JPH0741840A - Ultra low carbon steel melting method - Google Patents
Ultra low carbon steel melting methodInfo
- Publication number
- JPH0741840A JPH0741840A JP15643893A JP15643893A JPH0741840A JP H0741840 A JPH0741840 A JP H0741840A JP 15643893 A JP15643893 A JP 15643893A JP 15643893 A JP15643893 A JP 15643893A JP H0741840 A JPH0741840 A JP H0741840A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- mass
- low carbon
- concentration
- ladle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
(57)【要約】
【目的】 本発明は、取鍋型脱ガス装置において、極低
炭素鋼を効率的かつ経済的に溶製する方法を提供する。
【構成】 取鍋型脱ガス装置を用いて、減圧下において
溶鋼の脱炭処理を実施するに当り、〔C〕濃度が0.0
03mass%以上の範囲で、溶鋼にCaO含有物質、
MgO含有物質を一種、もしくは、二種以上の混合物を
添加し、液体のスラグを固化することにより、CO気泡
の発生サイトを増加させ、脱炭反応を促進する。
(57) [Abstract] [Object] The present invention provides a method for efficiently and economically producing extremely low carbon steel in a ladle type degassing apparatus. [Structure] When performing decarburization treatment of molten steel under reduced pressure using a ladle-type degasser, [C] concentration is 0.0
In the range of 03 mass% or more, molten steel with CaO-containing substance,
By adding one or a mixture of two or more kinds of MgO-containing substances and solidifying the liquid slag, the generation sites of CO bubbles are increased and the decarburization reaction is promoted.
Description
【0001】[0001]
【産業上の利用分野】本発明は、取鍋型脱ガス装置にお
いて、溶鋼中の炭素(以下、〔C〕と記す)の含有量を
極微量、例えば、0.0015mass%以下まで除去
し、極低炭素鋼を溶製するための効率的かつ経済的な方
法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a ladle type degassing apparatus in which the content of carbon (hereinafter referred to as [C]) in molten steel is removed to an extremely small amount, for example, 0.0015 mass% or less, The present invention relates to an efficient and economical method for producing ultra low carbon steel.
【0002】[0002]
【従来の技術】取鍋型脱ガス装置は、例えば、R.J.
Fruehan編“VACUUM DEGASSING
OF STEEL”(AIME,1990),p.2
3〜p.27に示されているように、溶鋼を装入した取
鍋全体を真空槽内に装入し、減圧下で、不活性ガスを溶
鋼中に吹込み、溶鋼の脱炭、脱水素、脱窒などの脱ガス
処理を行なう装置である。極低炭素鋼を溶製する場合、
一次精錬炉である転炉で0.03mass%程度まで粗
脱炭した後取鍋型脱ガス装置において所定の〔C〕濃度
まで脱炭される。2. Description of the Related Art A ladle type degassing apparatus is disclosed in, for example, R.K. J.
Fruehan ed "VACUUM DEGASSING"
OF STEEL "(AIME, 1990), p. 2
3 to p. As shown in 27, the entire ladle charged with molten steel is charged into a vacuum tank, and under a reduced pressure, an inert gas is blown into the molten steel to decarburize, dehydrogenate and denitrify the molten steel. It is a device for performing degassing treatment such as. When melting ultra low carbon steel,
After roughly decarburizing to about 0.03 mass% in a converter which is a primary refining furnace, it is decarburized to a predetermined [C] concentration in a ladle-type degasser.
【0003】一般に、減圧下での溶鋼の脱炭反応は、次
の3種類に分類される。すなわち、 (A)溶鋼との濡れ性が悪い固体と溶鋼との界面におけ
る〔C〕と溶鋼中の酸素(以下、〔O〕と記す)との反
応、この場合はCO気泡の発生を伴う。 (B)減圧雰囲気に曝されている溶鋼自由表面での
〔C〕と〔O〕との反応。 (C)溶鋼中に吹込まれたアルゴン気泡と溶鋼との界面
で起こる〔C〕と〔O〕との反応。 とに分類される。Generally, the decarburization reaction of molten steel under reduced pressure is classified into the following three types. That is, (A) a reaction between [C] and oxygen in the molten steel (hereinafter, referred to as [O]) at the interface between the solid and the molten steel having poor wettability with the molten steel, in which case CO bubbles are generated. (B) Reaction between [C] and [O] on the molten steel free surface exposed to a reduced pressure atmosphere. (C) A reaction between [C] and [O] occurring at the interface between the argon bubbles blown into the molten steel and the molten steel. Classified as and.
【0004】これらの反応の内、〔C〕濃度が0.00
3mass%以上の範囲では(A)の反応が主体である
ことが明らかにされている。この領域での脱炭速度は
(1)式で表わされる。 −dCc/dt=k(Cc−Po+Ps)/K・Co) (1) ここで、Ccは〔C〕濃度、Coは〔O〕濃度、tは時
間、kは脱炭反応の物質移動容量係数、Kは反応〔C〕
+〔O〕=CO(g)の平衡定数、Poは真空槽内圧
力、Psはスラグ静圧である。Of these reactions, the [C] concentration is 0.00
It has been clarified that the reaction of (A) is predominant in the range of 3 mass% or more. The decarburization rate in this region is expressed by equation (1). −dC c / dt = k (C c −P o + P s ) / K · C o ) (1) where C c is [C] concentration, C o is [O] concentration, t is time, k is Mass transfer capacity coefficient of decarburization reaction, K is reaction [C]
+ [O] = CO (g) equilibrium constant, P o is vacuum chamber internal pressure, and P s is slag static pressure.
【0005】[0005]
【発明が解決しようとする課題】転炉で粗脱炭した後、
取鍋に出鋼する際、転炉から取鍋にスラグが流出する。
通常、このスラグはCaO−SiO2−Al2O3系の低
融点スラグすなわち、液体のスラグである。取鍋型脱ガ
ス装置では、この液体のスラグが溶鋼表面を被覆するた
め、(1)式中のPsの値が大きくなり、脱炭速度が小
さくなる。さらに、(A)の反応が開始する時のPoが
低圧力側に移行するとともに、(A)の反応が終了する
時の〔C〕濃度が高くなる。したがって、極低炭素鋼を
迅速に溶製することが困難である。[Problems to be Solved by the Invention] After coarse decarburization in a converter,
When tapping steel in a ladle, slag flows out from the converter into the ladle.
Usually, the slag or low melting point slag CaO-SiO 2 -Al 2 O 3 system, a slug of liquid. In the ladle type degasser, since the liquid slag coats the molten steel surface, the value of P s in the equation (1) becomes large and the decarburization rate becomes small. Furthermore, P o when the reaction starts of (A) along with shifts to the low pressure side, the higher the [C] concentration at which the reaction is completed in (A). Therefore, it is difficult to rapidly produce ultra low carbon steel.
【0006】[0006]
【課題を解決するための手段】そこで、上記課題を解決
し、極低炭素鋼を容易に溶製するため、 溶鋼を装入した取鍋を真空槽内に装入し、減圧下にお
いて溶鋼の脱炭処理を実施するに当り、溶鋼中の炭素濃
度が0.003mass%以上の範囲で、溶鋼にCaO
含有物質、MgO含有物質の一種もしくは、二種以上の
混合物を添加し、取鍋内のスラグを固めることを特徴と
する極低炭素鋼の溶製方法、 CaO含有物質として生石灰、ドロマイトを用いるこ
とを特徴とする記載の極低炭素鋼の溶製方法、 MgO含有物質としてドロマイト、マグネシア煉瓦
屑、マグネシアクロマイト質煉瓦屑を用いることを特徴
とする記載の極低炭素鋼の溶製方法を発明した。[Means for Solving the Problems] Therefore, in order to solve the above-mentioned problems and easily produce ultra-low carbon steel, a ladle containing the molten steel is placed in a vacuum tank and the molten steel is removed under reduced pressure. When carrying out the decarburization treatment, when the carbon concentration in the molten steel is 0.003 mass% or more, CaO is added to the molten steel.
Containing substances, MgO-containing substances, or a mixture of two or more of them, and solidifying the slag in the ladle, a method for melting ultra-low carbon steel, and using CaO-containing substances quicklime and dolomite Invented a method for melting ultra-low carbon steel, characterized by using dolomite, magnesia brick scrap, magnesia chromite brick scrap as the MgO-containing substance .
【0007】[0007]
【作用】以下、本発明について詳細に述べる。本発明
は、上記3種類の脱炭反応の内、(A)の反応による脱
炭を促進し、脱炭処理時間の短縮と到達〔C〕濃度の低
減を図るものである。(A)の反応において重要なこと
は、CO気泡が取鍋耐火物など溶鋼との濡れ性の悪い固
体物質と溶鋼との界面で発生していることである。この
ことは、固体スラグと溶鋼との界面もCO気泡発生サイ
トとなり得ることを意味する。脱炭速度を増大させるた
めにはCO気泡発生サイトを増加することが重要であ
り、そのため、液体のスラグを固化し、CO気泡発生サ
イトとして利用することが脱炭促進には有効である。脱
炭反応を阻害していたスラグが脱炭反応を促進する反応
サイトとなるため、(A)の反応の効果の発現期間が長
くなり、〔C〕濃度の低減を早め、より低濃度まで脱炭
できるようになる。The present invention will be described in detail below. The present invention is intended to accelerate the decarburization by the reaction (A) among the above three kinds of decarburization reactions to shorten the decarburization treatment time and reduce the reached [C] concentration. What is important in the reaction (A) is that CO bubbles are generated at the interface between the molten steel and a solid substance having poor wettability with the molten steel, such as a ladle refractory. This means that the interface between the solid slag and the molten steel can also serve as a CO bubble generation site. In order to increase the decarburization rate, it is important to increase the CO bubble generation site. Therefore, solidifying the liquid slag and using it as the CO bubble generation site is effective for promoting decarburization. Since the slag that has been inhibiting the decarburization reaction becomes a reaction site that promotes the decarburization reaction, the effect of the reaction of (A) becomes longer in the manifestation period, and the [C] concentration is reduced more quickly, and the reaction is reduced to lower concentrations. You will be able to charcoal.
【0008】液体のスラグを固化するため、高融点であ
るCaO含有物質、MgO含有物質の一種もしくは、二
種以上の混合物を溶鋼に添加することが効果的である。
CaO含有物質、MgO含有物質の一種もしくは二種以
上を溶鋼に添加する時の〔C〕濃度の限定理由について
述べる。前述したように、〔C〕濃度が0.003ma
ss%未満の範囲では、CO気泡の発生はほとんどな
く、スラグを固化させCO気泡の発生サイトを増加させ
ても、脱炭反応を促進することはできない。それに対し
て、〔C〕濃度が0.003mass%以上の範囲で
は、CO気泡発生サイトを増加すればするほど、脱炭速
度が大きくなる。したがって、CaO含有物質、MgO
含有物質の一種もしくは二種以上を溶鋼に添加する時の
〔C〕濃度は0.003mass%以上とする。CaO
含有物質としては、安価であり、スラグの融点を高める
効果も良好であることから、生石灰あるいはドロマイト
を用いることが有利である。In order to solidify the liquid slag, it is effective to add one or a mixture of two or more of CaO-containing substance and MgO-containing substance having a high melting point to the molten steel.
The reasons for limiting the [C] concentration when one or more of CaO-containing substances and MgO-containing substances are added to molten steel will be described. As described above, the [C] concentration is 0.003 ma.
In the range of less than ss%, CO bubbles are hardly generated, and even if the slag is solidified to increase the generation sites of CO bubbles, the decarburization reaction cannot be promoted. On the other hand, in the range where the [C] concentration is 0.003 mass% or more, the decarburization rate increases as the CO bubble generation site increases. Therefore, CaO-containing substance, MgO
The concentration of [C] when one or more of the contained substances is added to the molten steel is 0.003 mass% or more. CaO
As the contained substance, quicklime or dolomite is advantageous because it is inexpensive and has a good effect of increasing the melting point of slag.
【0009】また、MgO含有物質としては、安価であ
り、スラグの融点を高める効果も良好であることから、
ドロマイト、マグネシア質煉瓦屑、マグネシアクロマイ
ト質煉瓦屑が有利である。CaO含有物質、MgO含有
物質の一種もしくは二種以上の混合物を溶鋼に添加する
方法は、取鍋上方から溶鋼表面上に落し込む方法、不活
性ガスを搬送ガスとして溶鋼中に浸漬したランスを用い
て溶鋼中に吹込む方法のいずれでもよく、その効果は同
等である。溶鋼に添加するCaO含有物質、MgO含有
物質はスラグの固化を効率的に行う観点から、粉粒状の
ものが好ましい。Further, since the MgO-containing substance is inexpensive, it has a good effect of increasing the melting point of slag,
Dolomite, magnesia brick waste, and magnesia chromite brick waste are advantageous. The method of adding the CaO-containing substance or the mixture of one or more of the MgO-containing substances to the molten steel is to drop it from above the ladle onto the surface of the molten steel, or to use a lance immersed in the molten steel as the carrier gas. Any method of blowing into molten steel may be used, and the effect is the same. The CaO-containing substance and the MgO-containing substance added to the molten steel are preferably powdery or granular in terms of efficiently solidifying the slag.
【0010】[0010]
実施例1 初期成分が〔C〕;0.03mass%、〔Si〕;
0.1mass%以下、〔Mn〕;0.01〜0.5m
ass%、〔P〕;0.005〜0.02mass%、
〔S〕;0.003〜0.02mass%、〔Al〕;
0.002mass%以下、〔O〕;0.03〜0.0
8mass%で重量が300トンの溶鋼を取鍋型脱ガス
装置を用いて脱炭処理を実施した。脱炭処理前のスラグ
量は約2トンであった。〔C〕濃度が0.003mas
s%以上の範囲で、溶鋼中に生石灰を500kg添加
し、スラグを固化させながら脱炭処理を実施した。この
時の〔C〕濃度の経時変化を図1に示す。図1に併示し
た比較例1は、生石灰を添加せずに脱炭処理を実施した
場合である。また、比較例2は、〔C〕濃度が0.00
3mass%以上の範囲では、生石灰を添加せず、
〔C〕濃度が0.003mass%未満の範囲において
溶鋼に生石灰を添加してスラグを固化した場合である。
比較例1および比較例2では、20分の脱炭処理での到
達〔C〕濃度が0.002mass%であるのに対し
て、本発明の方法では、0.0015mass%まで脱
炭できる。Example 1 Initial component is [C]; 0.03 mass%, [Si];
0.1 mass% or less, [Mn]; 0.01 to 0.5 m
%, [P]; 0.005-0.02 mass%,
[S]; 0.003 to 0.02 mass%, [Al];
0.002 mass% or less, [O]; 0.03 to 0.0
A molten steel having a mass of 8 tons and a weight of 300 tons was decarburized by using a ladle type degassing device. The amount of slag before decarburization was about 2 tons. [C] concentration is 0.003mas
In the range of s% or more, 500 kg of quicklime was added to the molten steel, and decarburization treatment was performed while solidifying the slag. The change with time of the [C] concentration at this time is shown in FIG. Comparative Example 1 also shown in FIG. 1 is a case where decarburization treatment was performed without adding quick lime. In Comparative Example 2, the [C] concentration is 0.00
In the range of 3 mass% or more, quicklime is not added,
This is the case where the slag is solidified by adding quick lime to the molten steel in the range where the [C] concentration is less than 0.003 mass%.
In Comparative Example 1 and Comparative Example 2, the reached [C] concentration in the decarburization treatment for 20 minutes is 0.002 mass%, whereas the method of the present invention can decarburize up to 0.0015 mass%.
【0011】実施例2 初期成分が〔C〕;0.03mass%、〔Si〕;
0.1mass%以下、〔Mn〕;0.01〜0.5m
ass%、〔P〕;0.005〜0.02mass%、
〔S〕;0.003〜0.02mass%、〔Al〕;
0.002mass%以下、〔O〕;0.03〜0.0
8mass%で重量が300トンの溶鋼を取鍋型脱ガス
装置を用いて脱炭処理を実施した。脱炭処理前のスラグ
量は約2トンであった。〔C〕濃度が0.003mas
s%以上の範囲で、溶鋼中に表1に示すスラグ固化剤を
500kg添加し、スラグを固化させながら脱炭処理を
実施した。この時の20分の脱炭処理後の到達〔C〕濃
度を表1に併示した。Example 2 Initial components are [C]; 0.03 mass%, [Si];
0.1 mass% or less, [Mn]; 0.01 to 0.5 m
%, [P]; 0.005-0.02 mass%,
[S]; 0.003 to 0.02 mass%, [Al];
0.002 mass% or less, [O]; 0.03 to 0.0
A molten steel having a mass of 8 tons and a weight of 300 tons was decarburized by using a ladle type degassing device. The amount of slag before decarburization was about 2 tons. [C] concentration is 0.003mas
In the range of s% or more, 500 kg of the slag solidifying agent shown in Table 1 was added to the molten steel, and decarburization treatment was performed while solidifying the slag. Table 1 also shows the reached [C] concentration after 20 minutes of decarburization treatment.
【0012】[0012]
【表1】 [Table 1]
【0013】比較例では、20分の脱炭処理後の〔C〕
濃度が0.002mass%であるのに対して、本発明
の方法によると0.0015mass%以下まで〔C〕
濃度を低減することができる。In the comparative example, [C] after decarburization treatment for 20 minutes
While the concentration is 0.002 mass%, according to the method of the present invention, up to 0.0015 mass% or less [C]
The concentration can be reduced.
【0014】[0014]
【発明の効果】本発明の方法により、取鍋型脱ガス装置
において、脱炭時間を延長することなく、〔C〕濃度が
0.0015mass%以下の極低炭素鋼を容易に溶製
できるようになった。EFFECTS OF THE INVENTION According to the method of the present invention, an ultra low carbon steel having a [C] concentration of 0.0015 mass% or less can be easily produced in a ladle type degassing apparatus without extending the decarburizing time. Became.
【図1】〔C〕濃度の経時変化を示す図である。FIG. 1 is a diagram showing a change with time of [C] concentration.
Claims (3)
し、減圧下において溶鋼の脱炭処理を実施するに当り、
溶鋼中の炭素濃度が0.003mass%以上の範囲
で、溶鋼にCaO含有物質、MgO含有物質の一種もし
くは、二種以上の混合物を添加し、取鍋内のスラグを固
めることを特徴とする極低炭素鋼の溶製方法。1. When a ladle charged with molten steel is charged into a vacuum chamber and decarburization treatment of molten steel is carried out under reduced pressure,
A pole characterized by adding a CaO-containing substance, a MgO-containing substance, or a mixture of two or more thereof to the molten steel so that the carbon concentration in the molten steel is 0.003 mass% or more, and solidifying the slag in the ladle. Method for melting low carbon steel.
トを用いることを特徴とする請求項1記載の極低炭素鋼
の溶製方法。2. The method for melting ultra-low carbon steel according to claim 1, wherein quicklime and dolomite are used as the CaO-containing substance.
ネシア煉瓦屑、マグネシアクロマイト質煉瓦屑を用いる
ことを特徴とする請求項1記載の極低炭素鋼の溶製方
法。3. The method for melting ultra-low carbon steel according to claim 1, wherein dolomite, magnesia brick waste, and magnesia chromite brick waste are used as the MgO-containing substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15643893A JPH0741840A (en) | 1993-06-28 | 1993-06-28 | Ultra low carbon steel melting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15643893A JPH0741840A (en) | 1993-06-28 | 1993-06-28 | Ultra low carbon steel melting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0741840A true JPH0741840A (en) | 1995-02-10 |
Family
ID=15627761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15643893A Withdrawn JPH0741840A (en) | 1993-06-28 | 1993-06-28 | Ultra low carbon steel melting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741840A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001152237A (en) * | 1999-11-24 | 2001-06-05 | Kawasaki Steel Corp | Molten steel refining method using carbon-containing waste refractory |
EP1695890A1 (en) | 2005-02-25 | 2006-08-30 | Hitachi, Ltd. | Signaling system, train with control apparatus and point protection apparatus |
-
1993
- 1993-06-28 JP JP15643893A patent/JPH0741840A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001152237A (en) * | 1999-11-24 | 2001-06-05 | Kawasaki Steel Corp | Molten steel refining method using carbon-containing waste refractory |
EP1695890A1 (en) | 2005-02-25 | 2006-08-30 | Hitachi, Ltd. | Signaling system, train with control apparatus and point protection apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6743915B2 (en) | Method for desulfurizing molten steel and desulfurizing agent | |
US4612043A (en) | Steel making method | |
JPH07216434A (en) | Ultra low carbon ultra low sulfur steel manufacturing method | |
GB2041410A (en) | Use of inert gas in the basic oxygen process to control slopping | |
EP0265038A1 (en) | Method of making steel | |
JPWO2020255917A1 (en) | Method of adding Ca to molten steel | |
JP2002266047A (en) | Ductile cast iron pipe and manufacturing method therefor | |
JP2002047509A (en) | Method for refining molten iron | |
JPH0741840A (en) | Ultra low carbon steel melting method | |
JPS5974212A (en) | Ladle refining method of molten steel to be used for producing non-directional electrical sheet having less iron loss | |
GB2117005A (en) | Dephosphorization and desulphurization method for molten iron alloy containg chromium | |
JPH0153329B2 (en) | ||
KR900002710B1 (en) | Rapid decarburization steelmaking process | |
JP4765374B2 (en) | Desulfurization treatment method for chromium-containing hot metal | |
JP2002129221A (en) | Hot metal refining method | |
RU2818526C1 (en) | Low-silicon steel production method | |
SU1044641A1 (en) | Method for alloying steel with manganese | |
WO2022259806A1 (en) | Molten steel denitrification method and steel production method | |
WO2022259805A1 (en) | Molten steel denitrification method and steel production method | |
RU2218419C2 (en) | Method of steel melting in converter | |
JP2004238698A (en) | Production method of high cleanliness steel | |
RU2202628C2 (en) | Method of deoxidation and alloying of steel | |
RU2228368C1 (en) | Method of production of steel | |
JP2005200762A (en) | Hot metal desulfurization method | |
JPH0361722B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000905 |