JPH0738512B2 - Method for manufacturing plate-shaped shield material - Google Patents
Method for manufacturing plate-shaped shield materialInfo
- Publication number
- JPH0738512B2 JPH0738512B2 JP62310709A JP31070987A JPH0738512B2 JP H0738512 B2 JPH0738512 B2 JP H0738512B2 JP 62310709 A JP62310709 A JP 62310709A JP 31070987 A JP31070987 A JP 31070987A JP H0738512 B2 JPH0738512 B2 JP H0738512B2
- Authority
- JP
- Japan
- Prior art keywords
- shield material
- melt
- shaped shield
- plate
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は板状シールド材の製造方法に関する。The present invention relates to a method for manufacturing a plate-shaped shield material.
〔従来の技術とその問題点〕 モーター、トランス、磁気浮上列車、MRI−CT装置(核
磁気医療診断装置)、磁気分離機等の強力な電磁気を利
用する機器では、外部に磁束が漏れて他の電気電子機器
の誤動作の原因となり又人体にも有害に作用することが
懸念されている。このようなことから上記のような機器
では、磁束を外部に出さないように、また精密な磁気測
定機器では外部からの磁束を遮蔽するために、機器を鉄
板等の磁性体で覆う対策が講じられている。しかしこの
ために機器全体が大型化し又重量化して実用上支障を来
たしている。[Conventional technology and its problems] In devices using strong electromagnetic fields such as motors, transformers, magnetic levitation trains, MRI-CT devices (nuclear magnetic medical diagnostic devices), and magnetic separators, magnetic flux leaks to the outside. It is feared that this may cause malfunction of the electric and electronic equipment and may have a harmful effect on the human body. Therefore, in order to prevent the magnetic flux from being emitted to the outside in the above equipment, and to shield the magnetic flux from the outside in the precision magnetic measurement equipment, take measures to cover the equipment with a magnetic material such as an iron plate. Has been. However, because of this, the size of the entire device is increased and the weight of the device is increased, which poses a problem in practical use.
このような問題に対して超電導体のマイスナー効果を利
用したシールド技術が一部の超電導機器に実用されてい
るが、シールド材に金属超電導体を用いているため冷媒
として液体Heが必要で、経済的に利用範囲が制約される
という欠点がある。Shielding technology using the Meissner effect of superconductors has been put to practical use in some superconducting devices against such problems, but liquid He is required as a refrigerant because a metal superconductor is used as the shielding material, which is economical. There is a drawback that the range of use is restricted.
ところで近年、液体窒素温度(77K)で超電導となる(Ln
1-xSrx)CuO4、(Ln1-xBax)2CuO4、LnBa2Cu3O7、LnBa2-xS
rxCu3O7等(但し、LnはY、Sc又は希土類元素)の層状
ペロブスカイト型構造の酸化物超電導体が見出されてい
るが、これらの酸化物超電導体は、脆いため金属材料の
ように塑性加工ができず、有効なシールド材を工業的に
製造することが困難であった。そこでこの酸化物超電導
体を例えばスパッタ法等のPVD法を用いて加工すること
が試みられているが、これは真空中で成分元素を飛散さ
せ、これを長時間かけて支持材上に膜状に析出させる方
法であるため生産性に乏しく、また粉末を成型したり、
又はペースト状となしこれを支持材上に厚膜印刷して焼
結する試みもなされているが、工程が必ずしも単純でな
いばかりか、シールド効果も十分なものが得られないと
いう欠点がある。この原因は、個々の粒子が超電導性を
異にしたり又一部は非超電導性であったり、結晶粒界や
空孔などの非超電導部分が多量に存在したりすることに
あると考えられている。By the way, in recent years, it becomes superconducting at liquid nitrogen temperature (77K) (Ln
1-x Sr x ) CuO 4 , (Ln 1-x Ba x ) 2 CuO 4 , LnBa 2 Cu 3 O 7 , LnBa 2-x S
Rx Cu 3 O 7 etc. (however, Ln is Y, Sc or a rare earth element) has been found as an oxide superconductor having a layered perovskite structure. As described above, plastic working cannot be performed, and it is difficult to industrially manufacture an effective shield material. Therefore, it has been attempted to process this oxide superconductor by using a PVD method such as a sputtering method, but this involves scattering the constituent elements in a vacuum and forming a film on the support material for a long time. Since it is a method of precipitating in, productivity is poor, and powder is molded,
Alternatively, an attempt has been made to form a paste and print it on a support material by thick film printing and sinter, but there are drawbacks in that the process is not always simple and a sufficient shielding effect cannot be obtained. It is thought that this is because individual particles have different superconductivity, some of them are non-superconducting, and many non-superconducting parts such as grain boundaries and holes are present. There is.
本発明はかかる状況に鑑みなされたもので、その目的と
するところは酸化物超電導体におけるマイスナー効果を
利用した小型、軽量、安価な板状のシールド材の製造方
法を提供することにある。The present invention has been made in view of such circumstances, and an object of the present invention is to provide a small-sized, lightweight, inexpensive plate-like shield material manufacturing method utilizing the Meissner effect in an oxide superconductor.
即ち本発明は、酸化物超電導体又はその前駆物質を所定
量配合し、これを酸素含有雰囲気中で溶融したのち、こ
の溶融体を10℃/sec以上の速度で少なくとも950℃まで
冷却しながら所望の形状に成形加工し、次いでこの成形
体を500℃以上の酸素含有雰囲気中で10分以上加熱処理
することを特徴とするものである。That is, the present invention, the oxide superconductor or a precursor thereof is blended in a predetermined amount, and after melting this in an oxygen-containing atmosphere, this melt is desired to be cooled to at least 950 ° C at a rate of 10 ° C / sec or more. It is characterized in that it is molded into the shape of, and then this molded body is heat-treated in an oxygen-containing atmosphere at 500 ° C. or higher for 10 minutes or longer.
本発明において、溶融用原料にはYBa2Cu3O7のような酸
化物超電導体又はその前駆物質が用いられる、後者の前
駆物質には、上記超電導体を構成する元素の酸化物、炭
酸塩、硝酸塩等の無機化合物、アルコキシドや錯塩等の
有機化合物、又は構成元素の金属やその合金等が用いら
れる。In the present invention, an oxide superconductor such as YBa 2 Cu 3 O 7 or a precursor thereof is used as the melting raw material, and the latter precursor is an oxide or carbonate of an element constituting the above superconductor. Inorganic compounds such as nitrates, organic compounds such as alkoxides and complex salts, or metal or alloys of the constituent elements are used.
上記の前駆物質を、YBa2Cu3O7の超電導体に例をとって
具体的に説明すると、YはY2O3、Y(NO3)3、Y(CH3CO
O)3、Y単体、BaはBa(OH)2、Ba(NO3)、BaCO3、Ba石け
ん、CuはCu2O、CuO、Cu(OH)2、CuSO4、Cu(NO3)2、アセ
チルアセテート、Cu粉、Cu−Ba等である。The above precursor will be specifically described by taking a YBa 2 Cu 3 O 7 superconductor as an example. Y is Y 2 O 3 , Y (NO 3 ) 3 , Y (CH 3 CO 3
O) 3 , Y alone, Ba is Ba (OH) 2 , Ba (NO 3 ), BaCO 3 , Ba soap, Cu is Cu 2 O, CuO, Cu (OH) 2 , CuSO 4 , Cu (NO 3 ) 2 , Acetyl acetate, Cu powder, Cu-Ba and the like.
上記のような原料を所定量配合し、この混合物を仮焼成
して酸化物の混合体や超電導体酸化物となし、これを粉
末又は棒状体やブロック等に加工して用いることもでき
る。It is also possible to mix a predetermined amount of the above-mentioned raw materials and calcinate this mixture to obtain a mixture of oxides or a superconductor oxide, which is processed into powder or rod-shaped bodies or blocks for use.
本発明において上記の原料をるつぼ等の中で1200℃以上
に加熱し溶融させるが、この際の熱源としては、電気、
赤外線、電子ビーム、レーザー光等が適用される。上記
の棒状体等は、これに直接赤外線などのビームをあてて
融解することも出来る。In the present invention, the above raw materials are heated in a crucible or the like to 1200 ° C. or higher to be melted, and the heat source at this time is electricity,
Infrared rays, electron beams, laser light, etc. are applied. The rod-shaped body or the like can be melted by directly applying a beam of infrared rays or the like thereto.
本発明において原料を溶融して板状に成形する理由は、
配合成分が短時間で均一化し、理論密度に近い均質な緻
密体が得られるためである。溶融をO2含有雰囲気中で行
うと超電導体のO2欠損が防止され、後工程の熱処理条件
を低温短時間で行うことができる。雰囲気中のO2分圧
は、5気圧以上、特に15〜200気圧にするとO2の供給が
十分になされ、Jc等の特性がより向上する。In the present invention, the reason for melting the raw material and forming it into a plate is
This is because the blended components are homogenized in a short time, and a homogeneous dense body close to the theoretical density can be obtained. When the melting is performed in an O 2 -containing atmosphere, O 2 deficiency of the superconductor is prevented, and the heat treatment condition of the subsequent process can be performed at a low temperature in a short time. When the partial pressure of O 2 in the atmosphere is 5 atm or more, particularly 15 to 200 atm, the supply of O 2 is sufficient and the properties such as J c are further improved.
本発明において成形加工にあたって溶融体を10℃/sec以
上の冷却速度で少なくとも950℃まで冷却する理由は、
得られる成形体の結晶組織を緻密にし、又YBa2Cu3O7の
超電導体に例をとると上記超電導体がY2O3、Cu2O、BaCu
O2等に相分離するのを抑え、たとえ相分離がおきても各
相が微細に分散するので後工程の加熱処理において容易
に均質化することができるためである。溶融体の冷却は
溶融体を鋳型や冷却体に注入又は接触させて行い、これ
の冷却速度は、特に50℃/sec以上が好ましい。The reason for cooling the melt to at least 950 ° C. at a cooling rate of 10 ° C./sec or more in the molding process in the present invention is
When the crystal structure of the obtained molded body is made dense and the superconductor of YBa 2 Cu 3 O 7 is taken as an example, the above superconductor has Y 2 O 3 , Cu 2 O and BaCu.
This is because phase separation into O 2 and the like is suppressed, and even if phase separation occurs, each phase is finely dispersed and can be easily homogenized in the heat treatment in the subsequent step. The melt is cooled by pouring or contacting the melt with a mold or a cooler, and the cooling rate thereof is particularly preferably 50 ° C./sec or more.
本発明において、溶融体を冷却して得た成形体を500℃
以上のO2含有雰囲気中で加熱処理する理由は、成形体中
に超電導体相を最大限に生成せしめるとともに冷却成形
時の有害な熱歪を除去するためである。In the present invention, the molded body obtained by cooling the melt is 500 ° C.
The reason why the heat treatment is performed in the above O 2 -containing atmosphere is to maximize the formation of the superconductor phase in the molded body and to remove harmful thermal strain during the cold molding.
上記において加熱処理は、溶融体を所定速度で冷却させ
た温度から直接所定の加熱処理温度に保持しても、又一
旦室温に冷却後再加熱してもよい。成形体を所望寸法に
仕上げたのち加熱処理すると加工歪が除去される等の付
加的効果が得られる。In the above heat treatment, the temperature may be maintained at a predetermined heat treatment temperature directly from the temperature at which the melt is cooled at a predetermined rate, or may be once again cooled to room temperature and then reheated. When the molded product is finished to a desired size and then heat-treated, additional effects such as removal of processing strain can be obtained.
本発明において上述の加熱処理は、500℃以上好ましく
は500〜950℃の温度範囲で、10分以上好ましくは1〜24
Hの時間、O2分圧が0.2気圧以上特に好ましくは1〜5気
圧の雰囲気中で施されるが実用的である。上記において
雰囲気中のO2分圧が0.2気圧未満では、十分なシールド
効果を発揮するものが得られない。In the present invention, the heat treatment described above is performed at a temperature of 500 ° C. or higher, preferably 500 to 950 ° C., and 10 minutes or longer, preferably 1 to 24.
It is practical for the time of H to be carried out in an atmosphere in which the O 2 partial pressure is 0.2 atm or more, particularly preferably 1 to 5 atm. In the above, if the O 2 partial pressure in the atmosphere is less than 0.2 atm, it is not possible to obtain a sufficient shield effect.
本発明のシールド材は所定形状の鋳型を用いて一挙に成
形することができるが、大型成形体から所望形状に切り
出してもよい。又超電導体をタイル状の成形体として、
これを金属板、セラミックス板、プラスチック板等に接
合して用いることができる。金属板としてFe以外のAl、
Cu、Ni又はこれらの合金を用いると、電磁シールド効果
を同時にもたらせることができる。金属板との接合に
は、半田等の金属ろう材を用いて電気的及び熱的導通を
もたせることが望ましい。The shield material of the present invention can be molded all at once using a mold having a predetermined shape, but may be cut into a desired shape from a large molded body. In addition, the superconductor as a tile-shaped molded body,
This can be used by being joined to a metal plate, a ceramic plate, a plastic plate or the like. Al other than Fe as a metal plate,
When Cu, Ni or their alloys are used, the electromagnetic shield effect can be simultaneously provided. For joining with a metal plate, it is desirable to use a metal brazing material such as solder to provide electrical and thermal conduction.
本発明のシールド材は上記のような成形体にして、マグ
ネットや電気電子機器を包囲して用いるが、これにシー
ルド効果をもたせるには、成形体をその固有の臨界温度
(Tc)以下に冷却しなければならず、従ってTcが室温以
下の場合は、成形体は、冷却媒体の流路内や冷却管体の
内外表面に配設して用いられる。The shield material of the present invention is used as a molded body as described above, surrounding a magnet or an electric / electronic device, and in order to have a shielding effect on this, the molded body is cooled to a temperature below its inherent critical temperature (Tc). Therefore, when Tc is equal to or lower than room temperature, the molded body is used by being disposed in the flow path of the cooling medium or the inner and outer surfaces of the cooling pipe body.
次に本発明を実施例により詳細に説明する。 Next, the present invention will be described in detail with reference to Examples.
実施例1 Er2O3、Y2O3、BaCO3、CuOをEr+Y:Ba:Cuが原子比で1:2:
3(但しEr:Y=1:4)になるように配合しこれを白金るつ
ぼに入れて大気中で1,360℃に加熱溶融し、次いでこれ
を100mm□×3mmhの鉄鋳型中に注入してタイル状に成形
し、次いでこれに種々条件で加熱処理を施した。溶融冷
却時の冷却速度は、鋳型に冷却媒体を併用して種々速度
に調整した。Example 1 Er 2 O 3 , Y 2 O 3 , BaCO 3 , and CuO are Er + Y: Ba: Cu in an atomic ratio of 1: 2 :.
3 (however, Er: Y = 1: 4) was mixed, put in a platinum crucible and heated and melted at 1,360 ° C in the atmosphere, and then poured into a 100 mm □ × 3 mm h iron mold. It was shaped into tiles and then heat-treated under various conditions. The cooling rate during melt cooling was adjusted to various rates by using a cooling medium together with the mold.
従来例1 実施例1で用いたのと同じ原料を大気中で900℃6H仮焼
成し、次いでこれを粉砕して得た粉末をプレス成形し、
この成形体をO2気流中で950℃2H及び700℃24H加熱焼結
した。Conventional Example 1 The same raw material as that used in Example 1 was calcinated at 900 ° C. for 6H in the air, and then the powder obtained by crushing this was press-molded,
This compact was heated and sintered in an O 2 stream at 950 ° C. for 2 hours and 700 ° C. for 24 hours.
斯くの如くして得た各々のサンプルについて相対密度及
び液体窒素中77Kでの磁束密度を測定し、次式によりシ
ールド効率を算出した。The relative density and the magnetic flux density at 77 K in liquid nitrogen of each of the samples thus obtained were measured, and the shield efficiency was calculated by the following formula.
X :電磁石とガラスメーターの間にサンプルを挟んだと
きの磁束密度。 X: Magnetic flux density when the sample is sandwiched between the electromagnet and the glass meter.
X0:サンプルを挟まないときの磁束密度(750ガウ
ス)。X 0 : Magnetic flux density without sandwiching the sample (750 gauss).
得られた結果は製造条件を併設して第1表に示した。The obtained results are shown in Table 1 together with the production conditions.
第1表より明らかなように、本発明方法品(1〜4)は
従来方法品8に較べて相対密度及びシールド効率とも高
い値を示している。 As is clear from Table 1, the method products (1 to 4) of the present invention have higher relative density and shield efficiency than the conventional method product 8.
比較方法品のうち溶融冷却速度が遅いもの(5)、加熱
処理時間が短いもの(6)、及び加熱処理温度が低いも
の(7)は、いずれもシールド効率が低い値を示してい
る。Among the comparative method products, the one having a slow melt cooling rate (5), the one having a short heat treatment time (6), and the one having a low heat treatment temperature (7) all showed a low shield efficiency.
実施例2 Y2O3、BaCO3、SrCO3、CuOをY:(Ba+Sr):Cu(但しBa:S
r=4:1)が原子比で1:2:3になるように配合し、次いで
これを大気中で920℃で6H仮焼成し、これを粉砕して棒
状に成型したのち、800℃6H加熱焼結し、次いでこの焼
結体を加圧容器内に懸垂し、この焼結体の下端に赤外線
をあてて下端から徐々に溶融させ、この溶融体を900℃
に加熱した100mm□×3mmhの鉄鋳型内に滴下せしめた。
滴下終了後鋳型を冷却し得られた成形体を500℃に冷却
し、次いでこの凝固体を2気圧のO2雰囲気中で800℃0.5
H加熱処理した。加圧容器内の雰囲気及び成形体の冷却
速度は種々に変化させた。Example 2 Y 2 O 3 , BaCO 3 , SrCO 3 and CuO were added to Y: (Ba + Sr): Cu (provided that Ba: S
(r = 4: 1) is mixed in an atomic ratio of 1: 2: 3, then this is calcinated at 920 ° C for 6H in the air, crushed and molded into a rod, then 800 ° C for 6H. Heat and sinter, then suspend this sintered body in a pressure vessel, apply infrared rays to the lower end of this sintered body to gradually melt from the lower end, and melt this melt at 900 ° C.
It was dripped into an iron mold of 100 mm □ × 3 mm h which was heated.
After the dropping is completed, the mold is cooled to cool the resulting molded body to 500 ° C., and then the solidified body is cooled to 800 ° C. in an O 2 atmosphere of 2 atm.
H heat treated. The atmosphere in the pressure vessel and the cooling rate of the molded body were variously changed.
結果は製造条件を併記して第2表に示した。The results are shown in Table 2 together with the production conditions.
第2表より明らかなように本発明方法品(9〜12)は、
従来方法品(第1表の8)に較べて相対密度、シールド
効率とも高い値を示している。 As is clear from Table 2, the method products (9 to 12) of the present invention are
Both the relative density and the shield efficiency are higher than those of the conventional method (8 in Table 1).
比較方法品のうち加熱処理を省略したもの(13)及び加
熱処理の雰囲気中にO2ガスが存在しなかったもの(14)
はいずれもシールド効率が著しく低下している。Among the comparative methods, products without heat treatment (13) and products without O 2 gas in the atmosphere of heat treatment (14)
In both cases, the shield efficiency is significantly reduced.
以上述べたように本発明によれば液体窒素温度で有効に
作動する小型、軽量の高いシールド効率をもった板状シ
ールド材が容易に製造し得るので、工業上顕著な効果を
奏する。As described above, according to the present invention, it is possible to easily manufacture a small-sized, lightweight, plate-shaped shield material that effectively operates at the liquid nitrogen temperature and has a high shield efficiency, and therefore an industrially significant effect is exhibited.
Claims (2)
配合し、これを酸素含有雰囲気中で溶融したのち、この
溶融体を10℃/sec以上の速度で少なくとも950℃まで冷
却しながら所望の形状に成形加工し、次いでこの成形体
を500℃以上の酸素含有雰囲気中で10分以上加熱処理す
ることを特徴とする板状シールド材の製造方法。1. A predetermined amount of an oxide superconductor or a precursor thereof is mixed and melted in an oxygen-containing atmosphere, and then the melt is cooled at a rate of 10 ° C./sec or more to at least 950 ° C. 1. A method for producing a plate-shaped shield material, which is characterized by molding into the shape of, and then heat-treating this molded body in an oxygen-containing atmosphere at 500 ° C. or higher for 10 minutes or longer.
時に5気圧以上、加熱処理時に0.2気圧以上であること
を特徴とする特許請求の範囲第1項記載の板状シールド
材の製造方法。2. The production of a plate-shaped shield material according to claim 1, wherein the oxygen partial pressure in the oxygen-containing atmosphere is 5 atm or more during melt cooling and 0.2 atm or more during heat treatment. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310709A JPH0738512B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing plate-shaped shield material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310709A JPH0738512B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing plate-shaped shield material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01151299A JPH01151299A (en) | 1989-06-14 |
JPH0738512B2 true JPH0738512B2 (en) | 1995-04-26 |
Family
ID=18008524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62310709A Expired - Lifetime JPH0738512B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing plate-shaped shield material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738512B2 (en) |
-
1987
- 1987-12-08 JP JP62310709A patent/JPH0738512B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01151299A (en) | 1989-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0280812A1 (en) | Superconductivity in square - planar compound systems | |
US4956336A (en) | Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same | |
Macmanus‐Driscoll | Materials chemistry and thermodynamics of REBa2Cu3O7− x | |
JP3332334B2 (en) | Superconductor and method of manufacturing the same | |
US5474976A (en) | Production of oxide superconductors having large magnetic levitation force | |
JPH0643268B2 (en) | Oxide high temperature superconductor | |
JP4113113B2 (en) | Oxide superconductor joining method and oxide superconductor joined body | |
US6812191B2 (en) | Superconducting bodies made of zinc-doped copper oxide material | |
JPH0738512B2 (en) | Method for manufacturing plate-shaped shield material | |
JPH06219736A (en) | Superconductor | |
US5270292A (en) | Method for the formation of high temperature semiconductors | |
JPH0764619B2 (en) | Method for producing PVD raw material for oxide superconductor | |
JP3159764B2 (en) | Manufacturing method of rare earth superconductor | |
JPH0354103A (en) | Production of oxide superconductor | |
JP3174847B2 (en) | Superconducting whisker and manufacturing method thereof | |
CN1989277A (en) | Method for producing re-ba-cu-o oxide superconductor | |
JP2590370B2 (en) | Superconducting material and manufacturing method thereof | |
JP2966119B2 (en) | Manufacturing method of oxide superconductor | |
Zhou et al. | Synthesis of bulk YBa2Cu3O7-x by melt-spun texture growth (MSTG) | |
JPH111320A (en) | Oxide superconductor and its production | |
JPH0613429B2 (en) | Method for manufacturing oxide superconductor | |
JPH07232917A (en) | Oxide superconductor and manufacturing method thereof | |
JPH0551216A (en) | Production of bi-containing oxide superconductor plate | |
JPH0717380B2 (en) | Method for producing superconducting fibrous crystal | |
JPH02189817A (en) | Manufacturing method of oxide superconducting tape-shaped wire |