JPH0738098A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JPH0738098A JPH0738098A JP5176331A JP17633193A JPH0738098A JP H0738098 A JPH0738098 A JP H0738098A JP 5176331 A JP5176331 A JP 5176331A JP 17633193 A JP17633193 A JP 17633193A JP H0738098 A JPH0738098 A JP H0738098A
- Authority
- JP
- Japan
- Prior art keywords
- region
- source region
- base region
- window opening
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000005530 etching Methods 0.000 claims abstract description 22
- 239000011229 interlayer Substances 0.000 claims abstract description 22
- 239000010410 layer Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims description 19
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 238000000605 extraction Methods 0.000 abstract description 3
- 238000004080 punching Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000347 anisotropic wet etching Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/256—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies
Landscapes
- Weting (AREA)
Abstract
(57)【要約】
【目的】 バックゲート領域を安定に引き出し、且つ、
ソース領域の十分な電気的接続面積を持つパワーMOS
FET(半導体装置)及びその製造方法を提供する。
【構成】 半導体装置は、一導電型半導体基板2に形成
したベース領域Bと、ベース領域B内に形成したソース領
域と、上記基板2上に積層形成したゲート酸化膜3、ゲー
ト電極G及び層間絶縁膜4のソース領域S上を選択的に除
去して形成した窓開け部から基板2内を穿設して形成し
たテーパ状内側壁面Tbを有する凹溝部16と、配線層5と
を具備する。製造方法は、基板2にゲート酸化膜3及びゲ
ート電極Gを積層形成して窓開けし、窓開け部からベー
ス領域Bを形成する工程と、窓開け部全面からベース領
域B内にソース領域Sを形成し、窓開け部を含めて層間絶
縁膜を被着してソース領域S上面を選択的に除去し、層
間絶縁膜4をマスクとしてテーパエッチングして凹溝部1
6を形成し、ベース領域Bを電気的引き出す工程とを含
む。
(57) [Summary] [Purpose] Stable extraction of the back gate region, and
Power MOS with sufficient electrical connection area of source region
An FET (semiconductor device) and a method for manufacturing the same are provided. A semiconductor device includes a base region B formed on a semiconductor substrate of one conductivity type, a source region formed in the base region B, a gate oxide film 3, a gate electrode G, and an interlayer formed on the substrate 2. The insulating layer 4 is provided with a wiring groove 5 and a concave groove portion 16 having a tapered inner wall surface Tb formed by punching the inside of the substrate 2 from a window opening formed by selectively removing the source region S. . The manufacturing method includes a step of forming a gate oxide film 3 and a gate electrode G on the substrate 2 to form a window and opening a window to form a base region B from the window opening portion, and a source region S from the entire surface of the window opening to the base region B. Then, the interlayer insulating film including the window opening is deposited to selectively remove the upper surface of the source region S, and the interlayer insulating film 4 is used as a mask to perform the taper etching to form the concave groove portion 1.
6 and electrically draw out the base region B.
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置及びその製造
方法に関し、詳しくはパワー用縦型電界効果トランジス
タ(以下、FETと称す。)及びその製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a vertical power field effect transistor (hereinafter referred to as FET) and a manufacturing method thereof.
【0002】[0002]
【従来の技術】パワー用縦型FETの一例を図3(b)
(c)を参照して次に説明する。まず図3(b)におい
て(1)はFET、(2)は半導体基板、(B)はベー
ス領域、(S)はソース領域、(G)はゲート電極、
(3)はゲート酸化膜、(4)は層間絶縁膜、(5)は
配線層である。上記半導体基板(2)はドレイン領域
(D)となるN-型基板で、N+型基板にN-型不純物領
域をエピタキシャル成長させたり、或いはN-型基板の
裏面にN+型不純物領域を拡散して裏面側にN+層(2
a)を形成している。ベース領域(B)は半導体基板
(2)内に所定の配列ピッチと形状でP型不純物を選択
拡散して複数に形成され、特に領域中央部(Bb)をそ
の周辺部よりも深く段差形成して拡散抵抗を小さくして
おく。ソース領域(S)は各ベース領域(B)内に高濃
度のN型不純物を選択拡散して形成し、ベース領域
(B)の基板表面近傍においてソース・ドレイン各領域
(S)(D)を導通させるチャンネル部(C)を形成す
る。ゲート電極(G)はゲートポリシリからなり、チャ
ンネル部(C)上を含む基板表面にゲート酸化膜(3)
を介して形成され、製造上、隣接するベース領域(B)
に跨がってドレイン領域(D)上にも形成される。又、
図3(c)に示すように、基板表面を平面的に見ると、
複数の方形枠状ソース領域(S)が所定のピッチと形状
で並ぶと共に、その間に凸状段差部からなるゲート電極
(G)を連続的に形成し、且つ、ソース領域(S)の中
央部にベース領域(B)からソース領域(S)を貫通し
て基板表面に露出するバックゲート(ベースコンタク
ト)領域(Ba)が形成される。そして、その上に層間
絶縁膜(4)及び配線パターン(5)を被着・形成す
る。2. Description of the Related Art An example of a vertical power FET is shown in FIG.
Next, description will be given with reference to (c). First, in FIG. 3B, (1) is a FET, (2) is a semiconductor substrate, (B) is a base region, (S) is a source region, (G) is a gate electrode, and
(3) is a gate oxide film, (4) is an interlayer insulating film, and (5) is a wiring layer. The semiconductor substrate (2) is an N − -type substrate which will be the drain region (D), and an N − -type impurity region is epitaxially grown on the N + -type substrate or an N + -type impurity region is diffused on the back surface of the N − -type substrate. Then, the N + layer (2
a) is formed. The base region (B) is formed in a plurality in the semiconductor substrate (2) by selectively diffusing P-type impurities at a predetermined arrangement pitch and shape, and in particular, a step is formed at the central portion (Bb) deeper than the peripheral portion. To reduce the diffusion resistance. The source region (S) is formed by selectively diffusing high-concentration N-type impurities in each base region (B), and the source / drain regions (S) (D) are formed near the substrate surface of the base region (B). A channel part (C) for conduction is formed. The gate electrode (G) is made of gate polysilicon, and the gate oxide film (3) is formed on the substrate surface including the channel portion (C).
Base regions (B) that are formed adjacent to each other and are adjacent in terms of manufacturing.
Is also formed over the drain region (D). or,
As shown in FIG. 3C, when the substrate surface is viewed in plan,
A plurality of rectangular frame-shaped source regions (S) are arranged at a predetermined pitch and shape, and a gate electrode (G) consisting of a convex step is continuously formed between them, and the central region of the source region (S) is formed. A back gate (base contact) region (Ba) which is exposed from the base region (B) through the source region (S) to the surface of the substrate is formed. Then, an interlayer insulating film (4) and a wiring pattern (5) are deposited and formed thereon.
【0003】上記構成においてゲート電極(G)に正電
圧を印加すると、ベース領域(B)内のチャンネル部
(C)がN型に反転してソース領域(S)とドレイン領
域(D)が導通し、ソース領域(S)からチャンネル部
(C)を経てドレイン領域(D)へ縦型の電子流(I
d)が流れる。この時、ドレイン領域(D)は不純物濃
度が低く、電子流(Id)の導通抵抗が大きくなるた
め、予め基板の極表面付近に高濃度のN型不純物領域を
薄く形成したものもある。When a positive voltage is applied to the gate electrode (G) in the above structure, the channel portion (C) in the base region (B) is inverted to N type and the source region (S) and the drain region (D) are electrically connected. Then, a vertical electron flow (I) flows from the source region (S) to the drain region (D) through the channel portion (C).
d) flows. At this time, since the drain region (D) has a low impurity concentration and the conduction resistance of the electron flow (Id) increases, there is a case where a high-concentration N-type impurity region is thinly formed near the pole surface of the substrate in advance.
【0004】次に、上記FET(1)の製造方法を図2
(a)〜(e)及び図3(a)を参照して説明する。ま
ず、図2(a)に示すように、半導体基板(2)の表面
の素子形成面に予めボロン等のP型不純物をイオン注入
してベース領域(B)の中央部(Bb)を形成した後、
その表面にゲート酸化膜(3)及びゲート電極(G)を
順次、積層して被着・形成する。そして、図2(b)
(c)に示すように、所定のピッチと形状でゲート電極
(G)及びゲート酸化膜(3)を順次、パターニングし
て窓開けしてベース領域不純物拡散用凹部(6)を設け
る。そこで、図2(c)に示すように、凹部(6)から
ゲート電極(G)をマスクとしてボロン等のP型不純物
をイオン注入すると共に、熱拡散により横にゲート電極
(G)の直下まで押し広げ、所定のピッチと形状でベー
ス領域(B)を形成する。Next, a method of manufacturing the FET (1) will be described with reference to FIG.
This will be described with reference to (a) to (e) and FIG. First, as shown in FIG. 2A, a P-type impurity such as boron is ion-implanted into the element formation surface on the surface of the semiconductor substrate (2) in advance to form a central portion (Bb) of the base region (B). rear,
A gate oxide film (3) and a gate electrode (G) are sequentially laminated and deposited / formed on the surface. And FIG. 2 (b)
As shown in (c), the gate electrode (G) and the gate oxide film (3) are sequentially patterned at a predetermined pitch and shape to open a window to form a base region impurity diffusion recess (6). Therefore, as shown in FIG. 2C, P-type impurities such as boron are ion-implanted from the concave portion (6) using the gate electrode (G) as a mask, and by thermal diffusion, laterally up to directly below the gate electrode (G). The base region (B) is formed with a predetermined pitch and shape by spreading.
【0005】そこで、図2(d)に示すように、凹部
(6)内のベース領域(B)上の略中央部のバックゲー
ト形成領域上にレジストパターン(8)を形成すると共
に、熱拡散によって生じた酸化膜(7)をレジストパタ
ーン(8)の直下を除きエッチングで除去する。その
後、ゲート電極(G)とレジストパターン(8)をマス
クとして各ベース領域(B)内に高濃度のN型不純物を
方形枠状に選択的にイオン注入してソース領域(S)を
形成し、その中央部分でベース領域(B)を基板表面に
露出させてバックゲート領域(Ba)を形成する。そし
て、図2(e)に示すように、レジストパターン(8)
を除去した後、更に、図3(a)に示すように、レジス
トパターン(8)の直下の酸化膜(7)をエッチングで
除去し、且つ、ソース領域(S)を熱拡散により横にゲ
ート電極(G)の直下まで押し拡げる。その後、図3
(b)に示すように、凹部(6)を含むゲート電極
(G)上に層間絶縁膜(4)を被着形成し、更に、それ
を選択的に窓開けして電極引出し領域(9)を形成し、
アルミの配線層(5)を積層して被着形成する。Therefore, as shown in FIG. 2 (d), a resist pattern (8) is formed on the back gate forming region in the recessed region (6) in the central region of the base region (B), and thermal diffusion is performed. The oxide film (7) generated by etching is removed by etching except under the resist pattern (8). Then, a high-concentration N-type impurity is selectively ion-implanted in a rectangular frame shape into each base region (B) using the gate electrode (G) and the resist pattern (8) as a mask to form a source region (S). The base region (B) is exposed to the substrate surface at the central portion thereof to form the back gate region (Ba). Then, as shown in FIG. 2E, the resist pattern (8)
3A, the oxide film (7) immediately below the resist pattern (8) is removed by etching, and the source region (S) is laterally gated by thermal diffusion, as shown in FIG. Push it to just below the electrode (G). After that, FIG.
As shown in (b), an interlayer insulating film (4) is deposited on the gate electrode (G) including the recess (6), and a window is selectively opened to form an electrode lead-out region (9). To form
An aluminum wiring layer (5) is laminated and deposited.
【0006】ところで、上記上記FET(1)の製造方
法によれば、レジストパターン(8)が5μm程度で非
常に小さく、剥離し易いため、例えば、レジストパター
ン(8)が剥離したまま酸化膜(7)をエッチング除去
すると、全面に亘って酸化膜(7)が除去される。そこ
で、上記同様、イオン注入してソース領域(S)を形成
し、バックゲート領域(Ba)が消失すると、図6に示
すように、図示点線に示す正規の耐圧波形曲線(A)
が、実線曲線(B)に示すように、左にずれてスナップ
バック波形となり、耐圧が劣化して素子特性不良とな
る。或いは、酸化膜(7)をレジストパターン(8)の
直下を除きエッチングで除去した後、レジストパターン
(8)が剥離し、その直下の酸化膜(7)が残ったとし
ても、酸化膜(7)は薄いため、注入イオンが酸化膜
(7)を容易に突き抜けてしまい、同様にバックゲート
領域(Ba)が消失する。By the way, according to the method for manufacturing the FET (1), the resist pattern (8) is about 5 μm, which is very small and easily peeled off. When 7) is removed by etching, the oxide film (7) is removed over the entire surface. Therefore, similarly to the above, when the source region (S) is formed by ion implantation and the back gate region (Ba) disappears, as shown in FIG. 6, the regular withstand voltage waveform curve (A) shown by the dotted line in the figure.
However, as shown by the solid curve (B), the snapback waveform shifts to the left, and the breakdown voltage deteriorates, resulting in defective element characteristics. Alternatively, even after the oxide film (7) is removed by etching except under the resist pattern (8), the resist pattern (8) is peeled off, and even if the oxide film (7) immediately below remains, the oxide film (7) is removed. ) Is thin, the implanted ions easily penetrate through the oxide film (7), and the back gate region (Ba) disappears similarly.
【0007】そのため、上記不具合を解消するため、特
開昭64−108775号公報に示す製造方法も知られ
ている。上記製造方法は、図4(a)に示すように、図
2(a)(b)(c)と同様、半導体基板(2)上にゲ
ート酸化膜(3)及びゲート電極(G)を順次、積層形
成して窓開けすると共に、窓開け部(10)からP型不
純物をイオン注入して熱拡散により横に押し広げ、ベー
ス領域(B)を形成する。そこで、図4(b)に示すよ
うに、熱拡散により生じた酸化膜(7)を全面でエッチ
ング除去すると、直接、窓開け部(10)からその全面
にN型不純物をイオン注入してソース領域(S)を形成
する。次に、図4(c)に示すように、熱拡散によりソ
ース領域(S)を横に押し拡げ、且つ、窓開け部(1
0)を含めてゲート電極(G)上に全面に層間絶縁膜
(4)を積層形成した後、その上に積層形成したレジス
トパターン(11)を介して層間絶縁膜(4)をエッチ
ング除去し、改めて窓開け部(12)を形成する。そこ
で、図4(d)の点線に示すように、窓開け部(12)
からレジストパターン(11)をマスクとして半導体基
板(2)をソース領域(S)の拡散接合深さよりも深く
エッチング除去して凹溝部(13)を形成すると、ソー
ス領域(S)の中央部を経てベース領域(B)からバッ
クゲート領域(Ba)が露出する。そして、図5に示す
ように、レジストパターン(11)を除去した後、凹溝
部(13)を含めて層間絶縁膜(4)上に配線層(5)
を被着形成してバックゲート領域(Ba)を電気的引き
出し、FET(14)を形成する。Therefore, in order to solve the above problems, a manufacturing method disclosed in Japanese Patent Laid-Open No. 64-108775 is also known. As shown in FIG. 4A, the manufacturing method described above sequentially forms a gate oxide film (3) and a gate electrode (G) on a semiconductor substrate (2) as in FIGS. 2A, 2B and 2C. A layer is formed and a window is opened, and at the same time, a P-type impurity is ion-implanted from the window opening (10) and laterally spread by thermal diffusion to form a base region (B). Therefore, as shown in FIG. 4B, when the oxide film (7) generated by thermal diffusion is removed by etching on the entire surface, N-type impurities are directly ion-implanted from the window opening (10) to the source. A region (S) is formed. Next, as shown in FIG. 4C, the source region (S) is laterally pushed and spread by thermal diffusion, and the window opening (1
0), the interlayer insulating film (4) is formed on the entire surface of the gate electrode (G), and then the interlayer insulating film (4) is removed by etching through the resist pattern (11) formed thereon. The window opening portion (12) is formed again. Therefore, as shown by the dotted line in FIG. 4 (d), the window opening (12)
Then, the semiconductor substrate (2) is removed by etching deeper than the diffusion junction depth of the source region (S) using the resist pattern (11) as a mask to form a groove (13). The back gate region (Ba) is exposed from the base region (B). Then, as shown in FIG. 5, after removing the resist pattern (11), the wiring layer (5) is formed on the interlayer insulating film (4) including the groove (13).
Is deposited and the back gate region (Ba) is electrically drawn out to form the FET (14).
【0008】[0008]
【発明が解決しようとする課題】解決しようとする課題
は、図5に示すように、ソース領域(S)の拡散接合深
さよりも深く半導体基板(2)をエッチング除去してバ
ックゲート領域(Ba)を露出させると、ソース領域
(S)の拡散接合深さが浅くて約1μm程度である一
方、エッチングが基板に対して垂直に進行するため、ソ
ース領域(S)の内側壁面(Ta)と配線層(5)との
電気的接触面積が減少し(従来は2〜3μm)、オーミ
ック接触が不十分になって電気的特性が低下する点であ
る。As shown in FIG. 5, the problem to be solved is to remove the semiconductor substrate (2) by etching deeper than the diffusion junction depth of the source region (S) to remove the back gate region (Ba). ) Is exposed, the depth of the diffusion junction in the source region (S) is shallow and about 1 μm, while the etching proceeds perpendicularly to the substrate, so that the inner wall surface (Ta) of the source region (S) becomes This is the point that the electrical contact area with the wiring layer (5) is reduced (conventionally 2 to 3 μm), the ohmic contact becomes insufficient, and the electrical characteristics are degraded.
【0009】[0009]
【課題を解決するための手段】本発明は、半導体装置と
して、ドレイン領域となる一導電型半導体基板の所定領
域に他動電型不純物を選択拡散して形成したベース領域
と、上記ベース領域内に一導電型不純物を選択拡散して
形成したソース領域と、上記基板上に順次、積層して被
着形成したゲート酸化膜、ゲート電極及び層間絶縁膜の
ソース領域上を選択的に除去して形成した窓開け部から
基板内を穿設して形成したテーパ状内側壁面を有する凹
溝部と、上記凹溝部内を含めて層間絶縁膜上に被着形成
した配線層とを具備したことを特徴とし、The present invention provides, as a semiconductor device, a base region formed by selectively diffusing an electrokinetic impurity in a predetermined region of a one conductivity type semiconductor substrate to be a drain region, and a base region in the base region. A source region formed by selectively diffusing one conductivity type impurity and a source region of a gate oxide film, a gate electrode and an interlayer insulating film, which are sequentially formed by stacking on the substrate, are selectively removed. It is characterized in that it is provided with a concave groove portion having a tapered inner wall surface formed by piercing the inside of the substrate from the formed window opening portion, and a wiring layer deposited on the interlayer insulating film including the inside of the concave groove portion. age,
【0010】又、製造方法として、ドレイン領域となる
一導電型半導体基板上面にゲート酸化膜及びゲート電極
を順次、積層形成して選択的に窓開けした後、窓開け部
から他動電型不純物を注入して押し込んでベース領域を
形成する工程と、上記窓開け部全面からベース領域内に
一導電型不純物を注入してソース領域を形成した後、窓
開け部を含めて層間絶縁膜を被着して上記ソース領域上
面を選択的に除去する工程と、上記窓開け部から層間絶
縁膜をマスクとして上方から所定深さまでテーパエッチ
ングし、テーパ状内側壁面を有する凹溝部を形成する工
程と、上記凹溝部を含めて層間絶縁膜上に配線層を被着
形成し、ソース領域を貫通してベース領域を電気的引き
出す工程とを含むことを特徴とする。Further, as a manufacturing method, a gate oxide film and a gate electrode are sequentially laminated on the upper surface of one conductivity type semiconductor substrate to be a drain region, and a window is selectively opened. And then pushing to form a base region, and after implanting one conductivity type impurity into the base region from the entire surface of the window opening to form a source region, the interlayer insulating film including the window opening is covered. And a step of selectively removing the upper surface of the source region, a step of taper etching from the window opening to a predetermined depth from above using the interlayer insulating film as a mask, and forming a groove having a tapered inner wall surface, And a wiring layer is formed on the interlayer insulating film including the groove portion, and the base region is electrically drawn through the source region.
【0011】[0011]
【作用】上記技術的手段によれば、FETのベース領域
内に選択的に形成したソース領域を拡散深さよりも深く
異方性エッチングして内側壁面がテーパ状の凹溝部を形
成し、凹溝部内に配線層を被着すると、ソース領域の電
気的引き出し面積が増大する。According to the above technical means, the source region selectively formed in the base region of the FET is anisotropically etched deeper than the diffusion depth to form a concave groove portion having an inner wall surface tapered. When the wiring layer is deposited inside, the electrically drawn area of the source region increases.
【0012】[0012]
【実施例】本発明に係る半導体装置及びその製造方法の
実施例を図1(a)〜(d)を参照して以下に説明す
る。まず図1(a)は本発明に係る半導体装置(15)
の実施例を示し、図5に示す部分と同一部分には参照符
号を付してその説明を省略する。相違する点は、バック
ゲート領域(Ba)と同様、ソース領域(S)の中央部
からベース領域(B)が露出するように半導体基板
(2)のソース領域(S)に形成した凹溝部(16)の
形状で、その特徴はソース拡散接合深さよりも深く、且
つ、内側壁面(Tb)をテーパ状に形成したことであ
る。Embodiments of a semiconductor device and a method of manufacturing the same according to the present invention will be described below with reference to FIGS. First, FIG. 1A shows a semiconductor device (15) according to the present invention.
The same parts as those shown in FIG. 5 are designated by the reference numerals and the description thereof will be omitted. The difference is that, like the back gate region (Ba), the recessed groove portion () formed in the source region (S) of the semiconductor substrate (2) so that the base region (B) is exposed from the central portion of the source region (S). 16), which is characterized in that it is deeper than the source diffusion junction depth and the inner wall surface (Tb) is tapered.
【0013】上記構成によれば、図5と同様に、レジス
トパターン(11)を除去した後、凹溝部(16)を含
めて層間絶縁膜(4)上に配線層(5)を被着形成して
ベース領域(B)を電気的引き出すと、ソース領域
(S)の内側壁面(Tb)と配線層(5)との接触面積
が大幅に増加する。According to the above-mentioned structure, as in FIG. 5, after the resist pattern (11) is removed, the wiring layer (5) is formed on the interlayer insulating film (4) including the concave groove (16). When the base region (B) is electrically pulled out, the contact area between the inner wall surface (Tb) of the source region (S) and the wiring layer (5) is significantly increased.
【0014】次に、上記半導体装置(15)の製造方法
を図1(b)〜(d)を参照して説明する。まず図1
(b)は従来の製造方法における図4(c)と同様の工
程を示し、相違する点は、次の図1(c)に示す工程で
ある。その特徴は、窓開け部(12)からレジストパタ
ーン(11)をマスクとして半導体基板(2)をソース
領域(S)の拡散接合深さよりも深くエッチング除去し
て凹溝部(16)を形成する際、水酸化カリウム等のア
ルカリ溶液による異方性ウェットエッチング(テーパエ
ッチング)を用いたことである。上記異方性エッチング
によれば、図1(d)に示すように、半導体基板(2)
の結晶方向にエッチングが進行し、バックゲート領域
(Ba)の中間部(深さ約2μm)でエッチングを停止
すると、(100)結晶の場合、下方に縮径した四角錐
台状凹溝部(16)が形成され、且つ、その角度(θ)
は54.7°になる。それにより凹溝部(16)の形状
をソース拡散接合深さよりも深く、且つ、内側壁面(T
b)をテーパ状に形成する。又、エッチング時間を適
宜、制御して四角錐台の他、図示点線に示すように最大
深さまでエッチングして四角錐形状にも形成出来る。そ
して、図5に示すように、従来同様、レジストパターン
(11)を除去した後、凹溝部(16)を含めて層間絶
縁膜(4)上に配線層(5)を被着形成してベース領域
(B)を電気的引き出せば良い。Next, a method of manufacturing the semiconductor device (15) will be described with reference to FIGS. Figure 1
FIG. 4B shows a process similar to that of FIG. 4C in the conventional manufacturing method, and the different point is the process shown in FIG. The feature thereof is that when the semiconductor substrate (2) is etched deeper than the diffusion junction depth of the source region (S) using the resist pattern (11) as a mask from the window opening (12) to form the concave groove (16). That is, anisotropic wet etching (taper etching) using an alkaline solution such as potassium hydroxide is used. According to the anisotropic etching, as shown in FIG. 1D, the semiconductor substrate (2)
When the etching progresses in the crystal direction of and the etching is stopped at the middle portion (depth of about 2 μm) of the back gate region (Ba), in the case of the (100) crystal, the truncated pyramidal recessed groove (16) ) Is formed and its angle (θ)
Becomes 54.7 °. As a result, the shape of the concave groove portion (16) is deeper than the source diffusion junction depth and the inner wall surface (T
b) is formed in a tapered shape. In addition to the truncated pyramid shape, the etching time can be appropriately controlled, or the truncated pyramid shape can be formed by etching to the maximum depth as shown by the dotted line in the figure. Then, as shown in FIG. 5, after the resist pattern (11) is removed, a wiring layer (5) is formed on the inter-layer insulating film (4) including the recessed groove (16) as in the conventional case by forming a base. It suffices to electrically draw out the region (B).
【0015】尚、層間絶縁膜(4)をCVDで形成する
と、それを直接、マスクとしてエッチング出来る。When the interlayer insulating film (4) is formed by CVD, it can be directly used as a mask for etching.
【0016】[0016]
【発明の効果】本発明によれば、パワーMOSFETの
ソース領域を拡散深さよりも深く、且つ、異方性エッチ
ングして内側壁面がテーパ状の凹溝部を形成し、凹溝部
内に配線層を被着形成してバックゲート及びソース領域
と電気的接続したから、バックゲート領域の電気的引き
出しが安定し、且つ、ソース領域と配線層との電気的引
き出し面積が増大し、安定したオーミック接触を形成出
来て電気的特性が向上する。又、レジストパターンの目
合わせ回数が一回分減るため、工数が低減され、更に、
その目合わせ余裕分、素子寸法を縮小出来る。According to the present invention, the source region of the power MOSFET is deeper than the diffusion depth and anisotropically etched to form a groove having a tapered inner wall surface, and a wiring layer is formed in the groove. Since it is deposited and electrically connected to the back gate and the source region, the electrical extraction of the back gate region is stable, and the electrical extraction area of the source region and the wiring layer is increased, so that a stable ohmic contact is obtained. It can be formed and the electrical characteristics are improved. Also, since the number of times the resist pattern is aligned is reduced by one, the number of steps is reduced, and
The element size can be reduced by the alignment margin.
【図1】(a)は本発明に係る半導体装置の実施例を示
す要部側断面図である。(b)(c)は本発明に係る半
導体装置の実施例を示す工程図である。(d)は本発明
に係る凹溝部の形状を示す平面図である。FIG. 1A is a side sectional view of an essential part showing an embodiment of a semiconductor device according to the present invention. (B) (c) is process drawing which shows the Example of the semiconductor device which concerns on this invention. (D) is a plan view showing the shape of the concave groove portion according to the present invention.
【図2】(a)〜(e)は従来の半導体装置の製造方法
の一例を示す各工程図である。2A to 2E are process diagrams showing an example of a conventional method for manufacturing a semiconductor device.
【図3】(a)は従来の半導体装置の製造方法の一例を
示す図2(a)〜(e)に続く工程図である。(b)は
従来の半導体装置の一例を示す要部側断面図である。
(c)は従来の半導体装置の一例を示す要部平面図であ
る。FIG. 3A is a process diagram following FIG. 2A to FIG. 2E showing an example of a conventional method for manufacturing a semiconductor device. (B) is a principal part side sectional view showing an example of a conventional semiconductor device.
(C) is a principal part top view which shows an example of the conventional semiconductor device.
【図4】(a)〜(d)は従来の半導体装置の製造方法
の他の一例を示す各工程図である。4A to 4D are process diagrams showing another example of a conventional method for manufacturing a semiconductor device.
【図5】従来の半導体装置の製造方法の他の一例を示す
図4(a)〜(d)に続く工程図である。FIG. 5 is a process diagram that continues from FIGS. 4A to 4D and shows another example of a conventional method for manufacturing a semiconductor device.
【図6】従来の半導体装置の電流−電圧特性図である。FIG. 6 is a current-voltage characteristic diagram of a conventional semiconductor device.
2 半導体基板 3 ゲート酸化膜 5 配線層 16 凹溝部 G ゲート電極 B ベース領域 S ソース領域 2 semiconductor substrate 3 gate oxide film 5 wiring layer 16 recessed groove G gate electrode B base region S source region
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/306 21/336 8617−4M H01L 21/265 L 9272−4M 21/306 B 9055−4M 29/78 321 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/306 21/336 8617-4M H01L 21/265 L 9272-4M 21/306 B 9055-4M 29/78 321 P
Claims (3)
の所定領域に他動電型不純物を選択拡散して形成したベ
ース領域と、上記ベース領域内に一導電型不純物を選択
拡散して形成したソース領域と、上記基板上に順次、積
層して被着形成したゲート酸化膜、ゲート電極及び層間
絶縁膜のソース領域上を選択的に除去して形成した窓開
け部から基板内を穿設して形成したテーパ状内側壁面を
有する凹溝部と、上記凹溝部内を含めて層間絶縁膜上に
被着形成した配線層とを具備したことを特徴とする半導
体装置。1. A base region formed by selectively diffusing an electrokinetic impurity in a predetermined region of a one conductivity type semiconductor substrate to be a drain region, and a base region formed by selectively diffusing one conductivity type impurity in the base region. The source region and the source region of the gate oxide film, the gate electrode and the interlayer insulating film, which are sequentially deposited and deposited on the substrate, are selectively removed on the source region to form a hole in the substrate through a window opening. A semiconductor device comprising: a concave groove portion having a tapered inner wall surface formed as described above; and a wiring layer deposited on the interlayer insulating film including the inside of the concave groove portion.
上面にゲート酸化膜及びゲート電極を順次、積層形成し
て選択的に窓開けした後、窓開け部から他動電型不純物
を注入して押し込んでベース領域を形成する工程と、上
記窓開け部全面からベース領域内に一導電型不純物を注
入してソース領域を形成した後、窓開け部を含めて層間
絶縁膜を被着して上記ソース領域上面を選択的に除去す
る工程と、上記窓開け部から層間絶縁膜をマスクとして
上方から所定深さまでテーパエッチングし、テーパ状内
側壁面を有する凹溝部を形成する工程と、上記凹溝部を
含めて層間絶縁膜上に配線層を被着形成し、ソース領域
を貫通してベース領域を電気的引き出す工程とを含むこ
とを特徴とする半導体装置の製造方法。2. A gate oxide film and a gate electrode are sequentially stacked on the upper surface of one conductivity type semiconductor substrate to be a drain region and a window is selectively opened, and then an electrokinetic impurity is injected from the window opening. The step of pressing to form the base region, and the step of forming a source region by injecting one conductivity type impurity into the base region from the entire surface of the window opening, and then depositing an interlayer insulating film including the window opening The step of selectively removing the upper surface of the source region, the step of taper-etching from the window opening to a predetermined depth from above using the interlayer insulating film as a mask to form a concave groove portion having a tapered inner wall surface, and the concave groove portion A method of manufacturing a semiconductor device, comprising the steps of: forming a wiring layer on the interlayer insulating film and electrically extracting the base region through the source region.
るエッチングであることを特徴とする請求項2記載の半
導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 2, wherein the taper etching is etching with an alkaline solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5176331A JPH0738098A (en) | 1993-07-16 | 1993-07-16 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5176331A JPH0738098A (en) | 1993-07-16 | 1993-07-16 | Semiconductor device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0738098A true JPH0738098A (en) | 1995-02-07 |
Family
ID=16011727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5176331A Withdrawn JPH0738098A (en) | 1993-07-16 | 1993-07-16 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738098A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007096034A (en) * | 2005-09-29 | 2007-04-12 | Sanyo Electric Co Ltd | Insulated gate field effect transistor and method of manufacturing the same |
-
1993
- 1993-07-16 JP JP5176331A patent/JPH0738098A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007096034A (en) * | 2005-09-29 | 2007-04-12 | Sanyo Electric Co Ltd | Insulated gate field effect transistor and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6368921B1 (en) | Manufacture of trench-gate semiconductor devices | |
EP1393362B1 (en) | Method of manufacturing a trench-gate semiconductor device | |
US4682405A (en) | Methods for forming lateral and vertical DMOS transistors | |
US5532179A (en) | Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof | |
US5034785A (en) | Planar vertical channel DMOS structure | |
US6043126A (en) | Process for manufacture of MOS gated device with self aligned cells | |
JP2007531988A (en) | Self-aligned contact structure for trench devices | |
KR20010023861A (en) | Semiconductor power device manufacture | |
JP2002373988A (en) | Semiconductor device and manufacturing method thereof | |
JPH03145138A (en) | Formation of dmos transistor | |
JPS62272570A (en) | Vertical gate semiconductor device and its manufacturing method | |
JP2002110978A (en) | Power semiconductor device | |
JPH0548936B2 (en) | ||
JP2000269487A (en) | Semiconductor device and manufacturing method thereof | |
US7208785B2 (en) | Self-aligned Schottky-barrier clamped planar DMOS transistor structure and its manufacturing methods | |
KR100272051B1 (en) | P-channel MOS gate device fabrication process through base injection through contact window | |
JP2002016080A (en) | Manufacturing method of trench gate type MOSFET | |
JPH09232599A (en) | Semiconductor device and manufacturing method thereof | |
JPH05299658A (en) | Semiconductor device and manufacture thereof | |
JPH0738098A (en) | Semiconductor device and manufacturing method thereof | |
JP2988111B2 (en) | Method for manufacturing semiconductor device | |
JP3985358B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2002505811A (en) | Method for manufacturing field effect semiconductor device | |
JP2002314078A (en) | Semiconductor device and manufacturing method thereof | |
JP2809662B2 (en) | Method for manufacturing double-diffused MOSFET device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001003 |