[go: up one dir, main page]

JPH0740025B2 - Polymer particles for affinity chromatography - Google Patents

Polymer particles for affinity chromatography

Info

Publication number
JPH0740025B2
JPH0740025B2 JP63105347A JP10534788A JPH0740025B2 JP H0740025 B2 JPH0740025 B2 JP H0740025B2 JP 63105347 A JP63105347 A JP 63105347A JP 10534788 A JP10534788 A JP 10534788A JP H0740025 B2 JPH0740025 B2 JP H0740025B2
Authority
JP
Japan
Prior art keywords
particles
polymer
particle size
average particle
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63105347A
Other languages
Japanese (ja)
Other versions
JPH01275641A (en
Inventor
民行 江口
道人 角森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP63105347A priority Critical patent/JPH0740025B2/en
Publication of JPH01275641A publication Critical patent/JPH01275641A/en
Publication of JPH0740025B2 publication Critical patent/JPH0740025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は特定の数平均粒径を有し、粒径分布がせまく、
かつ粒子の内部が三次元網目状組織となっているアフィ
ニティクロマトグラフィー用ポリマー粒子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a specific number average particle size and a narrow particle size distribution,
In addition, the present invention relates to a polymer particle for affinity chromatography in which the inside of the particle has a three-dimensional network structure.

[従来の技術・発明が解決しようとする課題] 従来よりポリマー粒子が製造され、クロマトグラフィー
用の充填材、酵素固定用の担体、アフィニティークロマ
トグラフィー用の担体、イオン交換樹脂用母材などとし
て利用されている。
[Problems to be Solved by Conventional Techniques and Inventions] Conventionally, polymer particles have been produced and used as a packing material for chromatography, a carrier for immobilizing an enzyme, a carrier for affinity chromatography, a base material for an ion exchange resin, etc. Has been done.

球状ポリマー粒子の製造方法として分散法とスプレー法
が知られている。
A dispersion method and a spray method are known as methods for producing spherical polymer particles.

分散法では、界面活性剤を含む分散媒体中に小滴状に分
散させたポリマーの希薄溶液からその溶剤を揮発させる
ことによって固化させるか(特開昭56−24430号公報参
照)、この分散液に小滴の凝固剤を徐々に加えて固化さ
せるかする(特開昭57159801号公報参照)ことによって
ポリマー粒子がえられる。この方法では広い粒径分布を
有する粒子がえられる上、固化した小滴から溶剤、分散
媒体および界面活性剤を除くための水だけでなく有機溶
剤による洗浄が必要である。
In the dispersion method, a dilute solution of a polymer dispersed in a dispersion medium containing a surfactant is solidified by volatilizing the solvent from the dilute solution of the polymer (see JP-A-56-24430). Polymer particles can be obtained by gradually adding a coagulant of small droplets to the mixture and solidifying it (see Japanese Patent Laid-Open No. 57159801). This method yields particles having a broad particle size distribution and requires washing with an organic solvent as well as water to remove the solvent, dispersion medium and surfactant from the solidified droplets.

また分散法の別法として重合性モノマーを分散媒体中に
分散させたのち重合させることによってポリマー粒子を
うる方法も知られており、かかる方法によってえられた
粒子も広い粒径分布を有している。この粒子を電子顕微
鏡で拡大して観察するとさらに微小な球状粒子が凝集し
て粒子を形成している状態が見受けられる。この構造が
原因だと思われるが、この方法でえられた粒子の懸濁液
をマグネチックスターラーなどで撹拌すると微小なポリ
マークズが多量に生じる。
Another method known as a dispersion method is a method in which a polymerizable monomer is dispersed in a dispersion medium and then polymerized to obtain polymer particles, and the particles obtained by such a method also have a wide particle size distribution. There is. When these particles are magnified and observed with an electron microscope, it can be seen that finer spherical particles aggregate to form particles. It is thought that this structure is the cause, but when the suspension of particles obtained by this method is stirred with a magnetic stirrer or the like, a large amount of minute polymer waste is generated.

スプレー法では、ポリマー溶液を凝固剤中に噴霧するこ
とによってポリマー粒子がえられる。この粒子も広い粒
径分布を持ち、また粒径も比較的大きい(特開昭52−12
9788号公報参照)。
In the spray method, polymer particles are obtained by spraying a polymer solution into a coagulant. This particle also has a wide particle size distribution and a relatively large particle size (Japanese Patent Laid-Open No. 52-12).
(See Japanese Patent No. 9788).

ところが、ポリマー粒子に粒径の小さいものが多く含ま
れると、吸着効率の良好なカラム状の吸着体として用い
たばあいに圧力損失が大きくなる、とくに血液中から血
漿蛋白質などを選択的に除去するというような用途に用
いると溶血などの問題が生ずる、分画分子量がシャープ
でなくなるので選択性がわるくなるなどの問題が生ず
る。
However, when many polymer particles with a small particle size are included, pressure loss increases when used as a column-shaped adsorbent with good adsorption efficiency, especially plasma proteins etc. are selectively removed from blood. When used for such a purpose, problems such as hemolysis occur, and the selectivity becomes poor because the molecular weight cut-off is not sharp.

前記圧力損失に関する問題を改善するためにポリマー粒
子の粒径を大きくすると、比表面積(単位体積当りの粒
子の総表面積)が小さくなり、吸着速度が低下する問題
が生ずる。
When the particle size of the polymer particles is increased in order to improve the above-mentioned problem related to pressure loss, the specific surface area (total surface area of particles per unit volume) becomes small, which causes a problem that the adsorption rate decreases.

ポリマー粒子の粒径分布を狭くして前記のごとき問題の
少ないものも製造されているが(特開昭57−102905号公
報)、この粒子は三次元網目構造ではなく、微小な一次
粒子が集合した粒子であり、機械的強度が必ずしも充分
でなく、一次粒子が脱離するという問題がある。
Although polymer particles having a narrow particle size distribution and less problems as described above have also been produced (Japanese Patent Laid-Open No. 57-102905), these particles do not have a three-dimensional network structure, but fine primary particles are aggregated. However, the mechanical strength is not always sufficient and the primary particles are detached.

[課題を解決するための手段] 本発明は前記諸問題の原因であるポリマー粒子の粒径分
布が広いなどの問題を解消するためになされたものであ
り、数平均粒径が300〜600μmの範囲にあり、すべての
粒子が数平均粒径の±10%以内にあり、粒子の内部が三
次元網目状組織となっているアフィニティクロマトグラ
フィー用ポリマー粒子に関する。
[Means for Solving the Problems] The present invention has been made to solve the problems such as the wide particle size distribution of polymer particles, which is the cause of the above-mentioned problems, and has a number average particle size of 300 to 600 μm. The present invention relates to polymer particles for affinity chromatography in which the content of all particles is within ± 10% of the number average particle diameter and the inside of the particles has a three-dimensional network structure.

[実施例] 本発明のアフィニティクロマトグラフィー用ポリマー粒
子を構成するポリマーの種類などにはとくに限定はな
く、ポリマー粒子を製造しうるものであるかぎりいかな
るものも使用しうる。
[Examples] There is no particular limitation on the type of polymer constituting the polymer particles for affinity chromatography of the present invention, and any polymer can be used as long as it can produce polymer particles.

このようなポリマーの具体例としては、たとえばセルロ
ース、セルロース誘導体、再生セルロースなどのセルロ
ース系ポリマー、絹フィブロインなどの絹系ポリマー、
キトサンなどのキチン系ポリマー、コラーゲン、アガロ
ース、アルギン酸塩、カラギーナン、ゼラチン、デンプ
ンのごとき天然系ポリマー;ポリアクロニトリル、アク
ロニトリル−スチレン共重合体、アクリロニトリル−ビ
ニルスルホン酸共重合体などのアクリロニトリル系ポリ
マー;ポリメチルメタクリレート、メチルメタクリレー
ト−ヒドロキシエチルメタクリレート共重合体、ポリメ
チルメタクリレートステレオコンプレックス、ヒドロキ
シエチルメタクリレート−スチレン共重合体などの(メ
タ)アクリレート系ポリマー;ポリスチレン、スチレン
−ブタジエン共重合体、スチレン−クロロメチルスチレ
ン共重合体などのスチレン系ポリマー;ポリビニルアル
コール、エチレン−ビニルアルコール共重合体などのビ
ニルアルコール系ポリマー;その他ポリアミド、ポリエ
ステル、ポリエーテル、ポリウレタン、ポリスルホンな
どの縮合系ポリマーなど、それぞれのポリマーに適した
溶剤に溶解させてポリマー溶液を製造しうる合成系ポリ
マーなどがあげられる。
Specific examples of such polymers include, for example, cellulose, cellulose derivatives, cellulosic polymers such as regenerated cellulose, silk-based polymers such as silk fibroin,
Chitin polymers such as chitosan, natural polymers such as collagen, agarose, alginate, carrageenan, gelatin, starch; acrylonitrile polymers such as polyacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-vinyl sulfonic acid copolymer. (Meth) acrylate polymers such as polymethylmethacrylate, methylmethacrylate-hydroxyethylmethacrylate copolymer, polymethylmethacrylate stereocomplex, hydroxyethylmethacrylate-styrene copolymer; polystyrene, styrene-butadiene copolymer, styrene-chloro Styrenic polymers such as methyl styrene copolymers; vinyl alcohols such as polyvinyl alcohol and ethylene-vinyl alcohol copolymers Rimmer; other polyamides, polyesters, polyethers, polyurethanes, etc. condensation polymer such as polysulfone, synthetic polymers capable of preparing a polymer solution by dissolving in a solvent suitable for each polymer.

前記ポリマー粒子を構成するポリマーが、たとえばセル
ロース系ポリマーのばあいには、血球成分や血漿蛋白質
の非特異吸着が比較的少ないなどの特徴を有するポリマ
ー粒子がえられるため、血液中から血漿蛋白質などを選
択的に除去するというような用途に好適に使用されうる
粒子がえられる。また、スチレン−ブタジエン共重合体
やスチレン−クロロメチルスチレン共重合体などのよう
に、他の基、たとえばイオン交換性基を導入したり架橋
させたりしうるポリマーを使用したばあいには、アフィ
ニティクロマトグラフィー用充填材の担体である本発明
のアフィニティクロマトグラフィー用ポリマー粒子とし
て使用しうる粒子や、イオン交換樹脂用母材や機械的強
度の大きい粒子や機械的強度の大きいイオン交換樹脂用
母材などに使用しうる粒子がえられる。さらにポリビニ
ルアルコール、エチレン−ビニルアルコール共重合体な
どのように活性水酸基を有するポリマーを使用したばあ
いには、圧力損失の小さいアフィニティークロマトグラ
フィー用担体などに使用しうる粒子がえられる。
When the polymer constituting the polymer particles is, for example, a cellulosic polymer, polymer particles having characteristics such as nonspecific adsorption of blood cell components and plasma proteins are relatively small, so that plasma proteins from blood can be obtained. Particles can be obtained which can be suitably used for applications such as selective removal of In addition, when a polymer capable of introducing or cross-linking other groups such as an ion-exchange group such as a styrene-butadiene copolymer or a styrene-chloromethylstyrene copolymer is used, the affinity Particles that can be used as polymer particles for affinity chromatography of the present invention, which is a carrier of a packing material for chromatography, a base material for an ion exchange resin, a particle having high mechanical strength, or a base material for ion exchange resin having high mechanical strength Particles that can be used for Further, when a polymer having an active hydroxyl group such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer is used, particles which can be used as a carrier for affinity chromatography having a small pressure loss can be obtained.

本発明のポリマー粒子は、球状(ほぼ真球のもののみな
らず、短径/長径が0.8程度までの楕円状のものの回転
体などをも含む概念である)の粒子であり、数平均粒径
(楕円状回転体のばあいには体積平均粒径、すなわち長
径の2乗に短径を乗じた値の3乗根として求める)が30
0〜600μmの範囲にあり、すべての粒子が数平均粒径の
±10%以内のものである。
The polymer particles of the present invention are spherical particles (which is a concept that includes not only substantially spherical particles but also rotators having an elliptical shape with a minor axis / major axis up to about 0.8) and a number average particle diameter. (In the case of an elliptical rotating body, the volume average particle diameter, that is, it is calculated as the cube root of the value obtained by multiplying the square of the major axis by the minor axis) is 30.
It is in the range of 0 to 600 μm, and all particles are within ± 10% of the number average particle size.

前記数平均粒径が300μm未満になると、たとえば血液
中から血漿蛋白質を選択的に除くための吸着体用のポリ
マー粒子として、とくに血漿蛋白質を直接血液潅流法に
よって吸着除去するための吸着材として使用したばあい
などの圧力損失が大きくなり、溶血がおこりやすくなる
などの問題が生じやすくなる。また600μmをこえると
比表面積が小さくなり、吸着速度が遅くなり、血液の循
環量の割に不要物の吸着除去量が少なくなる。
When the number average particle size is less than 300 μm, for example, it is used as a polymer particle for an adsorbent for selectively removing plasma proteins from blood, particularly as an adsorbent for adsorbing and removing plasma proteins by a direct blood perfusion method. This causes a large pressure loss such as spilling, and causes problems such as easy hemolysis. On the other hand, if it exceeds 600 μm, the specific surface area becomes small, the adsorption speed becomes slow, and the adsorbed and removed amount of the unwanted substances becomes small relative to the circulating amount of blood.

また、前記数平均粒径の±10%以内の粒子の割合がすべ
てでないばあいには、前記のごとき吸着体用の吸着材と
して使用したばあいには圧力損失が大きくなったり、溶
血がおこりやすくなったりしやすくなる。
If the ratio of particles within ± 10% of the number average particle size is not all, when used as an adsorbent for the adsorbent as described above, pressure loss increases or hemolysis occurs. It becomes easier and easier.

本発明のポリマー粒子の表面の状態にはとくに限定はな
く、スキン層が存在していてもよく、網目状組織となっ
ていてもよく、スキン層と網目状組織との中間の状態で
あってもよいが、その内部は三次元網目状組織となって
いる。
The state of the surface of the polymer particles of the present invention is not particularly limited, and may have a skin layer, may have a network structure, or may be in an intermediate state between the skin layer and the network structure. However, the inside has a three-dimensional mesh structure.

三次元網目状組織とは、前記のように重合性モノマーの
液滴を重合させた粒子がさらに微小な粒子の重合体(重
合体)であるのに対して、文字通り、海綿のように有孔
面が三次元的に連続した構造または繊維が三次元的に連
続した構造となっている組織を意味する。
The three-dimensional network structure is a polymer of finer particles (polymers) obtained by polymerizing droplets of a polymerizable monomer as described above, while it literally has pores like sponges. It means a structure in which surfaces are three-dimensionally continuous structure or fibers are three-dimensionally continuous structure.

ポリマー粒子内部の三次元網目状組織を構成する網目の
大きさ、空孔率などにもとくに限定はしないが、網目の
大きさは0.1〜10μm程度が好ましく、また内部に直径
が10μmを越える空洞部分を局部的に有してもよい。空
孔率は50〜95%程度が好ましい。
The size of the mesh and the porosity that form the three-dimensional network inside the polymer particles are not particularly limited, but the size of the mesh is preferably about 0.1 to 10 μm, and the inside has a cavity with a diameter of more than 10 μm. You may have a part locally. The porosity is preferably about 50 to 95%.

前記網目状組織の網目の大きさが0.1μm未満になる
と、吸着体用の吸着材として用いたばあいに血液中の前
記不要物の吸着速度が小さくなるのみならず、これら不
要物の吸着除去が充分行なわれなくなるなどの傾向が生
じる。また10μmをこえると、カラムに充填して使用す
る際などの輸送時や充填時などに粒子が変形したり、破
砕したりしやすくなる傾向が生じ、粒子の機械的強度が
充分でなくなる傾向にある。
When the size of the mesh of the mesh structure is less than 0.1 μm, not only the adsorbing speed of the unwanted substances in blood decreases when used as an adsorbent for an adsorbent, but also the adsorptive removal of these unwanted substances. Will not be performed sufficiently. On the other hand, if it exceeds 10 μm, the particles tend to be deformed or crushed during transportation, such as when packed in a column and used, and the mechanical strength of the particles tends to be insufficient. is there.

ポリマー粒子表面にスキン層が存在するばあい、スキン
層の厚さとして0.1〜10μm程度のものが通常えられ
る。このようにポリマー粒子表面にスキン層のあるポリ
マー粒子は、表面の孔径が比較的小さいので、排除限界
分子量がおよそ100万以下のクロマトグラフィー用粒
子、またはイオン交換樹脂用母材粒子として適したもの
になる。
When a skin layer is present on the surface of the polymer particles, a skin layer having a thickness of about 0.1 to 10 μm is usually obtained. Thus, the polymer particles having a skin layer on the surface of the polymer particles have a relatively small pore size on the surface, so that the exclusion limit molecular weight is about 1,000,000 or less, which is suitable as a chromatography particle or a base material particle for an ion exchange resin. become.

またポリマー粒子表面が網目状組織のばあい、網目状組
織には通常0.01〜5μmの孔径の孔が存在する。このよ
うにポリマー粒子表面が網目状組織のばあいには排除限
界分子量がおよそ100万以上のクロマトグラフィー用粒
子、あるいは固定化酵素の担体として適したものにな
る。
When the surface of the polymer particles has a network structure, the network structure usually has pores having a pore size of 0.01 to 5 μm. Thus, when the surface of the polymer particles has a network structure, it becomes suitable as a particle for chromatography having an exclusion limit molecular weight of about 1,000,000 or more, or a carrier for immobilized enzyme.

つぎに本発明のポリマー粒子の製造をセルロース系ポリ
マーを用いたばあいについて説明する。
Next, the production of the polymer particles of the present invention will be described in the case of using a cellulosic polymer.

本発明のポリマー粒子の1種であるセルロース系粒子
は、セルロース、セルロース誘導体などを溶解させたセ
ルロース系溶液を、たとえば特開昭62−191033号公報に
記載の装置および方法(振動法と乾湿式凝固法とを組合
わせた方法)を適用することにより製造されうる。
Cellulose-based particles, which is one type of the polymer particles of the present invention, are prepared by dissolving a cellulose-based solution in which cellulose, a cellulose derivative or the like is dissolved in, for example, the apparatus and method (vibration method and dry-wet method) described in JP-A-62-191033. It can be produced by applying a method in combination with a coagulation method).

前記セルロース系溶液を調製する際に用いる溶剤として
は、セルロースの溶剤となる、たとえば銅アンモニア水
溶液、ジメチルスルホキシドとパラホルムアルデヒドと
の混合液、チオシアン酸カルシウム水溶液など、また代
表的なセルロース誘導体である酢酸セルロースの溶剤と
なる、たとえばジメチルスルホキシド、ジメチルホルム
アミド、ジメチルアセトアミド、N−メチル−2−ピロ
リドン、アセトなどがあげられる。
The solvent used when preparing the cellulose-based solution is a solvent for cellulose, such as an aqueous solution of copper ammonia, a mixed solution of dimethylsulfoxide and paraformaldehyde, an aqueous solution of calcium thiocyanate, and acetic acid which is a typical cellulose derivative. Examples of the solvent for cellulose include dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and aceto.

これらの溶剤には、えられるセルロース系粒子の表面に
スキン層を形成するか否か、スキン層を形成するばあい
にはその厚さをどの程度にするか、内部の網目状組織の
孔の大きさをどの程度にするかなどを調節するために、
メタノール、エタノール、エチレングリコール、プロピ
レングリコール、グリセリン、水、無機塩類、ポリエチ
レングリコール、ポリビニルピロリドンなどを加えても
よい。
In these solvents, whether or not a skin layer is formed on the surface of the obtained cellulosic particles, what is the thickness of the skin layer when it is formed, and the size of the pores of the internal network structure In order to adjust the size,
Methanol, ethanol, ethylene glycol, propylene glycol, glycerin, water, inorganic salts, polyethylene glycol, polyvinylpyrrolidone, etc. may be added.

このようにして調製された5〜20%(重量%、以下同
様)程度のセルロース系溶液は、たとえば特開昭62−19
1033号公報に記載のごとき装置を用いてほぼ均一な大き
さの小液滴として気相中に噴出せしめられ、ほぼ球形に
なる飛行距離以上を飛行せしめられたのち凝固剤と接触
せしめられる。このようにして製造されるセルロース系
粒子はほぼ真球の粒子である。
A cellulosic solution of about 5 to 20% (weight%, the same applies hereinafter) prepared in this manner is disclosed in, for example, JP-A-62-19.
Using a device such as the one described in Japanese Patent No. 1033, small droplets having a substantially uniform size are ejected into the gas phase, and the droplets are caused to fly over a flight distance that makes them substantially spherical and then brought into contact with a coagulant. The cellulosic particles produced in this manner are substantially spherical particles.

前記凝固剤はポリマーの非溶剤からなるが、小滴を構成
する溶剤と溶けあい、小滴が自然にぬれるような表面張
力を有するものが好ましい。このような凝固剤の具体例
として、たとえば水、水と前記良溶剤または非溶剤との
混合液、水と界面活性剤との混合液などがあげられる。
The coagulant is composed of a non-solvent for the polymer, but it is preferable that the coagulant has a surface tension that dissolves in the solvent forming the droplets and naturally wets the droplets. Specific examples of such a coagulant include water, a mixed solution of water and the good solvent or non-solvent, a mixed solution of water and a surfactant, and the like.

一般にポリマー溶液中のポリマーの濃度が高く、非溶剤
の割合が少なく、水のように凝固力の強い凝固液を使用
するとスキン層を形成させることができ、また凝固を遅
くして、ポリマーを密に凝集させることによって粒子内
部の網目状組織の網目の大きさを小さくすることができ
る。
Generally, the concentration of the polymer in the polymer solution is high, the proportion of the non-solvent is low, and the use of a coagulating liquid with a strong coagulation force such as water can form a skin layer. The size of the network of the network structure inside the particles can be reduced by agglomerating the particles.

ポリマー溶液中のポリマー濃度が低く、非溶剤の割合が
設く、凝固力の比較的弱い凝固液を使用すると、表面ま
で網目状組織を有する粒子を形成させることができる。
The use of a coagulating liquid having a low polymer concentration in the polymer solution, a non-solvent ratio, and a relatively weak coagulation force can form particles having a network structure up to the surface.

前記説明においてはセルロース系ポリマーを用いてポリ
マー粒子を製造したが、他のポリマーを用いるばあいに
も上記のように適当な溶剤にポリマーを溶解させたポリ
マー溶液を用い、該ポリマーの非溶剤を凝固液として使
用し、前記と同様の方法でポリマー粒子を製造しうる。
In the above description, polymer particles were produced using a cellulosic polymer, but when using other polymers, a polymer solution prepared by dissolving the polymer in a suitable solvent as described above is used, and the non-solvent of the polymer is used. It can be used as a coagulating liquid to produce polymer particles in the same manner as described above.

ポリマーの溶剤、非溶剤および凝固剤は、たとえば「日
本化学会編,化学便覧,丸善(株)(1984)」、「J.Br
andrup & E.M.Immergut,editors:John Wily & Sons,N
ew York,ポリマー ハンドブック(Polymer Handbook)
(1975)」などにより選択することができる。
Solvents, non-solvents and coagulants for polymers are described, for example, in "Chemical Handbook, Chemical Handbook, Maruzen Co., Ltd. (1984)", "J.
andrup & EMImmergut, editors: John Wily & Sons, N
ew York, Polymer Handbook
(1975) ”or the like.

このようにしてえられたポリマー粒子にイオン交換性基
などの他の基を導入したり架橋させたりするサイトが存
在するばあいには、そののち他の基を導入したり架橋さ
せたりすればよい。
If there is a site for introducing or cross-linking another group such as an ion-exchange group in the polymer particles obtained in this way, then if another group is introduced or cross-linked. Good.

このようにしてえられた本発明のポリマー粒子は特定の
平均粒径および特定の粒径分布を有し、かつ粒子内部が
三次元網目状組織を有するため、アフィニティクロマト
グラフィー用担体として好適に使用することができ、こ
の用途に使用したばあいには圧力損失、吸着速度、分離
速度、選択性などの点で優れたものとなる。
The polymer particles of the present invention thus obtained have a specific average particle size and a specific particle size distribution, and since the inside of the particle has a three-dimensional network structure, it is suitable for use as a carrier for affinity chromatography. When it is used for this purpose, it is excellent in pressure loss, adsorption rate, separation rate, selectivity and the like.

なお、前記ポリマー粒子は、クロマトグラフィー用充填
材、酵素固定用担体、イオン交換樹脂用母材などの用途
に使用したばあいにも、前記優れた特徴が発現する。
The above-mentioned excellent characteristics are exhibited even when the polymer particles are used as a packing material for chromatography, an enzyme-immobilizing carrier, a base material for ion exchange resins, and the like.

つぎに本発明のポリマー粒子を実施例に基づき説明する
が、本発明がこれら実施例に限定されないことは勿論で
ある。
Next, the polymer particles of the present invention will be described based on Examples, but it goes without saying that the present invention is not limited to these Examples.

実施例1 二酢酸セルロースを濃度が12.5%となるようにジメチル
スルホキシド/プロピレングリコールが重量比で4/6の
混合液に溶解させた。
Example 1 Cellulose diacetate was dissolved in a mixed solution of dimethyl sulfoxide / propylene glycol in a weight ratio of 4/6 so that the concentration thereof was 12.5%.

ノズルの前方5mmのところに2cmの間隔を離して、巾5c
m、液滴の進行方向の長さ25cmの大きさの平均平板状の
電極を設置し、該電極のノズルとの間に800Vの直流電圧
を印加した。このノズルに設けた直径250μmのオリフ
ィスから、145℃に保持した前記溶液を7.8m/secの線速
で3850Hzの振動を加えながら吐出させ、該溶液の均一な
液滴を形成させ、空気中を約3m飛行させたのち、23℃の
10%メタノール水溶液中へ侵入させて凝固させ、二酢酸
セルロースの粒子をえた。
5 cm in front of the nozzle with a width of 2 cm at a distance of 2 cm.
An average flat plate-shaped electrode having a size of m and a length of 25 cm in the advancing direction of the droplet was installed, and a DC voltage of 800 V was applied between the electrode and the nozzle. From the orifice with a diameter of 250 μm provided in this nozzle, the solution held at 145 ° C. was discharged at a linear velocity of 7.8 m / sec while vibrating at 3850 Hz to form uniform droplets of the solution, After flying about 3m, at 23 ℃
Particles of cellulose diacetate were obtained by infiltrating into 10% methanol aqueous solution and coagulating.

えられた二酢酸セルロース粒子を50℃、0.6%のカ性ソ
ーダ水溶液に投入して、2時間撹拌したのち回収し、中
和・水洗して、ほぼ100%再生された再生セルロース粒
子をえた。
The obtained cellulose diacetate particles were put into a 0.6% aqueous solution of caustic soda at 50 ° C., stirred for 2 hours, collected, neutralized and washed with water to obtain regenerated cellulose particles which were almost 100% regenerated.

えられた再生セルロース粒子の数平均粒径を下記方法に
より測定したところ、430μmであり、粒子がすべて平
均粒径±5%以内にあった。
When the number average particle diameter of the obtained regenerated cellulose particles was measured by the following method, it was 430 μm, and all the particles were within the average particle diameter ± 5%.

えられた再生セルロース粒子内の液体をエタノールで置
換してから炭酸ガス臨界点乾燥((株)日立製作所製の
臨界点乾燥器HCP−2を使用)させ、金を蒸着させたの
ち走査型電子顕微鏡で観察したところ、表面に厚さ約0.
2μmのスキン層があり、内部は孔径が約0.2〜2μmの
多孔質三次元網目状組織であった。
After replacing the liquid in the obtained regenerated cellulose particles with ethanol, carbon dioxide gas critical point drying (using Hitachi Co. Ltd. critical point dryer HCP-2) was performed, and gold was vapor-deposited, followed by scanning electron When observed with a microscope, the surface has a thickness of about 0.
There was a skin layer of 2 μm, and the inside was a porous three-dimensional network having a pore size of about 0.2 to 2 μm.

前記再生セルロース粒子を内径14mm、長さ7cmのカラム
に充填し、ヘパリンを30ユニット/ml加えた牛の新鮮血
を37℃に保温して流し、徐々に流量を大きくして圧力損
失を測定したところ、線速の増加と伴にほぼ直線的に圧
力損失が大きくなったが、8cm/minのときでも50mmHg
で、そのまま1時間連続運転してもこの値はほとんど変
わらず、直接血液潅流可能であった。
The regenerated cellulose particles were packed in a column having an inner diameter of 14 mm and a length of 7 cm, and fresh blood of cattle added with 30 units / ml of heparin was kept warm at 37 ° C., and the pressure loss was measured by gradually increasing the flow rate. However, the pressure loss increased almost linearly as the linear velocity increased, but even at 8 cm / min, 50 mmHg
However, this value remained almost unchanged even after continuous operation for 1 hour, and direct blood perfusion was possible.

前記再生セルロース粒子をエピクロルヒドリンと反応さ
せ、ついでn−ヘキシルアミンと反応させて、n−ヘキ
シルアミン固定化セルロース粒子をえた。この粒子の選
択性を下記方法により測定したところ、リゾチーム、ア
ルブミンに対する吸着率はそれぞれ73%および8%であ
った。
The regenerated cellulose particles were reacted with epichlorohydrin and then with n-hexylamine to obtain n-hexylamine-immobilized cellulose particles. When the selectivity of these particles was measured by the following method, the adsorption rates for lysozyme and albumin were 73% and 8%, respectively.

(数平均粒径および粒径分布) 数百個(約500〜1000個)の粒子の光学顕微鏡像を画像
処理装置((株)ニレコ製のルーゼックスII)を使用し
て処理して求める。
(Number Average Particle Size and Particle Size Distribution) An optical microscope image of several hundred particles (about 500 to 1000 particles) is processed and obtained using an image processing device (Luzex II manufactured by Nireco Co., Ltd.).

(選択性) pH7.4に調整した0.025Mリン酸緩衝液にリゾチームおよ
びアルブミンをそれぞれ3mg/mlおよび7.3mg/mlの濃度に
なるように溶解させた各々の液6溶量に対し、沈降体積
として1容量の割合になるようにセルロース系粒子に血
漿淡白質に吸着性を有するリガンドを固定したものを加
え、37℃で2時間振盪したのち、上澄液の濃度を測定し
てそれぞれの吸着率を求める。
(Selectivity) Lysozyme and albumin were dissolved in 0.025M phosphate buffer adjusted to pH 7.4 to a concentration of 3 mg / ml and 7.3 mg / ml, respectively, and the sedimentation volume was obtained for each of 6 solutions. Then, the cellulosic particles to which a ligand having adsorptivity to plasma white matter was fixed so that the ratio was 1 volume were added, and the mixture was shaken at 37 ° C for 2 hours, and then the concentration of the supernatant was measured to determine the adsorption of each. Find the rate.

(直接血液潅流の可能性の判定) ヘパリンを30ユニット/ml加えた牛の新鮮血を37℃に保
温して、粒子を充填した長さ7cm、内径14mmφのカラム
に徐々に流量を増加させながら線速度が8cm/minにある
まで流して、この間に圧力損失が100mmHgをこえないも
のを直接血液潅流が可能であると判定した。
(Determination of possibility of direct blood perfusion) Fresh blood of cattle containing 30 units / ml of heparin was kept warm at 37 ° C, and the flow rate was gradually increased to a particle-filled column with a length of 7 cm and an inner diameter of 14 mmφ. Flow was performed until the linear velocity was 8 cm / min, and it was determined that blood perfusion was possible if the pressure loss did not exceed 100 mmHg during this period.

実施例2 ポリアクリロニトリルを濃度が9%となるようにジメチ
ルスルホキシド/プロピレングリコールが重量比で70/3
0の混合液に溶解させた。
Example 2 Polyacrylonitrile was mixed with dimethyl sulfoxide / propylene glycol in a weight ratio of 70/3 so that the concentration of polyacrylonitrile was 9%.
It was dissolved in a mixed solution of 0.

ノズルの前方5mmのところに2cmの間隔を離して、巾が5c
m、液滴の噴出方向の長さが10cmの大きさの平行平板状
の電極を設置し、該電極とノズルとの間に800Vの直流電
圧を印加した。このノズルに設けた直径120μmのオリ
フィスから、103℃に保持した前記溶液を6m/secの線速
で1000Hzの振動を加えながら吐出させ、該溶液の均一な
液滴を形成させ、空気中を約3m飛行させたのち、23℃の
0.1%中性洗剤(ポリオキシエチレンソルビタンモノラ
ウレート)水溶液中へ侵入させて凝固させ、ポリアクリ
ロニトリルの粒子をえた。
5 cm in front of the nozzle, with a width of 5c at a distance of 2 cm.
A parallel plate electrode having a size of m and a length of 10 cm in the droplet ejection direction was installed, and a DC voltage of 800 V was applied between the electrode and the nozzle. From the orifice with a diameter of 120 μm provided in this nozzle, the solution kept at 103 ° C. was discharged at a linear velocity of 6 m / sec while applying a vibration of 1000 Hz to form a uniform droplet of the solution, and the solution was blown in the air. After flying 3m, at 23 ℃
Particles of polyacrylonitrile were obtained by infiltrating into a 0.1% neutral detergent (polyoxyethylene sorbitan monolaurate) aqueous solution and coagulating.

えられたポリアクロニトリル粒子の数平均粒径を実施例
1と同様の方法により測定したところ、460μmで、粒
子がすべて平均粒径±6%以内にあった。
When the number average particle size of the obtained polyacrylonitrile particles was measured by the same method as in Example 1, it was 460 μm and all the particles were within the average particle size ± 6%.

えられたポリアクリロニトリル粒子を室温で真空乾燥さ
せ、金を蒸着させたのち走査型電子顕微鏡で観察したと
ころ、表面に厚さ約0.1μmのスキン層があり、内部は
孔径が約0.2〜1μmの均一な多孔質三次元網目状組織
であった。
The obtained polyacrylonitrile particles were vacuum dried at room temperature, gold was vapor deposited and then observed with a scanning electron microscope. As a result, there was a skin layer with a thickness of about 0.1 μm on the surface, and the inside had a pore size of about 0.2-1 μm. It had a uniform porous three-dimensional network.

前記ポリアクロニトリル粒子を用いて実施例1と同様に
て圧力損失を測定したところ、線速の増加と共にほぼ直
線的に圧力損失が大きくなったが、8cm/minのときでも3
0mmHgで、そのまま1時間連続運転してもこの値はほと
んど変わらず、直接血液潅流可能であった。
When the pressure loss was measured in the same manner as in Example 1 using the polyacrylonitrile particles, the pressure loss increased almost linearly with the increase of the linear velocity, but even at 8 cm / min, 3
Even when continuously operated for 1 hour at 0 mmHg, this value hardly changed, and direct blood perfusion was possible.

実施例3 ポリメチルメタクリレートを、濃度が約17%となるよう
にジメチルスルホキシド/プロピレングリコールが重量
比で68/32の混合液に溶解させた。
Example 3 Polymethylmethacrylate was dissolved in a mixed solution of dimethyl sulfoxide / propylene glycol in a weight ratio of 68/32 so that the concentration was about 17%.

ノズルの前方5mmのとこり2cmの間隔を離して、巾5cm、
液滴の噴出方向の長さが10cmの大きさの平均平板状の電
極を設置し、該電極とノズルとの間に800Vの直流電圧を
印加した。このノズルに設けた直径120μmのオリフィ
スから、101℃に保持した前記溶液を7.1m/secの線速で9
30Hzの振動を加えながら吐出させ、該溶液の均一な液滴
を形成させ、空気中を約3m飛行させたのち、23℃の0.1
%中性洗剤(ポリオキシエチレンソルビタンモノラウレ
ート)水溶液中へ侵入させて凝固させ、ポリメチルメタ
クリレートの粒子をえた。
5 cm in width, 5 cm in front of the nozzle and 2 cm apart
An average flat plate-shaped electrode having a length of 10 cm in the droplet ejection direction was installed, and a DC voltage of 800 V was applied between the electrode and the nozzle. From the nozzle with a diameter of 120 μm provided in this nozzle, the solution kept at 101 ° C. was drawn at a linear velocity of 7.1 m / sec.
It was ejected while applying vibration of 30 Hz to form uniform droplets of the solution, and after flying in the air for about 3 m, it was heated to 0.1 at 23 ° C.
% Neutral detergent (polyoxyethylene sorbitan monolaurate) was allowed to infiltrate and coagulate to obtain polymethylmethacrylate particles.

えられたポリメチルメタクリレート粒子の数平均粒径を
実施例1と同様の方法により測定したところ、470μm
で、粒子がすべて平均粒径±8%以内にあった。
The number average particle diameter of the obtained polymethylmethacrylate particles was measured by the same method as in Example 1 to find that it was 470 μm.
At this point, all the particles were within the average particle size ± 8%.

えられたポリメチルメタクリレート粒子を室温で真空乾
燥させ、金を蒸着させたのち走査型電子顕微鏡で観察し
たところ、表面に厚さ約0.2μmのスキン層があり、内
部は孔径が約0.2〜0.5μmの均一な多孔質三次元網目状
組織であった。
The obtained polymethylmethacrylate particles were vacuum-dried at room temperature, and after depositing gold, they were observed with a scanning electron microscope. As a result, there was a skin layer with a thickness of about 0.2 μm, and the inside had a pore size of about 0.2-0.5. It had a uniform porous three-dimensional network structure of μm.

前記ポリメチルメタクリレート粒子を用いて実施例1と
同様にして圧力損失を測定したところ、線速の増加と共
にほぼ直線的に圧力損失が大きくなったが、8cm/minの
ときでも30mmHgで、そのまま1時間放置してもこの値は
ほとんど変わらず、直接血液潅流可能であった。
When the pressure loss was measured using the polymethylmethacrylate particles in the same manner as in Example 1, the pressure loss increased almost linearly with the increase of the linear velocity, but even at 8 cm / min, the pressure loss was 30 mmHg, which was 1 This value did not change even after standing for a time, and direct blood perfusion was possible.

実施例4 ポリスチレンを、濃度が15%となるようにN−メチル−
2−ピロリドン/プロピレングリコールが重量比で68/3
2の混合液に溶解させた。
Example 4 Polystyrene was added to N-methyl-concentration to a concentration of 15%.
Weight ratio of 2-pyrrolidone / propylene glycol is 68/3
It was dissolved in a mixed solution of 2.

ノズルの前方5mmのところに2cmの間隔を離して、巾5c
m、液滴の噴出方向の長さが10cmの大きさの平均平板状
の電極を設置し、該電極とノズルとの間に800Vの直流電
圧を印加した。このノズルに設けた直径100μmのオリ
フィスから、124℃に保持した前記溶液を7.6m/secの線
速で850Hzの振動を加えながら吐出させ、該溶液の均一
な液滴を形成させ、空気中を約3m飛行させたのち、23℃
の0.1%中性洗剤(ポリオキシエチレンソルビタンモノ
ラウレート)水溶液中へ侵入させて凝固させ、ポリスチ
レンの粒子をえた。
5 cm in front of the nozzle with a width of 2 cm at a distance of 2 cm.
An average flat plate-shaped electrode having a size of m and a length of 10 cm in the droplet ejection direction was installed, and a DC voltage of 800 V was applied between the electrode and the nozzle. From the orifice with a diameter of 100 μm provided in this nozzle, the solution kept at 124 ° C. was discharged at a linear velocity of 7.6 m / sec while vibrating at 850 Hz to form uniform droplets of the solution, and the air was blown into the air. After flying about 3m, 23 ℃
Of 0.1% neutral detergent (polyoxyethylene sorbitan monolaurate) was infiltrated and coagulated to obtain polystyrene particles.

えられたポリスチレン粒子の数平均粒径を実施例1と同
様の方法により測定したところ、440μmで、粒子がす
べて平均粒径±5%以内にあった。
When the number average particle diameter of the obtained polystyrene particles was measured by the same method as in Example 1, it was 440 μm and all the particles were within the average particle diameter ± 5%.

えられたポリスチレン粒子を室温で真空乾燥させ、金を
蒸着させたのち走査型電子顕微鏡で観察したところ、表
面に厚さ約0.2μmのスキン層があり、内部は孔径が約
0.2〜2μmの多孔質三次元網目状組織で、かつ約20μ
mの空洞を局部的に有していた。
The polystyrene particles obtained were vacuum dried at room temperature, evaporated with gold, and then observed with a scanning electron microscope. As a result, there was a skin layer with a thickness of about 0.2 μm on the surface, and the inside had a pore size of about
0.2 to 2 μm porous three-dimensional network and approx. 20 μm
It had m cavities locally.

前記ポリスチレン粒子を用いて実施例1と同様にして圧
力損失を測定したところ、線速の増加と共にほぼ直線的
に圧力損失が大きくなったが、8cm/minのときでも25mmH
gで、そのまま1時間連続運転してもこの値はほとんど
変わらず、直接血液潅流可能であった。
When the pressure loss was measured using the polystyrene particles in the same manner as in Example 1, the pressure loss increased substantially linearly with an increase in the linear velocity, but even at 8 cm / min, the pressure loss was 25 mmH.
With g, this value remained almost unchanged even after continuous operation for 1 hour, and direct blood perfusion was possible.

比較例1 均一な液滴の形成条件を変更して実施例1と同様にし
て、数平均粒径が290μmで100%の粒子が数平均径の±
5%以内にある実施例1とほぼ同じ断面構造の再生セル
ロース粒子をえた。この粒子を用いて実施例1と同様に
して圧力損失を測定したところ、線速が5cm/minのとこ
ろですでに100mmHgをこえていた。
Comparative Example 1 In the same manner as in Example 1 except that the conditions for forming uniform droplets were changed, the number average particle size was 290 μm, and 100% of the particles were within ± of the number average size.
Regenerated cellulose particles within 5% and having substantially the same sectional structure as in Example 1 were obtained. When the pressure loss was measured using these particles in the same manner as in Example 1, it was already over 100 mmHg at the linear velocity of 5 cm / min.

比較例2 均一な液滴の形成条件を変更して実施例2と同様にし
て、数平均粒径が290μmで100%の粒子が数平均粒径の
±5%以内にある実施例2とほぼ同じ断面構造のポリア
クリロニトル粒子をえた。この粒子を用いて実施例1と
同様にして圧力損失を測定したところ、線速が5cm/min
のところですでに100mmHgをこえていた。
Comparative Example 2 In the same manner as in Example 2 except that the conditions for forming uniform droplets were changed, the number average particle size was 290 μm, and 100% of the particles were within ± 5% of the number average particle size. Polyacrylonitrile particles having the same sectional structure were obtained. When the pressure loss was measured using this particle in the same manner as in Example 1, the linear velocity was 5 cm / min.
By the way, it was already over 100mmHg.

比較例3 均一な液滴の形成条件を変更して実施例3と同様にし
て、数平均粒径が274μmで100%の粒子が数平均粒径の
±7%以内にある実施例3とほぼ同じ断面構造のポリメ
チルメタクリレート粒子をえた。この粒子を用いて実施
例1と同様にして圧力損失を測定したところ、線速が5c
m/minのところですでに100mmHgをこえていた。
Comparative Example 3 In the same manner as in Example 3 except that the conditions for forming uniform droplets were changed, the number average particle size was 274 μm, and 100% of the particles were within ± 7% of the number average particle size. Polymethylmethacrylate particles having the same sectional structure were obtained. When the pressure loss was measured using this particle in the same manner as in Example 1, the linear velocity was 5c.
It was already over 100 mmHg at m / min.

比較例4 均一な液滴の形成条件を変更して実施例4と同様にし
て、数平均粒径が280μmで100%の粒子が数平均粒径の
±5%以内にある実施例4とほぼ同じ断面構造のポリス
チレン粒子をえた。この粒子を用いて実施例1と同様に
して圧力損失を測定したところ、線速が5cm/minのとこ
ろですでに100mmHgをこえていた。
Comparative Example 4 In the same manner as in Example 4 except that the conditions for forming uniform droplets were changed, the number average particle size was 280 μm, and 100% of the particles were within ± 5% of the number average particle size. Polystyrene particles having the same sectional structure were obtained. When the pressure loss was measured using these particles in the same manner as in Example 1, it was already over 100 mmHg at the linear velocity of 5 cm / min.

比較例5 数平均粒径が450μmで、89%の粒子が数平均粒径の10
%以内にある市販の再生セルロース粒子を用いて実施例
1と同様にして圧力損失を測定したところ、線速が2cm/
minですでに圧力損失が100mmHgをこえ、そののちさらに
圧力損失が大きくなったので実験を中止した。
Comparative Example 5 The number average particle size is 450 μm, and 89% of the particles have a number average particle size of 10
When the pressure loss was measured in the same manner as in Example 1 by using commercially available regenerated cellulose particles within the range of 2%, the linear velocity was 2 cm /
The pressure loss already exceeded 100 mmHg at min, and after that the pressure loss further increased, so the experiment was stopped.

以上の結果から、直接血液潅流時の圧力損失に関係する
のはポリマーの種類というよりはポリマー粒子の粒径お
よびその分布であることがわかる。この結果はポリマー
粒子の表面エネルギーが大きいポリマー(セルロース)
では圧力損失が小さくなり、表面エネルギーの小さいポ
リマー(ポリメチルメタクリレートやポリスチレン)で
は圧力損失が大きくなるという従来からの通説と異なっ
た結果であり、表面エネルギーの小さいポリマー粒子で
も直接血液潅流用吸着体粒子として使用しうることを示
すものである。
From the above results, it is understood that the pressure drop during blood perfusion is directly related to the particle size and distribution of polymer particles, rather than the type of polymer. This result indicates that the polymer particles have high surface energy (cellulose).
This is a result different from the conventional wisdom that pressure loss becomes smaller in the case of a polymer having a small surface energy (polymethylmethacrylate or polystyrene), and even a polymer particle having a small surface energy can be directly adsorbed for blood perfusion. This shows that it can be used as particles.

[発明の効果] 本発明のアフィニティクロマトグラフィー用ポリマー粒
子は特定の数平均粒径および特定の粒径分布を有し、か
つ粒子内部が三次元網目状組織であるため、アフィニテ
ィクロマトグラフィー用充填材にしてたとえば血液中か
ら血漿蛋白質を選択的に直接血液潅流法によって吸着除
去するなどの用途に用いたばあいには、微粒子の発生が
なく、圧力損失が小さく、溶血などの問題が生じにくく
なるなどの効果が達成される。
EFFECTS OF THE INVENTION The polymer particles for affinity chromatography of the present invention have a specific number average particle size and a specific particle size distribution, and since the inside of the particles has a three-dimensional network structure, it is a filler for affinity chromatography. For example, when it is used for selective adsorption and removal of plasma protein from blood by direct blood perfusion method, no particles are generated, pressure loss is small, and problems such as hemolysis are less likely to occur. And other effects are achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】数平均粒径が300〜600μmの範囲にあり、
すべての粒子が数平均粒径の±10%以内にあり、粒子の
内部が三次元網目状組織となっているアフィニティクロ
マトグラフィー用ポリマー粒子。
1. The number average particle size is in the range of 300 to 600 μm,
Polymer particles for affinity chromatography in which all particles are within ± 10% of the number average particle size and the inside of the particles has a three-dimensional network structure.
JP63105347A 1988-04-27 1988-04-27 Polymer particles for affinity chromatography Expired - Lifetime JPH0740025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105347A JPH0740025B2 (en) 1988-04-27 1988-04-27 Polymer particles for affinity chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105347A JPH0740025B2 (en) 1988-04-27 1988-04-27 Polymer particles for affinity chromatography

Publications (2)

Publication Number Publication Date
JPH01275641A JPH01275641A (en) 1989-11-06
JPH0740025B2 true JPH0740025B2 (en) 1995-05-01

Family

ID=14405203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105347A Expired - Lifetime JPH0740025B2 (en) 1988-04-27 1988-04-27 Polymer particles for affinity chromatography

Country Status (1)

Country Link
JP (1) JPH0740025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894373B2 (en) * 2010-03-19 2016-03-30 株式会社カネカ Method for producing cellulose porous particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628067A (en) * 1984-01-16 1986-12-09 Celanese Corporation Microporous polybenzimidazole particulates
SE464816B (en) * 1985-10-15 1991-06-17 Nilsson Kjell MACROPOROUS PARTICLES, PROCEDURES FOR ITS PREPARATION AND ITS APPLICATION
JP2506682B2 (en) * 1986-09-09 1996-06-12 ダイセル化学工業株式会社 Manufacturing method of spherical particles

Also Published As

Publication number Publication date
JPH01275641A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
JP4355655B2 (en) Functional porous fiber
JP7270993B2 (en) Structurally controllable ion-exchange nanofiber skeleton three-dimensional separation material and its manufacturing method
US5015423A (en) Method of making uniform polymer particles
US7763348B2 (en) Cellulosic particles, spherical object comprising cross-linked polymer particles, and adsorbent for body fluid purification
US5993661A (en) Macroporous or microporous filtration membrane, method of preparation and use
EP3448928B1 (en) Hybrid membrane comprising crosslinked cellulose
JP6378090B2 (en) Doped membrane
JPS6227162B2 (en)
JPS6214642B2 (en)
JP6748053B2 (en) Electrospun nanofiber hybrid felt
JPH0687974B2 (en) Adsorption material for heat generating substances
CN113122938A (en) Preparation method and application of MOFs-containing chitosan/polyvinyl alcohol nanofiber membrane
JP5875779B2 (en) Porous particles, method for producing porous particles, and carrier
JP4754400B2 (en) Blood purification membrane and method for producing the same
JPH0740025B2 (en) Polymer particles for affinity chromatography
JPH02208332A (en) Production of polymeric porous material
JPH0576496B2 (en)
JPH06102730B2 (en) Bimodal particles for separation materials
JP2020079475A (en) Electrospun nanofiber hybrid felt
JPH0587081B2 (en)
JP5722098B2 (en) Porous particles, method for producing porous particles, and carrier
JPH01278541A (en) Production of cellular homogeneous polymer particle
JP3941980B2 (en) Cellulosic carrier and method for producing the same
JPH1160742A (en) Spherical material consisting of cross-linked polymer and production thereof
JPS6392602A (en) Production of porous spherical cellulose particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term