forming an excellent primary insulating film is formed by annealing a hot-rolled sheet, unlike the conventional internal oxide layer formation by only a decarburizing annealing step. By forming a dense SiO 2 rich internal oxide layer in the base in the process and forming a more appropriate internal oxide layer in the subsequent decarburization annealing process, an excellent SiO 2 rich internal oxide layer is formed. Is the way. That is, in the hot-rolled sheet annealing step, the gas annealing conditions are set to the air ratio in the temperature range where the steel sheet temperature is 500 ° C or higher.
Hot-rolled sheet annealing is performed in a combustion gas atmosphere controlled to a range of 1.0 to 1.5, and the decarburizing annealing atmosphere is continuously set to 0.30 to 0.45 with PH 2 O / PH 2 in the decarburizing annealing process before finish annealing. The present invention provides an excellent method for forming a primary insulating coating on a grain-oriented electrical steel sheet.
なお、本発明の空気比算出方法を以下に示す。The method for calculating the air ratio of the present invention is shown below.
O2(%)と空気比との関係 α:空気比 A0:理論空気量(Nm3) N2:乾き燃焼N2ガス量(Nm3) nn:燃料1Nm3当りの (CO+CO2)発生量(Nm3) 熱延板焼鈍における炉雰囲気の空気比は炉中燃焼廃ガス
雰囲気O2(%)と上記の関係にある。具体的には本出願
人ラインの実積は下記のとおりである。Relationship between O 2 (%) and air ratio α: Air ratio A 0 : Theoretical air amount (Nm 3 ) N 2 : Dry combustion N 2 gas amount (Nm 3 ) n n : (CO + CO 2 ) generation amount (Nm 3 ) per 1Nm 3 of fuel During hot-rolled sheet annealing The air ratio of the furnace atmosphere has the above relationship with the combustion waste gas atmosphere O 2 (%) in the furnace. Specifically, the actual results of the applicant line are as follows.
空気比α O2(%) 1.0 0 1.3 3 1.6 6 以下本発明を詳細に説明する。Air ratio α O 2 (%) 1.0 0 1.3 3 1.6 6 The present invention will be described in detail below.
まず、本発明の特徴である熱延板焼鈍条件であるが、こ
の熱延板焼鈍は本来、優れた磁気特性を得るための工程
である。即ち、優れた磁気特性を得るためには、高度に
方位の揃った二次再結晶粒の安定成長が必須であるが、
このような二次再結晶粒を得るためには鋼板中に適正な
サイズと量の析出物が適切な分散状態で存在しているこ
とが必須条件である。この析出物をインヒビターと称し
ているが、現在工業的に利用されているものにはMnS,Al
N,Cus等がある。これら析出物を適正なサイズと量で鋼
板中に均一分散させることがこの熱延板焼鈍工程の主な
役割である。このような析出物の分散形態を達成するた
めに、特に成品板厚0.23mm以下の薄手材の熱延板焼鈍条
件は鋼板温度1080〜1200℃で10〜30秒均熱保持し、この
均熱温度域から900〜980℃までの冷却をコントロール
し、かつ、900〜980℃から室温までは急冷を行うヒート
サイクルが公知の条件となっている。この熱延板の焼鈍
は通常連続焼鈍によって行われる場合が多く、炉の入
口、出口は普通、外気と炉内を隔絶するためにシールさ
れている。本発明において鋼板温度を500℃以上の領域
に限定した理由は、500℃未満では鋼板温度が低温のた
め、鋼板表面の内部酸化生成が不十分で本発明が目的と
するに十分な内部酸化層が得られず、あえて空気比を1.
0〜1.5の範囲で燃焼ガス雰囲気にする必要はないためで
ある。しかし、全温度域を空気比1.0〜1.5に制御しても
当然同じ良好な結果が得られることは言うまでもない。First, the conditions for hot-rolled sheet annealing, which is a feature of the present invention, are essentially steps for obtaining excellent magnetic properties. That is, in order to obtain excellent magnetic properties, stable growth of highly oriented secondary recrystallized grains is essential,
In order to obtain such secondary recrystallized grains, it is an essential condition that precipitates of a proper size and amount are present in a proper dispersed state in the steel sheet. These precipitates are called inhibitors, but the ones currently used industrially include MnS and Al.
There are N, Cus, etc. The main role of this hot-rolled sheet annealing process is to uniformly disperse these precipitates in a proper size and amount in the steel sheet. In order to achieve such a dispersed morphology of precipitates, the hot rolled sheet annealing conditions, especially for thin materials with a product sheet thickness of 0.23 mm or less, are soaked and held at a steel sheet temperature of 1080 to 1200 ° C for 10 to 30 seconds. A known condition is a heat cycle in which cooling from a temperature range to 900 to 980 ° C. is controlled and quenching is performed from 900 to 980 ° C. to room temperature. This hot-rolled sheet is usually annealed in many cases by continuous annealing, and the inlet and outlet of the furnace are usually sealed so as to isolate the inside of the furnace from the outside air. In the present invention, the reason for limiting the steel plate temperature to a region of 500 ° C. or higher is that the steel plate temperature is lower than 500 ° C., so that the internal oxidation generation of the steel plate surface is insufficient and the internal oxide layer sufficient for the purpose of the present invention. Was not obtained, and the air ratio was 1.
This is because it is not necessary to set the combustion gas atmosphere in the range of 0 to 1.5. However, it goes without saying that even if the air ratio is controlled to 1.0 to 1.5 in the entire temperature range, the same good result can be obtained.
次に本発明の再も重要な構成要件の1つである燃焼ガス
の空気比であるが、その空気比を1.0〜1.5に規定した理
由は、以下の通りである。The air ratio of the combustion gas, which is one of the important constituent features of the present invention, is the reason for defining the air ratio to 1.0 to 1.5 for the following reason.
熱延板焼鈍過程では、鋼板中のみならず、鋼板表面での
界面状態も非常に多岐にわたり変化する。特に、板温50
0℃以上で空気比を1.0〜1.5の範囲にて鋼板表面に反応
生成する内部酸化層はSi,Oの量と分布が鋼板深さ方向に
対して緻密かつ深く根のはった理想的形態をとっている
ことを発明者らは見出した。その代表例を説明する。In the hot-rolled sheet annealing process, not only in the steel sheet, but also the interface state on the steel sheet surface changes in various ways. Especially, plate temperature 50
The internal oxide layer that reacts and forms on the surface of the steel sheet at an air ratio of 1.0 to 1.5 above 0 ℃ has an ideal shape in which the amount and distribution of Si and O are dense and deeply rooted in the depth direction of the steel sheet. The inventors have found that A typical example will be described.
第1図に空気比条件による鋼板界面状態変化比較を示
す。これは、成分系としてC:0.073%,Si:3.15%,Mn:0.0
75%,S:0.024%,Al:0.029%,N:0.008%を含有する電磁
鋼熱延板をCH450%,H220%,N210%,CO10%を主成分とす
るガス燃焼雰囲気で空気比0.80,1.20の2条件で鋼板温
度1120℃×均熱時間20秒焼鈍を実施後、冷却−酸洗処理
を行った焼鈍板の表面をGDS元素分析した結果である。
第1図(a)の空気比0.80条件では、Si,O,Feの鋼板界
面での生成はいずれも少量であるが、第1図(b)の空
気比1.20条件ではSi,Oの鋼板界面での生成量は増加し、
最表面層部のSi,Oの濃度比が空気比0.80条件の約2倍に
増量していることがわかる。また、この熱延板を本発明
の脱炭焼鈍雰囲気条件下で焼鈍した成品の最表層断面を
顕微鏡観察した結果、空気比1.20条件のサンプルはSiO2
が鋼板深さ方向に対して、緻密かつ深く根のはった理想
的な形態が観察された。また、空気比をさらに上げてい
くとSi,O,Feの鋼板界面での生成量はさらに増加する
が、空気比1.5を超えると、SiO2の量以上にFeOの量が非
常に増加し、前述した脱炭焼鈍工程における脱炭量が急
激に低下し、最終製品における磁気特性不良の原因とな
るという事実も見出した。これら空気比と密着性、脱炭
性の関係を第2図に示す。密着性の測定は後述する実施
例1と同一方法で行った。これは第1図と同様に成分系
としてC:0.073%,Si:3.15%,Mn:0.075%,S:0.024%,Al:
0.029%,N:0.008%を含有する電磁鋼熱延板をCH450%,H
220%,N210%,CO10%を主成分とするガス燃焼雰囲気で
空気比0.80〜1.8の条件で鋼板温度1120℃×均熱時間20
秒焼鈍を実施後、冷却−酸洗−冷間圧延(圧延率87%)
して0.300mm厚の鋼板とした後、この鋼板をN2:50%+
H2:50%,PH2O/PH2=0.40の雰囲気ガス条件中で840℃×
2分間脱炭焼鈍して通板した。この脱炭焼鈍後の鋼板に
MgO 100重量部にTiO23重量配合した焼鈍分離剤を塗布
し、1200℃で20時間の最終仕上焼鈍を行った。このよう
な通板条件で処理した鋼板の空気比と密着性、脱炭性の
関係は第2図に示すように、空気比1.0未満では密着性
が不良であるが、空気比1.0〜1.5の領域では良好な密着
性レベルが得られている。さらに空気比1.5を超える領
域では脱炭不良が急激に増加している。以上が空気比を
1.0〜1.5に設定した理由である。さて、熱延板焼鈍工程
における、空気比関連発明として、特開昭62−120427号
公報に示されるような、脱スケール酸洗効果と空気比条
件の関係が指摘されているが、このなかで空気比1.0を
境に鋼板表面状況が大きく変化し、1.0以上ではスケー
ル層が著しく増加し、脱ケール酸洗効果が低下するとさ
れている。Fig. 1 shows a comparison of changes in the steel sheet interface state depending on the air ratio conditions. This is C: 0.073%, Si: 3.15%, Mn: 0.0
Hot-rolled electrical steel sheet containing 75%, S: 0.024%, Al: 0.029%, N: 0.008% is gas burned with CH 4 50%, H 2 20%, N 2 10%, and CO 10% as main components. It is the result of GDS elemental analysis of the surface of the annealed plate which was subjected to cooling-pickling treatment after annealing the steel plate temperature of 1120 ° C. for a soaking time of 20 seconds under two conditions of an air ratio of 0.80 and 1.20 in an atmosphere.
Under the air ratio of 0.80 in Fig. 1 (a), the generation of Si, O, Fe at the steel plate interface is small, but under the air ratio of 1.20 in Fig. 1 (b), the Si, O steel plate interface is small. The amount produced in
It can be seen that the concentration ratio of Si and O in the outermost surface layer is increased to about twice the air ratio of 0.80. In addition, as a result of microscopic observation of the outermost layer cross section of the product obtained by annealing the hot rolled sheet under the decarburizing annealing atmosphere condition of the present invention, the sample with an air ratio of 1.20 is SiO 2
A dense and deeply rooted ideal morphology was observed in the steel sheet depth direction. Further, if the air ratio is further increased, the amount of Si, O, Fe produced at the steel sheet interface further increases, but if the air ratio exceeds 1.5, the amount of FeO greatly increases beyond the amount of SiO 2 , It was also found that the decarburization amount in the decarburization annealing step described above drastically decreases, which causes a magnetic property defect in the final product. The relationship between these air ratios, adhesion and decarburization is shown in FIG. The adhesion was measured by the same method as in Example 1 described later. This is the same as in Fig. 1 with C: 0.073%, Si: 3.15%, Mn: 0.075%, S: 0.024%, Al:
Electromagnetic steel hot rolled sheet containing 0.029%, N: 0.008% CH 4 50%, H
2 20%, N 2 10%, CO 10% in a gas combustion atmosphere with an air ratio of 0.80 to 1.8 Steel plate temperature 1120 ° C × soaking time 20
After carrying out second annealing, cooling-pickling-cold rolling (rolling rate 87%)
Made into a steel plate with a thickness of 0.300 mm, and this steel plate is N 2 : 50% +
H 2 : 50%, PH 2 O / PH 2 = 0.40 in atmospheric gas conditions 840 ℃ ×
It was decarburized and annealed for 2 minutes and passed through a plate. For the steel sheet after this decarburization annealing
An annealing separator containing 3 parts by weight of TiO 2 was applied to 100 parts by weight of MgO, and final finish annealing was performed at 1200 ° C. for 20 hours. As shown in FIG. 2, the relationship between the air ratio and the adhesiveness and decarburizing property of the steel sheet treated under such stripping conditions is as shown in FIG. Good adhesion levels are obtained in the region. Further, in the region where the air ratio exceeds 1.5, decarburization defects are rapidly increasing. The above is the air ratio
This is the reason why it is set to 1.0 to 1.5. Now, as an invention relating to the air ratio in the hot-rolled sheet annealing step, a relation between the descaling pickling effect and the air ratio condition is pointed out as shown in JP-A-62-120427. It is said that the steel sheet surface condition changes drastically at the air ratio of 1.0, and the scale layer remarkably increases above 1.0, and the descaling and pickling effect decreases.
これに対して、本発明は熱延板における温度条件および
空気比制御と、後続の脱炭焼鈍時のPH2O/PH2の条件を組
み合わせることにより、良質の一次絶縁皮膜を造ること
に成功したものであり、上記特開昭62−120427号公報記
載の発明と本発明は全く異なるものである。特開昭62−
120427号公報記載の方法では空気比1.0以上で脱スケー
ル性が大幅に低下することが指摘されているが、既に当
該ラインにはショットプラスト・デスケーリング設備を
導入し酸洗強化していることが多く、脱スケール性の問
題は全くない。On the other hand, the present invention succeeds in producing a high-quality primary insulating film by combining the temperature condition and air ratio control in the hot-rolled sheet and the condition of PH 2 O / PH 2 during the subsequent decarburization annealing. The present invention is completely different from the invention described in JP-A-62-120427. JP 62-
It has been pointed out that the method described in the publication No. 120427 significantly reduces the descaling property at an air ratio of 1.0 or more, but it is already said that shot-plast descaling equipment has been introduced to the line to strengthen pickling. Many, there is no problem of descaling.
さて、空気比1.0〜1.5の範囲では最終成品の表層部のS
i,Oの量と分布が鋼板深さ方向に対して緻密かつ深く根
のはった理想的形態をとっていることを前述したが、脱
炭焼鈍工程だけでの内部酸化層形成の従来技術では、こ
のような形態の内部の酸化層は実現しにくい。その現象
理由は明確ではないが、第1に熱延板焼鈍工程と脱炭焼
鈍工程における、鋼板温度条件差が考えられる。公知の
条件では、最高鋼板温度×均熱保持時間条件が、熱延板
焼鈍で1080〜1200℃×10〜30秒、脱炭焼鈍で800〜900℃
×120〜150秒であり、熱延板焼鈍条件のほうが脱炭焼鈍
条件に比べ、最高鋼板温度で200〜400℃高く、均熱保持
時間で140〜90秒短い。換言すれば、熱延板焼鈍条件は
高温短時間処理、脱炭焼鈍条件は低温長時間処理といえ
る。このため、本来脱炭焼鈍工程で実施すべき鋼板表面
での選択酸化が、熱延板焼鈍時のほうが高温短時間処理
のため特に酸化雰囲気条件下では鋼板表層部での選択酸
化が脱炭焼鈍条件下に比較し遥かに短時間で進行し易
く、鋼板表層部でのSi,Oの酸化層量が格段に増え、か
つ、生成した内部酸化層は酸洗−冷間圧延後も消滅する
ことなく残留し、従来材と比べて脱炭焼鈍工程で内部酸
化層生成量と形態に大きな差が生じるものと考えられ
る。Now, in the air ratio range of 1.0 to 1.5, S of the surface layer of the final product is
As mentioned above, the amount and distribution of i and O have an ideal form that is dense and deeply rooted in the depth direction of the steel sheet. Then, it is difficult to realize an internal oxide layer having such a form. Although the reason for this phenomenon is not clear, firstly, a difference in steel plate temperature condition between the hot rolled sheet annealing step and the decarburization annealing step is considered. Under known conditions, the maximum steel plate temperature x soaking and holding time conditions are: 1080-1200 ° C x 10-30 seconds for hot-rolled sheet annealing, 800-900 ° C for decarburization annealing.
X 120 to 150 seconds, the hot rolled sheet annealing condition is higher than the decarburizing annealing condition by 200 to 400 ° C at the maximum steel sheet temperature and 140 to 90 seconds shorter at the soaking and holding time. In other words, it can be said that the hot rolled sheet annealing condition is a high temperature short time treatment, and the decarburizing annealing condition is a low temperature long time treatment. For this reason, the selective oxidation on the surface of the steel sheet that should be originally performed in the decarburization annealing step is performed at a high temperature for a short time during hot-rolled sheet annealing. Compared to the conditions, it is easier to proceed in a much shorter time, the amount of Si and O oxide layers in the steel sheet surface layer increases significantly, and the generated internal oxide layer disappears even after pickling and cold rolling. It is considered that there is a large difference in the internal oxide layer formation amount and morphology in the decarburization annealing process compared to the conventional material.
このような理由から、本発明においては従来の脱炭焼鈍
時に内部酸化層を形成する方法とは異なり、熱延板焼鈍
工程で内部酸化層を形成することにより、良質の内部酸
化層を形成するものである。しかしながら、単に熱延板
焼鈍工程で内部酸化層を形成しても、後続の脱炭焼鈍工
程において、従来から公知のPH2O/PH2=0.2〜0.6の範囲
で焼鈍した場合には良質の内部酸化層とはならない。そ
こで本発明者らは種々の検討の結果、脱炭焼鈍時のPH2O
/PH2を特に0.30〜0.45に限定することにより熱延板焼鈍
工程で形成した良質の内部酸化層が、仕上焼鈍前まで維
持出来ることが判った。For this reason, in the present invention, unlike the conventional method of forming an internal oxide layer during decarburization annealing, a good quality internal oxide layer is formed by forming the internal oxide layer in the hot-rolled sheet annealing step. It is a thing. However, even if the internal oxide layer is simply formed in the hot-rolled sheet annealing step, in the subsequent decarburization annealing step, if it is annealed in the conventionally known range of PH 2 O / PH 2 = 0.2 to 0.6, good quality is obtained. It does not become an internal oxide layer. Therefore, as a result of various studies, the present inventors have found that PH 2 O during decarburization annealing
It was found that by limiting / PH 2 to 0.30 to 0.45 in particular, a good internal oxide layer formed in the hot-rolled sheet annealing process can be maintained until before finish annealing.
次に脱炭焼鈍工程における雰囲気条件 PH2O/PH2=0.30〜0.45の理由について説明する。Next, the reason for the atmospheric conditions PH 2 O / PH 2 = 0.30 to 0.45 in the decarburization annealing process will be described.
製造条件が、成分系としてC:0.073%,Si:3.15%,Mn:0.0
75%,S:0.024%,Al:0.029%,N:0.008%を含有する電磁
鋼熱延板をCH450%,H220%,N210%,CO10%を主成分とす
るガス燃焼雰囲気で空気比1.20で鋼板温度1120℃×均熱
時間20秒焼鈍を実施後、前述の公知条件で冷却−酸洗−
冷間圧延(圧延率87%)して0.300mm厚の鋼板とした
後、この鋼板をN2:50%+H2:50%、PH2O/PH2=0.2〜0.5
の雰囲気ガス条件中で840℃×2分間脱炭焼鈍して通板
した。この脱炭焼鈍後の鋼板にMgO 100重量部にTiO2を
3重量部配合した焼鈍分離剤を塗布し、1200℃で20時間
の最終仕上焼鈍を行った。この製造条件にて脱炭焼鈍工
程におけるPH2O/PH2が0.45を超えると、過酸化のためF
e,O過多の内部酸化層が形成され、成品皮膜外観を著し
く損ない、またPH2O/PH2が0.30未満では、脱炭が極めて
遅くなり、成品炭素量が著しく高くなり、磁気特性を劣
化させることが判った。The manufacturing conditions are as follows: C: 0.073%, Si: 3.15%, Mn: 0.0
Hot-rolled electrical steel sheet containing 75%, S: 0.024%, Al: 0.029%, N: 0.008% is gas burned with CH 4 50%, H 2 20%, N 2 10%, and CO 10% as main components. After annealing at a steel plate temperature of 1120 ° C and a soaking time of 20 seconds in an atmosphere with an air ratio of 1.20, cooling under the above-mentioned known conditions-pickling-
After cold rolling (rolling rate 87%) to make a 0.300 mm thick steel plate, this steel plate is N 2 : 50% + H 2 : 50%, PH 2 O / PH 2 = 0.2 to 0.5
Decarburization annealing was performed for 2 minutes at 840 ° C. in the atmosphere gas condition of 1) and the steel sheet was passed. After the decarburization annealing, the annealing separator containing 100 parts by weight of MgO and 3 parts by weight of TiO 2 was applied to the steel sheet, and final annealing was performed at 1200 ° C. for 20 hours. If PH 2 O / PH 2 in the decarburizing annealing process exceeds 0.45 under these manufacturing conditions, F
An internal oxide layer with excess e, O is formed, which significantly impairs the appearance of the product coating.When PH 2 O / PH 2 is less than 0.30, decarburization is extremely slow, the carbon content of the product is extremely high, and the magnetic properties deteriorate. I found out that
次に本発明における限定理由を述べる。Next, the reasons for limitation in the present invention will be described.
まず、成分組成については、Siは4.5%を超すと冷延が
困難になり好ましくない。一方、2.5%より少ない場合
は電気抵抗が低く鉄損値の向上は望めない。First, regarding the component composition, if Si exceeds 4.5%, cold rolling becomes difficult, which is not preferable. On the other hand, if it is less than 2.5%, the electric resistance is low and the iron loss value cannot be improved.
Cは、Si量に応じて少なくとも鋼の一部にγ変態を生ぜ
しめるに充分な量含有する必要がある。Cが0.12%を超
すと、高磁束密度の成品が得られなくなるのみならず、
脱炭焼鈍を完全に行うことが困難になり好ましくない。C must be contained in an amount sufficient to cause γ transformation in at least a part of steel depending on the amount of Si. When C exceeds 0.12%, not only products with high magnetic flux density cannot be obtained, but
Complete decarburization annealing becomes difficult, which is not preferable.
AlおよびNは本発明において高磁束密度の成品を得るた
めのAlNを形成するための基本元素であり、前述した本
発明の範囲を外れると二次再結晶が不安定になり高磁束
密度の成品が得られなくなる。Al and N are basic elements for forming AlN for obtaining a product with a high magnetic flux density in the present invention, and if outside the range of the present invention described above, secondary recrystallization becomes unstable and a product with a high magnetic flux density is obtained. Will not be obtained.
MnおよびSはMnsを形成するために必要な元素であり、M
nの適量は0.02〜0.2%である。Mn and S are elements necessary for forming Mns, and Mn
A suitable amount of n is 0.02-0.2%.
Sは0.04を越すと純化焼鈍時での脱硫が悪くなり好まし
くない。一方0.01%未満ではMnsの量が不足する。If S exceeds 0.04, desulfurization during purification annealing is unfavorably deteriorated. On the other hand, if it is less than 0.01%, the amount of Mns is insufficient.
また、Sn,Cu,Sbはそれぞれ単独で或いは化合物を作りイ
ンヒビターとして効果があることは公知であるが、これ
らの元素が多量に含まれるのは好ましくない。Sn,Cu,Sb
について、最高値を0.4%にした理由はこれを越すと磁
気特性が劣化する上に熱延性,酸洗性,脱炭性等が劣り
作業性を悪くするためである。Further, it is known that Sn, Cu, and Sb each have an effect as an inhibitor individually or by forming a compound, but it is not preferable that these elements are contained in a large amount. Sn, Cu, Sb
The reason why the maximum value was set to 0.4% is that if it exceeds this value, the magnetic properties deteriorate and the hot ductility, pickling property, decarburizing property, etc. are poor and the workability deteriorates.
また、工程条件として、熱延板焼鈍工程において、焼鈍
雰囲気中の空気比を1.0〜1.5とした理由は、空気比1.0
未満では最終目的である一次絶縁皮膜のベースとなる内
部酸化層量が不足し、良質な一次絶縁皮膜ができず、ま
た、空気比が1.5を越えると内部酸化層における鉄酸化
物量が急激に増加し、後続する脱炭焼鈍工程において脱
炭量が急激に減少し、最終成品における磁気特性不良と
なるからである。また、脱炭焼鈍工程における脱炭焼鈍
雰囲気条件範囲をPH2O/PH2分圧比で0.30〜0.45とした理
由は、分圧比が0.30未満では脱炭が極めて遅くなり最終
成品における磁気特性不良となにり、0.45を越えると、
過酸化のため鉄酸化物過多の内部酸化層が形成され、成
品皮膜外観を著しく損なうからである。Further, as a process condition, in the hot rolled sheet annealing step, the reason for setting the air ratio in the annealing atmosphere to 1.0 to 1.5 is that the air ratio is 1.0.
If the ratio is less than 1, the amount of the internal oxide layer, which is the base of the primary insulating film, which is the final purpose, will be insufficient, and a good quality primary insulating film will not be possible.If the air ratio exceeds 1.5, the amount of iron oxide in the internal oxide layer will rapidly increase. However, the decarburization amount sharply decreases in the subsequent decarburization annealing step, resulting in poor magnetic properties in the final product. In addition, the reason why the decarburization annealing atmosphere condition range in the decarburization annealing step was set to 0.30 to 0.45 as the PH 2 O / PH 2 partial pressure ratio was that decarburization was extremely slow when the partial pressure ratio was less than 0.30, and the magnetic properties were poor in the final product. What if 0.45 is exceeded?
This is because the internal oxide layer containing excess iron oxide is formed due to the peroxidation, and the appearance of the product film is significantly impaired.
この発明の実施例を以下に説明する。Embodiments of the present invention will be described below.
<実施例1> 供試材:板厚2.3mmで成分系がC:0.078%、Si:3.25%,M
n:0.075%、S:0.024%,Al:0.028%,N:0.008%を含有す
る電磁鋼熱延板をCH450%,H220%,N210%,CO10%を主成
分とするガス燃焼雰囲気で空気比=0.80,1.00,1.20,1.5
0,1.60の5条件で1100℃×20秒焼鈍を実施後、公知の条
件で酸洗−冷間圧延して、0.265mm厚の鋼板とした。こ
の鋼板をN2:50%+H2:50%、PH2O/PH2=0.5,0.35,0.2の
雰囲気ガス条件中で840℃×2分間脱炭焼鈍して通板し
た。この脱炭焼鈍後の鋼板にMgO100重量部にTiO2を3重
量部配合した焼鈍分離剤を塗布し、1200℃で20時間の最
終仕上焼鈍を行った。この鋼板の皮膜外観および鋼板と
の密着性を第1表に示す。<Example 1> Specimen: 2.3 mm thick and C: 0.078%, Si: 3.25%, M
n: 0.075%, S: 0.024 %, Al: 0.028%, N: CH 4 50% electromagnetic steel hot-rolled sheet containing 0.008%, H 2 20%, N 2 10%, mainly composed of CO 10% Air ratio = 0.80,1.00,1.20,1.5 in gas combustion atmosphere
After annealing at 1100 ° C. for 20 seconds under 5 conditions of 0.16.10, pickling and cold rolling were performed under known conditions to obtain a steel sheet having a thickness of 0.265 mm. This steel sheet was decarburized and annealed at 840 ° C. for 2 minutes in an atmosphere gas condition of N 2 : 50% + H 2 : 50% and PH 2 O / PH 2 = 0.5, 0.35, 0.2, and then passed. After the decarburization annealing, the annealing separator containing 100 parts by weight of MgO and 3 parts by weight of TiO 2 was applied to the steel sheet, and the final annealing was performed at 1200 ° C. for 20 hours. Table 1 shows the film appearance of the steel sheet and the adhesion to the steel sheet.
鋼板との密着性は以下の方法で測定した。The adhesion with the steel plate was measured by the following method.
一定の直径をもつ円柱に成品鋼板を巻きつけ、円柱側の
一次皮膜剥離状態を観察する。順次小さい直径をもつ円
柱で試験を行い、皮膜剥離のない最小径で皮膜密着性の
指標とする。すなわち、小さい値ほど密着性が良好であ
ることになる。A product steel plate is wound around a cylinder having a constant diameter, and the state of the peeling of the primary coating on the cylinder side is observed. Test with cylinders having smaller diameters in order, and use the smallest diameter that does not cause film peeling as an index of film adhesion. That is, the smaller the value, the better the adhesion.
第1表から本発明例は比較例に比べて良好な皮膜外観と
密着性を有していることがわかる。It can be seen from Table 1 that the examples of the present invention have better film appearance and adhesion than the comparative examples.
<実施例2> 供試材:板厚2.3mmで成分系がC:0.078%,Si:3.25%,Mn:
0.075%、S:0.024%,Al:0.027%,N:0.008%,Cu:0.08%,
Sn:0.12%を含有する電磁鋼熱延板をCH450%,H220%,N2
10%,CO10%を主成分とするガス燃焼雰囲気で空気比=
0.80,1.00,1.20,1.50,1.60の5条件で1100℃×20秒焼鈍
を実施後、公知の方法で酸洗−冷間圧延して、0.230mm
厚の鋼板とした。この鋼板をN2:50%+H2:50%,PH2O/PH
2=0.5,0.35,0.2の雰囲気ガス条件中で840℃×2分間脱
炭焼鈍して通板した。この脱炭焼鈍後の鋼板にMgO 100
重量部にTiO2を3重量部配合した焼鈍分離剤を塗布し、
1200℃で20時間の最終仕上げ焼鈍を行った。この鋼板の
皮膜外観および鋼板との密着性を第2表に示す。 <Example 2> Specimen: 2.3 mm in thickness and C: 0.078%, Si: 3.25%, Mn:
0.075%, S: 0.024%, Al: 0.027%, N: 0.008%, Cu: 0.08%,
Electromagnetic steel hot rolled sheet containing Sn: 0.12% was added to CH 4 50%, H 2 20%, N 2
Air ratio = 10%, CO 10% in the gas combustion atmosphere
After carrying out annealing at 1100 ° C for 20 seconds under five conditions of 0.80, 1.00, 1.20, 1.50, 1.60, pickling-cold rolling by a known method to 0.230 mm.
It was a thick steel plate. This steel sheet is N 2 : 50% + H 2 : 50%, PH 2 O / PH
Decarburization annealing was performed at 840 ° C for 2 minutes in the atmosphere gas conditions of 2 = 0.5, 0.35 and 0.2, and the strip was passed. MgO 100 is added to the steel sheet after this decarburization annealing.
By applying an annealing separator containing 3 parts by weight of TiO 2 to parts by weight,
Final finish annealing was performed at 1200 ° C for 20 hours. Table 2 shows the film appearance of the steel sheet and the adhesion to the steel sheet.
第2表から本発明例は比較例に比べて良好な皮膜外観と
密着性を有していることがわかる。It can be seen from Table 2 that the examples of the present invention have better film appearance and adhesion than the comparative examples.
(発明の効果) 本発明によれば、良好な一次皮膜形成に必要十分な量と
組成をもつ内部酸化層の形成は熱延板焼鈍工程の空気比
と脱炭焼鈍条件のみを適切に選択することにより、従来
の如く脱炭焼鈍前処理を必要とせず、また、MgOへの添
加物も微量TiO2のみで、成品皮膜の外観および密着性を
改善することができる。 (Effect of the Invention) According to the present invention, only the air ratio and the decarburization annealing conditions in the hot-rolled sheet annealing step are appropriately selected for the formation of the internal oxide layer having the necessary and sufficient amount and composition for good primary film formation. As a result, it is possible to improve the appearance and adhesion of the product film without requiring decarburization annealing pretreatment as in the prior art and using only a small amount of TiO 2 as an additive to MgO.
第1図(a),(b)は電磁鋼熱延板焼鈍雰囲気の空気
比による鋼板界面状態の変化比較(GDS使用)(実施例H
i−B 0.30mm材(成品板厚))を示す図で、(a)は空
気比0.8、(b)は空気比1.2の場合である。 第2図は電磁鋼板熱延板焼鈍雰囲気の空気比と一次絶縁
皮膜の密着性の関係を示す図(実施例Hi−B 0.30mm材
(成品板厚))である。1 (a) and 1 (b) are comparisons of changes in the steel sheet interface state (using GDS) according to the air ratio in the annealing atmosphere of the hot rolled sheet of electromagnetic steel (Example H).
i-B 0.30 mm material (product plate thickness)), where (a) is an air ratio of 0.8 and (b) is an air ratio of 1.2. FIG. 2 is a diagram (Example Hi-B 0.30 mm material (product sheet thickness)) showing the relationship between the air ratio in the annealing atmosphere of the electromagnetic steel sheet and the adhesion of the primary insulating film.
Claims (1)
%,Mn:0.02〜0.2%,酸可溶性Al:0.015〜0.040%,N:0.0
040〜0.0100%,S:0.01〜0.04%,残部Fe及び不可避的不
純物からなり、さらに0.4%以下のSn,Cu,Sbの1種又は
2種以上を含有する珪素鋼熱延板を焼鈍して75〜95%の
範囲で行う最終冷延を1回以上行って最終板厚とし、脱
炭し、仕上焼鈍を行う高磁束密度一方向性電磁鋼板を製
造する工程において、前記熱延板焼鈍を、鋼板温度が50
0℃以上となる温度領域において、雰囲気中の空気比を
1.0〜1.5の範囲に制御した燃焼ガス雰囲気中で行い、か
つ、仕上焼鈍前の脱炭焼鈍工程において脱炭焼鈍の雰囲
気のPH2O/PH2分圧比を0.30〜0.45の範囲とすることを特
徴とする一方向性電磁鋼板の良質一次絶縁皮膜形成方
法。1. A weight ratio of Si: 2.5 to 4.5% and C: 0.020 to 0.12.
%, Mn: 0.02-0.2%, acid-soluble Al: 0.015-0.040%, N: 0.0
040〜0.0100%, S: 0.01〜0.04%, balance Fe and unavoidable impurities, and further annealing 0.4% or less of Sn, Cu, Sb one or more kinds of silicon steel hot rolled sheet In the process of producing a high magnetic flux density unidirectional electrical steel sheet in which final cold rolling performed in the range of 75 to 95% is performed once or more to obtain the final sheet thickness, decarburization, and finish annealing, the hot rolled sheet annealing is performed. , Steel plate temperature is 50
In the temperature range above 0 ° C, change the air ratio in the atmosphere
It is performed in a combustion gas atmosphere controlled in the range of 1.0 to 1.5, and the PH 2 O / PH 2 partial pressure ratio of the atmosphere of decarburization annealing in the decarburization annealing step before finish annealing is set to be in the range of 0.30 to 0.45. A method for forming a high-quality primary insulating coating on a characteristic grain-oriented electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1059778A JPH0742503B2 (en) | 1989-03-14 | 1989-03-14 | Method for forming high quality primary insulating film on unidirectional electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1059778A JPH0742503B2 (en) | 1989-03-14 | 1989-03-14 | Method for forming high quality primary insulating film on unidirectional electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02240216A JPH02240216A (en) | 1990-09-25 |
JPH0742503B2 true JPH0742503B2 (en) | 1995-05-10 |
Family
ID=13123093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1059778A Expired - Lifetime JPH0742503B2 (en) | 1989-03-14 | 1989-03-14 | Method for forming high quality primary insulating film on unidirectional electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0742503B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4979904B2 (en) * | 2005-07-28 | 2012-07-18 | 新日本製鐵株式会社 | Manufacturing method of electrical steel sheet |
JP7052863B2 (en) | 2018-03-20 | 2022-04-12 | 日本製鉄株式会社 | One-way electrical steel sheet and its manufacturing method |
-
1989
- 1989-03-14 JP JP1059778A patent/JPH0742503B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02240216A (en) | 1990-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100442101B1 (en) | The method for producing an electromagnetic steel sheet having high magnetic flux density | |
JP3952606B2 (en) | Oriented electrical steel sheet with excellent magnetic properties and coating properties and method for producing the same | |
JP6119959B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2000503726A (en) | Manufacturing method of grain oriented electrical steel sheet with high magnetic flux density based on low temperature slab heating method | |
JPH10298653A (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3481567B2 (en) | Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more | |
KR940008932B1 (en) | Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties | |
JP7329049B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JPH06200325A (en) | Highly magnetic silicon steel sheet manufacturing method | |
JP3275712B2 (en) | High silicon steel sheet excellent in workability and method for producing the same | |
JPH0742503B2 (en) | Method for forming high quality primary insulating film on unidirectional electrical steel sheet | |
JP3312000B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JP2560579B2 (en) | Method for manufacturing high silicon steel sheet having high magnetic permeability | |
JPH02294428A (en) | Production of grain-oriented silicon steel sheet having high magnetic flux density | |
JP2724094B2 (en) | Manufacturing method of grain-oriented silicon steel sheet | |
JP4029432B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH11269544A (en) | Manufacture of high flux density low core loss grain oriented silicon steel sheet | |
JP2001123229A (en) | Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic | |
JP7396545B1 (en) | grain-oriented electrical steel sheet | |
WO2024162442A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2014148723A (en) | Method of manufacturing oriented electromagnetic steel sheet and primary recrystallization steel sheet for manufacturing oriented electromagnetic steel sheet | |
JP7459939B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH05214445A (en) | Production of grain-oriented silicon steel sheet having extremely high magnetic flux density | |
CN113272457B (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5904151B2 (en) | Method for producing grain-oriented electrical steel sheet |